Skip to main content

Translational Challenges of Biomedical Machine Learning Solutions in Clinical and Laboratory Settings

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Abstract

The ever increasing use of artificial intelligence (AI) methods in biomedical sciences calls for closer inter-disciplinary collaborations that transfer the domain knowledge from life scientists to computer science researchers and vice-versa. We highlight two general areas where the use of AI-based solutions designed for clinical and laboratory settings has proven problematic. These are used to demonstrate common sources of translational challenges that often stem from the differences in data interpretation between the clinical and research view, and the unmatched expectations and requirements on the result quality metrics. We outline how explicit interpretable inference reporting might be used as a guide to overcome such translational challenges. We conclude with several recommendations for safer translation of machine learning solutions into real-world settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For example: https://git.io/J0xva.

References

  1. Adan, A., Alizada, G., Kiraz, Y., Baran, Y., Nalbant, A.: Flow cytometry: basic principles and applications. Crit. Rev. Biotechnol. 37(2), 163–176 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. Becht, E., et al.: Dimensionality reduction for visualizing single-cell data using umap. Nature Biotechnol. 37(1), 38–44 (2019)

    Article  CAS  Google Scholar 

  3. Cabitza, F., Campagner, A.: The need to separate the wheat from the chaff in medical informatics: Introducing a comprehensive checklist for the (self)-assessment of medical ai studies (2021). https://www.sciencedirect.com/science/article/pii/S1386505621001362. ISSN 1386–5056

  4. Chari, T., Banerjee, J., Pachter, L.: The specious art of single-cell genomics. bioRxiv (2021)

    Google Scholar 

  5. Ding, J., Condon, A., Shah, S.P.: Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nature Commun. 9(1), 1–13 (2018)

    Article  Google Scholar 

  6. Cruz, B.G.S., Bossa, M.N., Sölter, J., Husch., A.D.: Public covid-19 x-ray datasets and their impact on model bias - a systematic review of a significant problem. Med. Image Anal. 74, 102225 (2021). https://doi.org/10.1016/j.media.2021.102225. https://www.sciencedirect.com/science/article/pii/S136184152100270X. ISSN 1361–8415

  7. Griffith, G.J., et al.: Collider bias undermines our understanding of covid-19 disease risk and severity. Nature Commun. 11(1), 1–12 (2020)

    Article  Google Scholar 

  8. Hu, Z., Tang, A., Singh, J., Bhattacharya, S., Butte, A.J.: A robust and interpretable end-to-end deep learning model for cytometry data. Proc. Natl. Acad. Sci. 117(35), 21373–21380 (2020)

    Google Scholar 

  9. Hutchinson, B., et al.: Towards accountability for machine learning datasets: Practices from software engineering and infrastructure. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 560–575 (2021)

    Google Scholar 

  10. Kelly, C.J., Karthikesalingam, A., Suleyman, M., Corrado, G., King, D.: Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 17(1), 1–9 (2019). https://doi.org/10.1186/s12916-019-1426-2

  11. Kobak, D., Berens, P.: The art of using t-sne for single-cell transcriptomics. Nat. Commun. 10(1), 1–14 (2019)

    Article  CAS  Google Scholar 

  12. Kratochvíl, M., Bednárek, D., Sieger, T., Fišer, K., Vondrášek, J.: Shinysom: graphical som-based analysis of single-cell cytometry data. Bioinformatics 36(10), 3288–3289 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li, H., Shaham, U., Stanton, K.P., Yao, Y., Montgomery, R.R., Kluger, Y.: Gating mass cytometry data by deep learning. Bioinformatics 33(21), 3423–3430 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Littmann, M., et al.: Validity of machine learning in biology and medicine increased through collaborations across fields of expertise. Nature Mach. Intell. 2(1), 18–24 (2020). https://doi.org/10.1038/s42256-019-0139-8

    Article  Google Scholar 

  15. Maguolo, G., Nanni, L.: A critic evaluation of methods for covid-19 automatic detection from x-ray images. arXiv preprint arXiv:2004.12823 (2020). https://arxiv.org/abs/2004.12823v1

  16. Maier-Hein, L., et al.: Why rankings of biomedical image analysis competitions should be interpreted with care. Nature Commun. 9 (2018). https://doi.org/10.1038/s41467-018-07619-7. Art. no. 5217

  17. Mäkinen, S., Skogström, H., Laaksonen, E., Mikkonen, T.: Who needs mlops: what data scientists seek to accomplish and how can mlops help? In: 2021 IEEE/ACM 1st Workshop on AI Engineering-Software Engineering for AI (WAIN), pp. 109–112. IEEE (2021)

    Google Scholar 

  18. Marcinkevičs, R., Vogt, J.E.: Interpretability and explainability: A machine learning zoo mini-tour. arXiv preprint arXiv:2012.01805 (2020)

  19. McKinnon, K.M.: Flow cytometry: an overview. Current protocols in immunology, 120(1), 5–1 ( 2018)

    Google Scholar 

  20. Morley, J., et al.: The ethics of AI in health care: a mapping review. Soc. Sci. Med. 260 (2020). https://doi.org/10.1016/j.socscimed.2020.113172Get. Art. no. 113172

  21. Mousquer, G.T., Peres, A., Fiegenbaum, M.: Pathology of tb/covid-19 co-infection: the phantom menace. Tuberculosis 126 (2020). https://doi.org/10.1016/j.tube.2020.102020. Art. no. 102020

  22. Nagendran, M., et al.: Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. Bmj 368 (2020)

    Google Scholar 

  23. Pedersen, C.B., Olsen, L.R.: Algorithmic clustering of single-cell cytometry data-how unsupervised are these analyses really? Cytometry A 97(3), 219–221 (2020)

    Article  PubMed  Google Scholar 

  24. Price, W.N., Gerke, S., Cohen, I.G.: Potential liability for physicians using artificial intelligence. Jama 322(18), 1765–1766 (2019). https://doi.org/10.1001/jama.2019.15064

  25. Rauschenberger, A., Glaab, E.: Predicting correlated outcomes from molecular data. Bioinformatics (2021). https://doi.org/10.1093/bioinformatics/btab576

    Article  PubMed  Google Scholar 

  26. Roberts, M., et al.: Common pitfalls and recommendations for using machine learning to detect and prognosticate for covid-19 using chest radiographs and CT scans. Nature Mach. Intell. 3(3), 199–217 (2021). https://doi.org/10.1038/s42256-021-00307-0

    Article  Google Scholar 

  27. Sambasivan, N., Kapania, S., Highfill, H., Akrong, D., Paritosh, P., Aroyo, L.M.: “Everyone wants to do the model work, not the data work": Data cascades in high-stakes AI. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2021)

    Google Scholar 

  28. Sculley, D., Snoek, J., Wiltschko, A.B., Rahimi, A.: Winner’s curse? on pace, progress, and empirical rigor. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30–3 May 3, 2018, Workshop Track Proceedings. OpenReview.net (2018). https://openreview.net/forum?id=rJWF0Fywf

  29. David Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Advances in Neural Information Processing Systems, 28 (2015)

    Google Scholar 

  30. Vega, C.: From Hume to Wuhan: an epistemological journey on the problem of induction in COVID-19 machine learning models and its impact upon medical research. IEEE Access 9, 97243–97250 (2021). https://doi.org/10.1109/ACCESS.2021.3095222

    Article  PubMed  Google Scholar 

  31. Visca, D., et al.: Tuberculosis and covid-19 interaction: a review of biological, clinical and public health effects. Pulmonology 27(2), 151–165 (2021). https://doi.org/10.1016/j.pulmoe.2020.12.012. ISSN 2531–0437

  32. Waegeman, W., Dembczyński, K., Hüllermeier, E.: Multi-target prediction: a unifying view on problems and methods. Data Min. Knowl. Disc. 33(2), 293–324 (2018). https://doi.org/10.1007/s10618-018-0595-5

    Article  Google Scholar 

  33. Walsh, I., et al.: Dome: recommendations for supervised machine learning validation in biology. Nature Methods 18(10), 1122–1127 (2021)

    Google Scholar 

  34. Yousaf, Z., et al.: Cavitary pulmonary tuberculosis with covid-19 coinfection. IDCases 22 (2020). https://doi.org/10.1016/j.idcr.2020.e00973. Art. no. e00973

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Vega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vega, C., Kratochvil, M., Satagopam, V., Schneider, R. (2022). Translational Challenges of Biomedical Machine Learning Solutions in Clinical and Laboratory Settings. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13347. Springer, Cham. https://doi.org/10.1007/978-3-031-07802-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07802-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07801-9

  • Online ISBN: 978-3-031-07802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics