Skip to main content

Future-Proofing Plants Against Climate Change: A Path to Ensure Sustainable Food Systems

  • Chapter
  • First Online:
Book cover Biodiversity, Functional Ecosystems and Sustainable Food Production

Abstract

Climate change has altered the pattern of rainfall, temperature, carbon dioxide (CO2) levels, and emission of greenhouse gases, which result in the frequency and severity of extreme events such as drought, flood, salinity, heavy metal stress, nutrient stress, new diseases, and insect pest. This significantly impacts agriculture production, food security, livelihoods, and nutrition. Worldwide, millions of people are affected due to the consequence of climate change and particularly become the most vulnerable, by increasing the frequency and virulence of extreme meteorological events that cause population displacement and reduction in agricultural productivity. A paradigm shift toward more resilient, productive, and sustainable agriculture and food systems is required. The world must act immediately act on it to put an end to hunger and malnutrition. To ensure rapid and advanced agricultural development in a short period, precision farming practices and smart breeding strategies need to follow; such as machine learning, deep learning, big data analysis, remote sensing, artificial intelligence, system biology study, genomic prediction, speed breeding, and haplotype breeding. These techniques can prove the future plants against climate variability with increased yield potential and improved resilience to achieve the goal of resilient climate agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahman, M., El-Sayed, M., Jogaiah, S., Burritt, D. J., & Tran, L. S. P. (2017). The “STAY-GREEN” trait and phytohormone signaling networks in plants under heat stress. Plant Cell Reports, 36(7), 1009–1025.

    Article  CAS  PubMed  Google Scholar 

  • Abdoli, S., Ghassemi-Golezani, K., & Alizadeh-Salteh, S. (2020). Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress. Environmental Science and Pollution Research, 27(29), 36939–36953.

    Article  CAS  PubMed  Google Scholar 

  • Ali, J., Mahender, A., Prahalada, G. D., Sevilla, M. A. L., Galang, A., De Asis, E. J., et al. (2020). Genomics-assisted breeding of climate-smart inbred and hybrid rice varieties. In Genomic designing of climate-smart cereal crops (pp. 1–43). Springer.

    Google Scholar 

  • Alkharabsheh, H. M., Seleiman, M. F., Hewedy, O. A., Battaglia, M. L., Jalal, R. S., Alhammad, B. A., et al. (2021). Field crop responses and management strategies to mitigate soil salinity in modern agriculture: A review. Agronomy, 11(11), 2299.

    Article  CAS  Google Scholar 

  • Alkorta, I., Hernández-Allica, J., Becerril, J. M., Amezaga, I., Albizu, I., Onaindia, M., & Garbisu, C. (2004). Chelate-enhanced phytoremediation of soils polluted with heavy metals. Reviews in Environmental Science and Biotechnology, 3(1), 55–70.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (2012). Heavy metals in soils: trace metals and metalloids in soils and their bioavailability (Vol. 22). Springer Science & Business Media.

    Google Scholar 

  • Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. In Heavy metals in soils (pp. 11–50). Springer.

    Chapter  Google Scholar 

  • Amjad, M., Akhtar, J., Haq, M. A. U., Imran, S., & Jacobsen, S. E. (2014). Soil and foliar application of potassium enhances fruit yield and quality of tomato under salinity. Turkish Journal of Biology, 38(2), 208–218.

    Article  CAS  Google Scholar 

  • Arai-Sanoh, Y., Takai, T., Yoshinaga, S., Nakano, H., Kojima, M., Sakakibara, H., et al. (2014). Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields. Scientific Reports, 4(1), 1–6.

    Article  Google Scholar 

  • Araus, J. L., et al. (2018). Translating high-throughput phenotyping into genetic gain. Trends in Plant Science, 23, 451–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arc, E., Galland, M., Cueff, G., Godin, B., Lounifi, I., Job, D., & Rajjou, L. (2011). Reboot the system thanks to protein post-translational modifications and proteome diversity: How quiescent seeds restart their metabolism to prepare seedling establishment. Proteomics, 11(9), 1606–1618.

    Article  CAS  PubMed  Google Scholar 

  • Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E., & Schroeder, J. I. (2019). Genetic strategies for improving crop yields. Nature, 575(7781), 109–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker, A. J., & Walker, P. L. (1990). Ecophysiology of metal uptake by tolerant plants. In Heavy metal tolerance in plants: Evolutionary aspects (Vol. 2, pp. 155–165). CRC Press.

    Google Scholar 

  • Baligar, V. C., & Fageria, N. K. (2015). Nutrient use efficiency in plants: An overview. In A. Rakshit, H. B. Singh, & A. Sen (Eds.), Nutrient use efficiency: From basics to advances (Vol. 417). Springer.

    Google Scholar 

  • Banerjee, A., & Roychoudhury, A. (2018). Seed priming technology in the amelioration of salinity stress in plants. In Advances in seed priming (pp. 81–93). Springer.

    Google Scholar 

  • Bani, A., Pavlova, D., Echevarria, G., Mullaj, A., Reeves, R. D., Morel, J. L., & Sulçe, S. (2010). Nickel hyperaccumulation by the species of Alyssum and Th laspi (Brassicaceae) from the ultramafic soils of the Balkans. Botanica Serbica, 34(1), 3–14.

    Google Scholar 

  • Barbosa, E. G. G., Leite, J. P., Marin, S. R. R., Marinho, J. P., Carvalho, J. D. F. C., Fuganti-Pagliarini, R., et al. (2013). Overexpression of the ABA-dependent AREB1 transcription factor from Arabidopsis thaliana improves soybean tolerance to water deficit. Plant Molecular Biology Reporter, 31(3), 719–730.

    Article  CAS  Google Scholar 

  • Baz, H., Creech, M., Chen, J., Gong, H., Bradford, K., & Huo, H. (2020). Water-soluble carbon nanoparticles improve seed germination and post-germination growth of lettuce under salinity stress. Agronomy, 10(8), 1192.

    Article  CAS  Google Scholar 

  • Beddington, J. R., Asaduzzaman, M., Bremauntz, F. A., Clark, M. E., Guillou, M., et al. (2011). Achieving food security in the face of climate change: Summary for policy makers from the Commission on Sustainable Agriculture and Climate Change.

    Google Scholar 

  • Begna, T. (2021). Global role of plant breeding in tackling climate change. Journal of Agricultural Science and Food Technology, 7(2), 223–229.

    Google Scholar 

  • Bermúdez, M., Cea, L., Van Uytven, E., Willems, P., Farfán, J. F., & Puertas, J. (2020). A robust method to update local river inundation maps using global climate model output and weather typing based statistical downscaling. Water Resources Management, 34(14), 4345–4362.

    Article  Google Scholar 

  • Bernard, A. (2008). Cadmium & its adverse effects on human health. Indian Journal of Medical Research, 128(4), 557.

    CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur, P., Rao, J. S., Vadez, V., Dumbala, S. R., Rathore, A., Yamaguchi-Shinozaki, K., & Sharma, K. K. (2014). Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Molecular Breeding, 33(2), 327–340.

    Article  CAS  Google Scholar 

  • Blum, A. (2013). Heterosis, stress, and the environment: A possible road map towards the general improvement of crop yield. Journal of Experimental Botany, 64(16), 4829–4837.

    Article  CAS  PubMed  Google Scholar 

  • Bocci, M., & Smanis, T. (2019). Assessment of the impacts of climate change on the agriculture sector in the southern Mediterranean: Foreseen developments and policy measures. Union for the Mediterranean. Accessed 18 Nov 2020.

    Google Scholar 

  • Boyd, R. S., & Davis, M. A. (2001). Metal tolerance and accumulation ability of the Ni hyperaccumulator Streptanthus polygaloides Gray (Brassicaceae). International Journal of Phytoremediation, 3(4), 353–367.

    Article  CAS  Google Scholar 

  • Brady, N. C., & Weil, R. R. (2015). Soil acidity. In The nature and properties of soils (14th ed., pp. 423–468). Pearson Education, Inc.

    Google Scholar 

  • Bray, A. L., & Topp, C. N. (2018). The quantitative genetic control of root architecture in maize. Plant and Cell Physiology, 59(10), 1919–1930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, S. L., Chaney, R. L., Angle, J. S., & Baker, A. J. M. (1994). Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil. Journal of Environmental Quality, 23(6), 1151–1157.

    Article  CAS  Google Scholar 

  • Brown, N. L., Stoyanov, J. V., Kidd, S. P., & Hobman, J. L. (2003). The MerR family of transcriptional regulators. FEMS Microbiology Reviews, 27(2–3), 145–163.

    Article  CAS  PubMed  Google Scholar 

  • Bu, J., Sun, Z., Zhou, A., Xu, Y., Ma, R., Wei, W., & Liu, M. (2016). Heavy metals in surface soils in the upper reaches of the Heihe River, northeastern Tibetan Plateau, China. International Journal of Environmental Research and Public Health, 13(3), 247.

    Article  PubMed  PubMed Central  Google Scholar 

  • Calleja-Cabrera, J., Boter, M., Oñate-Sánchez, L., & Pernas, M. (2020). Root growth adaptation to climate change in crops. Frontiers in Plant Science, 11, 544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceglar, A., et al. (2019). Observed northward migration of agro-climate zones in Europe will further accelerate under climate change. Earth’s Future, 7(9), 1088–1101.

    Article  Google Scholar 

  • Chandra, H., Kumari, P., Bontempi, E., & Yadav, S. (2020). Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatalysis and Agricultural Biotechnology, 24, 101518.

    Article  Google Scholar 

  • Chen, S., & Wilson, D. B. (1997). Genetic engineering of bacteria and their potential for Hg2þ bioremediation. Biodegradation, 8, 97–103.

    Article  CAS  PubMed  Google Scholar 

  • Chittaranjan, K. (2020). Genomic designing of climate-smart vegetable crops. Springer International Publishing.

    Google Scholar 

  • Collard, B. C., Beredo, J. C., Lenaerts, B., Mendoza, R., Santelices, R., Lopena, V., et al. (2017). Revisiting rice breeding methods–evaluating the use of rapid generation advance (RGA) for routine rice breeding. Plant Production Science, 20(4), 337–352.

    Article  Google Scholar 

  • Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., & Dierig, D. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4, 442.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cossani, C. M., & Reynolds, M. P. (2012). Physiological traits for improving heat tolerance in wheat. Plant Physiology, 160(4), 1710–1718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cossani, C. M., & Reynolds, M. P. (2015). Heat stress adaptation in elite lines derived from synthetic hexaploid wheat. Crop Science, 55(6), 2719–2735.

    Article  CAS  Google Scholar 

  • Crespo-Herrera, L. A., Crossa, J., Huerta-Espino, J., Autrique, E., Mondal, S., Velu, G., et al. (2017). Genetic yield gains in CIMMYT’s international elite spring wheat yield trials by modeling the genotype × environment interaction. Crop Science, 57, 789.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dar, M. H., Chakravorty, R., Waza, S. A., Sharma, M., Zaidi, N. W., Singh, A. N., et al. (2017). Transforming rice cultivation in flood prone coastal Odisha to ensure food and economic security. Food Security, 9(4), 711–722.

    Article  Google Scholar 

  • Dash, H. R., Mangwani, N., & Das, S. (2014). Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05. Environmental Science and Pollution Research, 21, 2642–2653.

    Article  CAS  PubMed  Google Scholar 

  • Dass, A., Jat, S. L., & Rana, K. S. (2015). Resource conserving techniques for improving nitrogen-use efficiency. In A. Rakshit, H. B. Singh, & A. Sen (Eds.), Nutrient use efficiency: From basics to advances (Vol. 417). Springer.

    Google Scholar 

  • Datta, A., Shrestha, S., Ferdous, Z., & Win, C. C. (2015). Strategies for enhancing phosphorus efficiency in crop production systems. In A. Rakshit, H. B. Singh, & A. Sen (Eds.), Nutrient use efficiency: From basics to advances (Vol. 417). Springer.

    Google Scholar 

  • De Ron, A. M., Kalavacharla, V., Álvarez-García, S., Casquero, P. A., Carro-Huerga, G., Gutiérrez, S., et al. (2019). Genomic designing of climate-smart pulse crops. Springer.

    Google Scholar 

  • Deja-Muylle, A., Parizot, B., Motte, H., & Beeckman, T. (2020). Exploiting natural variation in root system architecture via genome-wide association studies. Journal of Experimental Botany, 71(8), 2379–2389.

    Article  CAS  PubMed  Google Scholar 

  • Deng, X., & Jia, P. (2011). Construction and characterization of a photosynthetic bacterium genetically engineered for Hg2+ uptake. Bioresource Technology, 102(3), 3083–3088.

    Article  CAS  PubMed  Google Scholar 

  • Des Marais, D. L., Auchincloss, L. C., Sukamtoh, E., McKay, J. K., Logan, T., Richards, J. H., & Juenger, T. E. (2014). Variation in MPK12 affects water use efficiency in Arabidopsis and reveals a pleiotropic link between guard cell size and ABA response. Proceedings of the National Academy of Sciences, 111(7), 2836–2841.

    Article  CAS  Google Scholar 

  • Doty, S. L., Shang, T. Q., Wilson, A. M., Tangen, J., Westergreen, A. D., Newman, L. A., et al. (2000). Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Proceedings of the National Academy of Sciences, 97(12), 6287–6291.

    Article  CAS  Google Scholar 

  • Duruibe, J. O., Ogwuegbu, M. O. C., & Egwurucywu, Y. N. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2, 112–118.

    Google Scholar 

  • EEA. (2019). Climate change adaptation in the agriculture sector in Europe (EEA report No 4/2019). European Environment Agency. Accessed 19 Nov 2020.

    Google Scholar 

  • EEA. (2020). The European environment-state and outlook 2020. European Environment Agency. Accessed 19 Nov 2020.

    Google Scholar 

  • El-Mashad, A. A. A., & Mohamed, H. I. (2012). Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma, 249(3), 625–635.

    Article  CAS  PubMed  Google Scholar 

  • Estrada-Melo, A. C., Reid, M. S., & Jiang, C. Z. (2015). Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia. Horticulture Research, 2(1), 1–9.

    Article  CAS  Google Scholar 

  • Faizan, M., Bhat, J. A., Chen, C., Alyemeni, M. N., Wijaya, L., Ahmad, P., & Yu, F. (2021). Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiology and Biochemistry, 161, 122–130.

    Article  CAS  PubMed  Google Scholar 

  • Fan, W., Wang, H., & Zhang, P. (2016). Engineering glycinebetaine metabolism for enhanced drought stress tolerance in plants. In Drought stress tolerance in plants (Vol. 2, pp. 513–530). Springer.

    Chapter  Google Scholar 

  • FAO. (1996). Rome declaration on world food security and World Food Summit Plan of Action. World Food Summit 13–17 November 1996. https://bit.ly/3rb70fK

  • FAO. (2008). Challenges for sustainable land management (SLM) for food security in Africa. In 25th Regional Conference for Africa, Nairobi Kenya, Information Paper.

    Google Scholar 

  • FAO. (2009). How to feed the world 2050: High-level expert forum. Global agriculture towards.

    Google Scholar 

  • FAO. (2011). Climate change, water and food security (pp. 1–200).

    Google Scholar 

  • FAO. (2015a). Climate change and food security: Risks and responses ( pp. 1–122).

    Google Scholar 

  • FAO. (2015b). Coping with climate change - The roles of genetic resources for food and agriculture. http://www.fao.org/3/a-i3866e.pdf

  • FAO. (2016). Climate change and food security risks and responses (pp. 1–46).

    Google Scholar 

  • Farooq, M. A., Shakeel, A., Atif, R. M., & Saleem, M. F. (2019). Genotypic variations in salinity tolerance among BT cotton. Pakistan Journal of Botany, 51(6), 1945–1953.

    Article  CAS  Google Scholar 

  • Fernie, A. R., Tadmor, Y., & Zamir, D. (2006). Natural genetic variation for improving crop quality. Current Opinion in Plant Biology, 9(2), 196–202.

    Article  PubMed  Google Scholar 

  • Flowers, T. S., & Yeo, A. R. (1989). Effects of salinity on plant growth and crop yields. In Environmental stress in plants (pp. 101–119). Springer.

    Chapter  Google Scholar 

  • Frederick, T. M., Taylor, E. A., Willis, J. L., Shultz, M. S., & Woodruff, P. J. (2013). Chromate reduction is expedited by bacteria engineered to produce the compatible solute trehalose. Biotechnology Letters, 35(8), 1291–1296. https://doi.org/10.1007/s10529-013-1200-z

    Article  CAS  PubMed  Google Scholar 

  • Gadkar, V., & Rillig, M. C. (2006). The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiology Letters, 263(1), 93–101.

    Article  CAS  PubMed  Google Scholar 

  • Garelick, H., Jones, H., Dybowska, A., & Valsami-Jones, E. (2009). Arsenic pollution sources. In Reviews of environmental contamination (Vol. 197, pp. 17–60). Springer.

    Google Scholar 

  • Garrett, R. G. (2000). Natural sources of metals to the environment. Human and Ecological Risk Assessment, 6(6), 945–963.

    Article  CAS  Google Scholar 

  • Gautam, P. K., Gautam, R. K., Banerjee, S., Chattopadhyaya, M. C., & Pandey, J. D. (2016). Heavy metals in the environment: Fate, transport, toxicity and remediation technologies. Nova Science Publishers, 60, 101–130.

    Google Scholar 

  • Geetika, G., van Oosterom, E. J., George-Jaeggli, B., Mortlock, M. Y., Deifel, K. S., McLean, G., & Hammer, G. L. (2019). Genotypic variation in whole-plant transpiration efficiency in sorghum only partly aligns with variation in stomatal conductance. Functional Plant Biology, 46(12), 1072–1089.

    Article  CAS  PubMed  Google Scholar 

  • Ghaderian, S. M., Mohtadi, A., Rahiminejad, M. R., & Baker, A. J. M. (2007). Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environmental Pollution, 145(1), 293–298.

    Article  CAS  PubMed  Google Scholar 

  • Ghani, A., & Ghani, A. (2011). Effect of chromium toxicity on growth, chlorophyll and some mineral nutrients of brassica juncea L. Egyptian Academic Journal of Biological Sciences, H. Botany, 2(1), 9–15.

    Article  Google Scholar 

  • Giarola, V., Hou, Q., & Bartels, D. (2017). Angiosperm plant desiccation tolerance: Hints from transcriptomics and genome sequencing. Trends in Plant Science, 22(8), 705–717.

    Article  CAS  PubMed  Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812–818.

    Article  CAS  PubMed  Google Scholar 

  • Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A., & Groneberg, D. A. (2006). The toxicity of cadmium and resulting hazards for human health. Journal of Occupational Medicine and Toxicology, 1(1), 22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gond, S. K., Torres, M. S., Bergen, M. S., Helsel, Z., & White, J. F., Jr. (2015). Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium P antoea agglomerans. Letters in Applied Microbiology, 60(4), 392–399.

    Article  CAS  PubMed  Google Scholar 

  • González, R. M., Ricardi, M. M., & Iusem, N. D. (2013). Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions. Epigenetics, 8(8), 864–872.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guan-fu, F., Cai-xia, Z., Yong-jie, Y., Jie, X., Xue-qin, Y., Xiu-fu, Z., et al. (2015). Male parent plays more important role in heat tolerance in three-line hybrid rice. Rice Science, 22(3), 116–122.

    Article  Google Scholar 

  • Guo, J., Yan, Y., Chen, D., Lv, Y., Han, Y., Guo, X., Liu, L., Miao, Y., Chen, T., Nie, J., & Zhai, P. (2020). The response of warm-season precipitation extremes in China to global warming: An observational perspective from radiosonde measurements. Climate Dynamics, 54(9–10), 3977–3989.

    Article  Google Scholar 

  • Gupta, P. K., Balyan, H. S., Gahlaut, V., & Kulwal, P. L. (2012). Phenotyping, genetic dissection, and breeding for drought and heat tolerance in common wheat: Status and prospects. Plant Breeding Reviews, 36, 85–168.

    Google Scholar 

  • Hallajian, M. T. (2016). Mutation breeding and drought stress tolerance in plants. In Drought stress tolerance in plants (Vol. 2, pp. 359–383). Springer.

    Chapter  Google Scholar 

  • Hammer, G., McLean, G., Doherty, A., van Oosterom, E., & Chapman, S. (2016). Sorghum crop modeling and its utility in agronomy and breeding. Sorghum: State of the art and future perspectives (agronmonogr58).

    Google Scholar 

  • Ha-Tran, D. M., Nguyen, T. T. M., Hung, S. H., Huang, E., & Huang, C. C. (2021). Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: A review. International Journal of Molecular Sciences, 22(6), 3154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang, T. M. L., Tran, T. N., Nguyen, T. K. T., Williams, B., Wurm, P., Bellairs, S., & Mundree, S. (2016). Improvement of salinity stress tolerance in rice: Challenges and opportunities. Agronomy, 6(4), 54.

    Article  Google Scholar 

  • Hope, K. R. (2009). Climate change and poverty in Africa. International Journal of Sustainable Development & World Ecology, 16, 451–461. https://bit.ly/2Ua7gzG

  • Hsu, S. K., & Tung, C. W. (2017). RNA-Seq analysis of diverse rice genotypes to identify the genes controlling coleoptile growth during submerged germination. Frontiers in Plant Science, 8, 762.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, J., Rampitsch, C., & Bykova, N. V. (2015). Advances in plant proteomics toward improvement of crop productivity and stress resistancex. Frontiers in Plant Science, 6, 209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huo, W., Zhuang, C. H., Cao, Y., Pu, M., Yao, H., Lou, L. Q., & Cai, Q. S. (2012). Paclobutrazol and plant-growth promoting bacterial endophyte Pantoea sp. enhance copper tolerance of guinea grass (Panicum maximum) in hydroponic culture. Acta Physiologiae Plantarum, 34(1), 139–150.

    Article  CAS  Google Scholar 

  • Ibuot, A., Dean, A. P., McIntosh, O. A., & Pittman, J. K. (2017). Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural waste watertolerant microalgae strains. Algal Research, 24, 89–96.

    Article  Google Scholar 

  • IPCC. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. P’ean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.). Cambridge University Press. In Press.

    Google Scholar 

  • Iqbal, M., & Ashraf, M. (2013). Alleviation of salinity-induced perturbations in ionic and hormonal concentrations in spring wheat through seed preconditioning in synthetic auxins. Acta Physiologiae Plantarum, 35(4), 1093–1112.

    Article  CAS  Google Scholar 

  • Iqbal, N., Ashraf, M. Y., Javed, F., Martinez, V., & Ahmad, K. (2006). Nitrate reduction and nutrient accumulation in wheat grown in soil salinized with four different salts. Journal of Plant Nutrition, 29(3), 409–421.

    Article  CAS  Google Scholar 

  • Iqbal, K. J., Qureshi, N. A., Ashraf, M., Rehman, M. H. U., Khan, N., Javid, A., et al. (2012). Effect of different salinity levels on growth and survival of Nile tilapia (Oreochromis niloticus). Journal of Animal and Plant Sciences, 22(4), 919–932.

    CAS  Google Scholar 

  • Isayenkov, S. V., & Maathuis, F. J. (2019). Plant salinity stress: Many unanswered questions remain. Frontiers in Plant Science, 10, 80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam, Z., Bagchi, B., & Hossain, M. (2007). Adoption of leaf color chart for nitrogen use efficiency in rice: Impact assessment of a farmer-participatory experiment in West Bengal, India. Field Crops Research, 103(1), 70–75.

    Article  Google Scholar 

  • Jarup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167–182.

    Article  PubMed  Google Scholar 

  • Jat, M. L., Gathala, M. K., Ladha, J. K., Saharawat, Y. S., Jat, A. S., Kumar, V., et al. (2009). Evaluation of precision land leveling and double zero-till systems in the rice–wheat rotation: Water use, productivity, profitability and soil physical properties. Soil and Tillage Research, 105(1), 112–121.

    Article  Google Scholar 

  • Jiang, Y., Cai, Z., Xie, W., Long, T., Yu, H., & Zhang, Q. (2012). Rice functional genomics research: Progress and implications for crop genetic improvement. Biotechnology Advances, 30(5), 1059–1070.

    Article  CAS  PubMed  Google Scholar 

  • Jing, Z., Jian, Z., Xi-Lin, H., Feng, W., & Ai-Sheng, X. (2014). Transcriptomic, proteomic, metabolomic and functional genomic approaches for the study of abiotic stress in vegetable crops. Critical Reviews in Plant Sciences, 33(2–3), 225–237. https://doi.org/10.1080/07352689.2014.870420

    Article  CAS  Google Scholar 

  • Jodie, K., Page, S., Kergna, A., & Kennan, J. (2009). Climate change and developing country agriculture: An overview of expected impacts, adaptation and mitigation challenges, and funding requirements. https://bit.ly/3z0MCkb

  • Juliana, P., Montesinos-López, O. A., Crossa, J., Mondal, S., Pérez, L. G., Poland, J., et al. (2019). Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat. Theoretical and Applied Genetics, 132(1), 177–194.

    Article  CAS  PubMed  Google Scholar 

  • Kajiya-Kanegae, H., Takanashi, H., Fujimoto, M., Ishimori, M., Ohnishi, N., Wacera, W. F., et al. (2020). RAD-seq-based high-density linkage map construction and QTL mapping of biomass-related traits in sorghum using the Japanese landrace Takakibi NOG. Plant and Cell Physiology, 61(7), 1262–1272.

    Article  CAS  PubMed  Google Scholar 

  • Kapaj, S., Peterson, H., Liber, K., & Bhattacharya, P. (2006). Human health effects from chronic arsenic poisoning–a review. Journal of Environmental Science and Health, Part A, 41(10), 2399–2428.

    Article  CAS  Google Scholar 

  • Kapoor, D., Singh, S., Kumar, V., Romero, R., Prasad, R., & Singh, J. (2019). Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene, 19, 100182.

    Article  CAS  Google Scholar 

  • Karimi, S., Tavallali, V., Ferguson, L., & Mirzaei, S. (2020). Developing a nano-Fe complex to supply iron and improve salinity tolerance of pistachio under calcium bicarbonate stress. Communications in Soil Science and Plant Analysis, 51(14), 1835–1851.

    Article  CAS  Google Scholar 

  • Kato, Y., Collard, B. C., Septiningsih, E. M., & Ismail, A. M. (2019). Increasing flooding tolerance in rice: Combining tolerance of submergence and of stagnant flooding. Annals of Botany, 124(7), 1199–1209.

    Article  CAS  PubMed Central  Google Scholar 

  • Khan, N., & Bano, A. (2016). Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. International Journal of Phytoremediation, 18(3), 211–221.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. M., & Reinke, R. F. (2018). Identification of QTLs for tolerance to hypoxia during germination in rice. Euphytica, 214(9), 1–10.

    Article  Google Scholar 

  • Kim, J. M., To, T. K., Ishida, J., Matsui, A., Kimura, H., & Seki, M. (2012). Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant and Cell Physiology, 53(5), 847–856.

    Article  CAS  PubMed  Google Scholar 

  • Kitomi, Y., Nakao, E., Kawai, S., Kanno, N., Ando, T., Fukuoka, S., et al. (2018). Fine mapping of QUICK ROOTING 1 and 2, quantitative trait loci increasing root length in rice. G3: Genes, Genomes, Genetics, 8(2), 727–735.

    Article  CAS  PubMed  Google Scholar 

  • Kitomi, Y., Hanzawa, E., Kuya, N., Inoue, H., Hara, N., Kawai, S., et al. (2020). Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields. Proceedings of the National Academy of Sciences, 117(35), 21242–21250.

    Article  CAS  Google Scholar 

  • Kole, C. (Ed.). (2019). Genomic designing of climate-smart oilseed crops. Springer.

    Google Scholar 

  • Kole, C. (Ed.). (2020). Genomic designing of climate-smart fruit crops. Springer Nature.

    Google Scholar 

  • Koller, M., & Saleh, H. M. (2018). Introductory chapter: Introducing heavy metals. Heavy Metals, 1, 3–11.

    Google Scholar 

  • Kooyers, N. J. (2015). The evolution of drought escape and avoidance in natural herbaceous populations. Plant Science, 234, 155–162.

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy, R., Kim, K., Subramanian, P., Senthilkumar, M., Anandham, R., & Sa, T. (2016). Arbuscular mycorrhizal fungi and associated bacteria isolated from salt-affected soil enhances the tolerance of maize to salinity in coastal reclamation soil. Agriculture, Ecosystems & Environment, 231, 233–239.

    Article  CAS  Google Scholar 

  • Kruseman, G., Bairagi, S., Komarek, A. M., Molero Milan, A., Nedumaran, S., Petsakos, A., et al. (2020). CGIAR modeling approaches for resource-constrained scenarios: II. Models for analyzing socioeconomic factors to improve policy recommendations. Crop Science, 60(2), 568–581.

    Article  Google Scholar 

  • Kumar, A., Bernier, J., Verulkar, S., Lafitte, H. R., & Atlin, G. N. (2008). Breeding for drought tolerance: Direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Research, 107(3), 221–231.

    Article  Google Scholar 

  • Kumar, A., Singh, S., Gaurav, A. K., Srivastava, S., & Verma, J. P. (2020). Plant growth-promoting bacteria: Biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology, 11, 1216.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, A., Singh, S., Mukherjee, A., Rastogi, R. P., & Verma, J. P. (2021). Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiological Research, 242, 126616.

    Article  CAS  PubMed  Google Scholar 

  • Küpper, H., Lombi, E., Zhao, F. J., Wieshammer, G., & McGrath, S. P. (2001). Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. Journal of Experimental Botany, 52(365), 2291–2300.

    Article  PubMed  Google Scholar 

  • Langridge, P., & Reynolds, M. P. (2015). Genomic tools to assist breeding for drought tolerance. Current Opinion in Biotechnology, 32, 130–135.

    Article  CAS  PubMed  Google Scholar 

  • LaPack, M. A., Tou, J. C., & Enke, C. G. (1990). Membrane mass spectrometry for the direct trace analysis of volatile organic compounds in air and water. Analytical Chemistry, 62(13), 1265–1271.

    Article  CAS  Google Scholar 

  • Li, Y. M., Chaney, R., Brewer, E., Roseberg, R., Angle, J. S., Baker, A., et al. (2003). Development of a technology for commercial phytoextraction of nickel: Economic and technical considerations. Plant and Soil, 249(1), 107–115.

    Article  CAS  Google Scholar 

  • Li, J. F., Zhang, D., & Sheen, J. (2015). Targeted plant genome editing via the CRISPR/Cas9 technology. In Plant functional genomics (pp. 239–255). Humana Press.

    Chapter  Google Scholar 

  • Lister, R., Gregory, B. D., & Ecker, J. R. (2009). Next is now: New technologies for sequencing of genomes, transcriptomes, and beyond. Current Opinion in Plant Biology, 12(2), 107–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobell, D. B., Hammer, G. L., Chenu, K., Zheng, B., McLean, G., & Chapman, S. C. (2015). The shifting influence of drought and heat stress for crops in northeast Australia. Global Change Biology, 21(11), 4115–4127.

    Article  PubMed  Google Scholar 

  • Luo, S. L., Chen, L., Chen, J. L., Xiao, X., Xu, T. Y., Wan, Y., & Zeng, G. M. (2011). Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere, 85(7), 1130–1138.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, J. P. (2019). Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. New Phytologist, 223(2), 548–564.

    Article  PubMed  Google Scholar 

  • Manigbas, N. L., Lambio, L. A. F., Luvina, B., & Cardenas, C. C. (2014). Germplasm innovation of heat tolerance in rice for irrigated lowland conditions in the Philippines. Rice Science, 21(3), 162–169.

    Article  Google Scholar 

  • Mateos, L. M., Villadangos, A. F., de la Rubia, A. G., Mourenza, A., Marcos-Pascual, L., Letek, M., & Gil, J. A. (2017). The arsenic detoxification system in corynebacteria. Advanced Applied Microbiology, 99, 103–137. https://doi.org/10.1016/bs.aambs.2017.01.001

    Article  CAS  Google Scholar 

  • Mega, R., Abe, F., Kim, J. S., Tsuboi, Y., Tanaka, K., Kobayashi, H., et al. (2019). Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors. Nature Plants, 5(2), 153–159.

    Article  CAS  PubMed  Google Scholar 

  • Merchuk-Ovnat, L., Barak, V., Fahima, T., Ordon, F., Lidzbarsky, G. A., Krugman, T., & Saranga, Y. (2016). Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars. Frontiers in Plant Science, 7, 452.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra, R., & Zhao, K. (2018). Genome editing technologies and their applications in crop improvement. Plant Biotechnology Reports, 12(2), 57–68.

    Article  Google Scholar 

  • Mishra, P., Mishra, J., & Arora, N. K. (2021). Plant growth promoting bacteria for combating salinity stress in plants–Recent developments and prospects: A review. Microbiological Research, 252, 126861.

    Article  CAS  PubMed  Google Scholar 

  • Naher, U. A., Panhwar, Q. A., Othman, R., Ismail, M. R., & Berahim, Z. (2016). Biofertilizer as a supplement of chemical fertilizer for yield maximization of rice. Journal of Agriculture Food and Development, 2, 16–22.

    Article  Google Scholar 

  • Navarro, J. M., Pérez-Tornero, O., & Morte, A. (2014). Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. Journal of Plant Physiology, 171(1), 76–85.

    Article  CAS  PubMed  Google Scholar 

  • Negrão, S., Schmöckel, S. M., & Tester, M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1), 1–11.

    Article  PubMed  Google Scholar 

  • Nejatzadeh, F. (2021). Effect of silver nanoparticles on salt tolerance of Satureja hortensis l. during in vitro and in vivo germination tests. Heliyon, 7(2), e05981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson, G. C., Mark, W. R., Jawoo K., Richard, R., Timothy, S., Tingju, Z., Claudia, R., Siwa, M., Amanda, P., Miroslav, B., Marilia, M., Rowena, V., Mandy, E., & David, L. (2009). Climate change: Impact on agriculture and costs of adaptation (pp. 1–8). International Food Policy Research Institute. https://doi.org/10.2499/0896295354

  • Nguyen, C. T., Singh, V., van Oosterom, E. J., Chapman, S. C., Jordan, D. R., & Hammer, G. L. (2013). Genetic variability in high temperature effects on seed-set in sorghum. Functional Plant Biology, 40(5), 439–448.

    Article  PubMed  Google Scholar 

  • Nguyen, D. N., Wang, S. L., Nguyen, A. D., Doan, M. D., Tran, D. M., Nguyen, T. H., et al. (2021). Potential application of rhizobacteria isolated from the central highland of Vietnam as an effective biocontrol agent of Robusta coffee nematodes and as a bio-fertilizer. Agronomy, 11(9), 1887.

    Article  CAS  Google Scholar 

  • Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., et al. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological Research, 209, 21–32.

    Article  CAS  PubMed  Google Scholar 

  • Oladosu, Y., Rafii, M. Y., Abdullah, N., Magaji, U., Miah, G., Hussin, G., & Ramli, A. (2017). Genotype× Environment interaction and stability analyses of yield and yield components of established and mutant rice genotypes tested in multiple locations in Malaysia. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 67(7), 590–606.

    CAS  Google Scholar 

  • Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L. S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5, 86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: Hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184(1–4), 105–126.

    Article  CAS  Google Scholar 

  • Palmgren, M. G., Edenbrandt, A. K., Vedel, S. E., Andersen, M. M., Landes, X., Østerberg, J. T., et al. (2015). Are we ready for back-to-nature crop breeding? Trends in Plant Science, 20(3), 155–164.

    Article  CAS  PubMed  Google Scholar 

  • Panhwar, Q. A., Naher, U. A., Radziah, O., Shamshuddin, J., & Razi, I. M. (2014). Bio-fertilizer, ground magnesium limestone and basalt applications may improve chemical properties of Malaysian acid sulfate soils and rice growth. Pedosphere, 24(6), 827–835.

    Article  Google Scholar 

  • Parent, B., Leclere, M., Lacube, S., Semenov, M. A., Welcker, C., Martre, P., & Tardieu, F. (2018). Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time. Proceedings of the National Academy of Sciences, 115(42), 10642–10647.

    Article  CAS  Google Scholar 

  • Pedersen, O., Nakayama, Y., Yasue, H., Kurokawa, Y., Takahashi, H., Heidi Floytrup, A., et al. (2021a). Lateral roots, in addition to adventitious roots, form a barrier to radial oxygen loss in Zea nicaraguensis and a chromosome segment introgression line in maize. New Phytologist, 229(1), 94–105.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen, O., Sauter, M., Colmer, T. D., & Nakazono, M. (2021b). Regulation of root adaptive anatomical and morphological traits during low soil oxygen. New Phytologist, 229(1), 42–49.

    Article  CAS  PubMed  Google Scholar 

  • Pieczynski, M., Marczewski, W., Hennig, J., Dolata, J., Bielewicz, D., Piontek, P., et al. (2013). Down-regulation of CBP 80 gene expression as a strategy to engineer a drought-tolerant potato. Plant Biotechnology Journal, 11(4), 459–469.

    Article  CAS  PubMed  Google Scholar 

  • Placido, D. F., Sandhu, J., Sato, S. J., Nersesian, N., Quach, T., Clemente, T. E., et al. (2020). The LATERAL ROOT DENSITY gene regulates root growth during water stress in wheat. Plant Biotechnology Journal, 18(9), 1955–1968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poli, Y., Basava, R. K., Panigrahy, M., Vinukonda, V. P., Dokula, N. R., Voleti, S. R., et al. (2013). Characterization of a Nagina22 rice mutant for heat tolerance and mapping of yield traits. Rice, 6(1), 1–9.

    Article  Google Scholar 

  • Poulose, J., Rao, A. D., & Dube, S. K. (2020). Mapping of cyclone induced extreme water levels along Gujarat and Maharashtra coasts: A climate change perspective. Climate Dynamics, 55(11–12), 3565–3581.

    Article  Google Scholar 

  • Prasad, M. N. V. (2005). Nickelophilous plants and their significance in phytotechnologies. Brazilian Journal of Plant Physiology, 17(1), 113–128.

    Article  CAS  Google Scholar 

  • Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees- A review. Environment International, 29(4), 529–540.

    Article  CAS  PubMed  Google Scholar 

  • Rafati, M., Khorasani, N., Moattar, F., Shirvany, A., Moraghebi, F., & Hosseinzadeh, S. (2011). Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. International Journal of Environmental Research, 5(4), 961–970.

    CAS  Google Scholar 

  • Rai, P. K. (2008). Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. International Journal of Phytoremediation, 10(5), 430–439.

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy, K., & Banu, S. P. (2007). Bioremediation of metals: Microbial processes and techniques. In Environmental bioremediation technologies (pp. 173–187). Springer.

    Chapter  Google Scholar 

  • Ramiah, K. (1940). Floating habit in rice. Indian Journal of Agricultural Sciences, 11, 1–8.

    Google Scholar 

  • Ray, D. K., et al. (2019). Climate change has likely already affected global food production. PLoS One, 14(5), e0217148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renzaho, A. M., & Mellor, D. (2010). Food security measurement in cultural pluralism: Missing the point or conceptual misunderstanding. Nutrition, 26, 1–9. https://bit.ly/3BbUh11

  • Reynolds, M. P., & Trethowan, R. M. (2007). Physiological interventions in breeding for adaptation to abiotic stress. Frontis, 21, 127–144.

    Google Scholar 

  • Rice, K. M., Walker, E. M., Jr., Wu, M., Gillette, C., & Blough, E. R. (2014). Environmental mercury and its toxic effects. Journal of Preventive Medicine and Public Health, 47(2), 74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers, C., Wen, J., Chen, R., & Oldroyd, G. (2009). Deletion-based reverse genetics in Medicago truncatula. Plant Physiology, 151(3), 1077–1086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz, O. N., Alvarez, D., Gonzalez-Ruiz, G., & Torres, C. (2011). Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnology, 11, 82. https://doi.org/10.1186/1472-6750-11-82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruppel, S., Franken, P., & Witzel, K. (2013). Properties of the halophyte microbiome and their implications for plant salt tolerance. Functional Plant Biology, 40(9), 940–951.

    Article  CAS  PubMed  Google Scholar 

  • Rutkoski, J., Poland, J., Mondal, S., Autrique, E., Pérez, L. G., Crossa, J., et al. (2016). Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3: Genes, Genomes, Genetics, 6(9), 2799–2808.

    Article  PubMed  Google Scholar 

  • Sahab, S., Suhani, I., Srivastava, V., Chauhan, P. S., Singh, R. P., & Prasad, V. (2021). Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. Science of the Total Environment, 764, 144164.

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara, M., Ohmori, Y., Ha, N. T. H., Sano, S., & Sera, K. (2011). Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. CLEAN–Soil, Air, Water, 39(8), 735–741.

    Article  CAS  Google Scholar 

  • Sangeeta, M., & Maiti, S. K. (2010). Phytoremediation of metal enriched mine waste: A review. American-Eurasian Journal of Agricultural & Environmental Sciences, 9(5), 560–575.

    Google Scholar 

  • Satterthwaite, D., McGranahan, G., & Tacoli, C. (2010). Urbanization and its implications for food and farming. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2809–2820. https://bit.ly/3wDHtNm

  • Semel, Y., Schauer, N., Roessner, U., Zamir, D., & Fernie, A. R. (2007). Metabolite analysis for the comparison of irrigated and non-irrigated field grown tomato of varying genotype. Metabolomics, 3(3), 289–295.

    Article  CAS  Google Scholar 

  • Sen, S. K., Chouhan, D., Das, D., Ghosh, R., & Mandal, P. (2020). Improvisation of salinity stress response in mung bean through solid matrix priming with normal and nano-sized chitosan. International Journal of Biological Macromolecules, 145, 108–123.

    Article  CAS  PubMed  Google Scholar 

  • Serba, D. D., Yadav, R. S., Varshney, R. K., Gupta, S., Mahalingam, G., Srivastava, R. K., et al. (2020). Genomic designing of climate-smart cereal crops. Springer.

    Google Scholar 

  • Shah, T., Latif, S., Saeed, F., Ali, I., Ullah, S., Alsahli, A. A., et al. (2021). Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University-Science, 33(1), 101207.

    Article  Google Scholar 

  • Sharma, I., Ching, E., Saini, S., Bhardwaj, R., & Pati, P. K. (2013). Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiology and Biochemistry, 69, 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Singh, S. (2012). Phytoremediation: A sustainable alternative for environmental challenges. International Journal of Green and Herbal Chemistry, 1, 133–139.

    CAS  Google Scholar 

  • Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: An overview. Indian Journal of Pharmacology, 43(3), 246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, A., Septiningsih, E. M., Balyan, H. S., Singh, N. K., & Rai, V. (2017). Genetics, physiological mechanisms and breeding of flood-tolerant rice (Oryza sativa L.). Plant and Cell Physiology, 58(2), 185–197.

    CAS  PubMed  Google Scholar 

  • Sodango, T. H., Li, X., Sha, J., & Bao, Z. (2018). Review of the spatial distribution, source and extent of heavy metal pollution of soil in China: Impacts and mitigation approaches. Journal of Health and Pollution, 8(17), 53–70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Son, T. T. N., Van Thu, V., Man, L. H., & Kobayashi, H. (2001). Effect of organic and bio-fertilizer on soybean and rice under rice based cropping system. In Proceedings of the 2001 annual workshop of JIRCAS Mekong Delta Project (pp. 43–53).

    Google Scholar 

  • Sripinyowanich, S., Klomsakul, P., Boonburapong, B., Bangyeekhun, T., Asami, T., Gu, H., et al. (2013). Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress. Environmental and Experimental Botany, 86, 94–105.

    Article  CAS  Google Scholar 

  • Srivastava, P. C., & Gupta, U. C. (1996). Trace elements in crop production. Science Publishers Inc.

    Google Scholar 

  • Srivastava, N. K., Jha, M. K., Mall, I. D., & Singh, D. (2010). Application of genetic engineering for chromium removal from industrial wastewater. International Journal of Chemical and Biological Engineering, 3, 3.

    Google Scholar 

  • Srivastava, V., De Araujo, A. S. F., Vaish, B., Bartelt-Hunt, S., Singh, P., & Singh, R. P. (2016). Biological response of using municipal solid waste compost in agriculture as fertilizer supplement. Reviews in Environmental Science and Biotechnology, 15(4), 677–696.

    Article  PubMed  Google Scholar 

  • Sultan, B., & Gaetani, M. (2016). Agriculture in West Africa in the twenty-first century: Climate change and impacts scenarios, and potential for adaptation. Frontiers in Plant Science, 7, 1262.

    Article  PubMed  PubMed Central  Google Scholar 

  • Surat, W., Kruatrachue, M., Pokethitiyook, P., Tanhan, P., & Samranwanich, T. (2008). Potential of Sonchus arvensis for the phytoremediation of lead-contaminated soil. International Journal of Phytoremediation, 10(4), 325–342.

    Article  CAS  PubMed  Google Scholar 

  • Tamang, B. G., & Fukao, T. (2015). Plant adaptation to multiple stresses during submergence and following desubmergence. International Journal of Molecular Sciences, 16(12), 30164–30180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327(5967), 818–822.

    Article  CAS  PubMed  Google Scholar 

  • Tilman, D., Balzer, C., & Hill, J., Befort, B. L. (2011). Global food demand and the sustainable intensifi cation of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108, 20260–20264. https://bit.ly/3xNTMIq

  • Tlustoš, P., Pavlíková, D., Száková, J., Fischeroá, Z., & Balík, J. (2006). Exploitation of fast growing trees in metal remediation. In Phytoremediation rhizoremediation (pp. 83–102). Springer.

    Chapter  Google Scholar 

  • Toledo, A. M. U., Ignacio, J. C. I., Casal, C., Gonzaga, Z. J., Mendioro, M. S., & Septiningsih, E. M. (2015). Development of improved Ciherang-Sub1 having tolerance to anaerobic germination conditions. Plant Breeding and Biotechnology, 3, 77–87.

    Article  Google Scholar 

  • Tomlinson, I. (2013). Doubling food production to feed the 9 billion: A critical perspective on a key discourse of food security in the UK. Journal of Rural Studies, 29, 81–90.

    Article  Google Scholar 

  • Tozzini, A. C. (2000). Semi-quantitative detection of genetically modified grains based on CaMv 35S promoter amplification. Electronic Journal of Biotechnology, 32(2), 0717–3458.

    Google Scholar 

  • Turral, H., Burke, J., & Faurès, J. M. (2011). Climate change, water and food security. Food and Agriculture Organization of the United Nations. https://bit.ly/3wHV3zd

  • Van Houtan, K. S., Tanaka, K. R., Gagné, T. O., & Becker, S. L. (2021). The geographic disparity of historical greenhouse emissions and projected climate change. Science Advances, 7(29), eabe4342.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., et al. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research, 16(7), 765–794.

    Article  CAS  PubMed  Google Scholar 

  • Venuprasad, R., Bool, M. E., Quiatchon, L., Cruz, M. S., Amante, M., & Atlin, G. N. (2012). A large-effect QTL for rice grain yield under upland drought stress on chromosome 1. Molecular Breeding, 30(1), 535–547.

    Article  Google Scholar 

  • Verma, H., Borah, J. L., & Sarma, R. N. (2019). Variability assessment for root and drought tolerance traits and genetic diversity analysis of rice germplasm using SSR markers. Scientific Reports, 9(1), 1–19.

    Article  Google Scholar 

  • Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255(2), 571–586.

    Article  CAS  Google Scholar 

  • Vikram, P., Swamy, B. M., Dixit, S., Ahmed, H. U., Cruz, M. T. S., Singh, A. K., & Kumar, A. (2011). qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genetics, 12(1), 1–15.

    Article  Google Scholar 

  • Vishnoi, S. R., & Srivastava, P. N. (2007). Phytoremediation–green for environmental clean. In Proceedings of Taal2007: The 12th World lake conference (Vol. 1016, p. 1021).

    Google Scholar 

  • Vivitha, P., Raveendran, M., & Vijayalakshmi, D. (2017). Introgression of QTLs controlling spikelet fertility maintains membrane integrity and grain yield in improved white Ponni derived progenies exposed to heat stress. Rice Science, 24(1), 32–40.

    Article  Google Scholar 

  • Voesenek, L. A. C. J., & Sasidharan, R. (2013). Ethylene–and oxygen signalling–drive plant survival during flooding. Plant Biology, 15(3), 426–435.

    Article  CAS  PubMed  Google Scholar 

  • von der Gathen, P., Kivi, R., Wohltmann, I., Salawitch, R. J., & Rex, M. (2021). Climate change favours large seasonal loss of Arctic ozone. Nature Communications, 12(1), 1–17.

    Google Scholar 

  • Voss-Fels, K. P., Snowdon, R. J., & Hickey, L. T. (2018). Designer roots for future crops. Trends in Plant Science, 23(11), 957–960.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Beaith, M., Chalifoux, M., Ying, J., Uchacz, T., Sarvas, C., et al. (2009). Shoot-specific down-regulation of protein farnesyltransferase (α-subunit) for yield protection against drought in canola. Molecular Plant, 2(1), 191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Czedik-Eysenberg, A., Mertz, R. A., Si, Y., Tohge, T., Nunes-Nesi, A., et al. (2014). Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. Nature Biotechnology, 32(11), 1158–1165.

    Article  PubMed  Google Scholar 

  • Wang, W., Zhang, Z., Yeh, T. C. J., Qiao, G., Wang, W., Duan, L., et al. (2017). Flow dynamics in vadose zones with and without vegetation in an arid region. Advances in Water Resources, 106, 68–79.

    Article  Google Scholar 

  • Waraich, E.A., Ahmad, R., Halim, A., & Aziz, T. (2012). Alleviation of temperature stress by nutrient management in crop plants: A review. Journal of Soil Science and Plant Nutrition, 12(2): 221–244.358. Springer.

    Google Scholar 

  • Wei, H., Liu, J., Wang, Y., Huang, N., Zhang, X., Wang, L., et al. (2013). A dominant major locus in chromosome 9 of rice (Oryza sativa L.) confers tolerance to 48 C high temperature at seedling stage. Journal of Heredity, 104(2), 287–294.

    Article  CAS  PubMed  Google Scholar 

  • Wilbur, S. B. (2000). Toxicological profile for chromium. US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry.

    Google Scholar 

  • Wu, G., Kang, H., Zhang, X., Shao, H., Chu, L., & Ruan, C. (2010). A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials, 174(1–3), 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Wu, B., Wang, Z., Zhao, Y., Gu, Y., Wang, Y., Yu, J., & Xu, H. (2019). The performance of biochar-microbe multiple biochemical material on bioremediation and soil micro-ecology in the cadmium aged soil. Science of the Total Environment, 686, 719–728.

    Article  CAS  PubMed  Google Scholar 

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, 1–20.

    Article  Google Scholar 

  • Xue, Y., Warburton, M. L., Sawkins, M., Zhang, X., Setter, T., Xu, Y., et al. (2013). Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theoretical and Applied Genetics, 126(10), 2587–2596.

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi, T., Abe, F., Tsutsumi, N., & Nakazono, M. (2019). Root cortex provides a venue for gas-space formation and is essential for plant adaptation to waterlogging. Frontiers in Plant Science, 10, 259.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, S. X., Deng, H., & Li, M. S. (2008). Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba. Plant, Soil and Environment, 54(10), 441–446.

    Article  CAS  Google Scholar 

  • Yazdandoost, F., Moradian, S., Izadi, A., & Aghakouchak, A. (2021). Evaluation of CMIP6 precipitation simulations across different climatic zones: Uncertainty and model intercomparison. Atmospheric Research, 250, 105369. https://doi.org/10.1016/j.atmosres.2020.105369

    Article  Google Scholar 

  • Zacchini, M., Pietrini, F., Mugnozza, G. S., Iori, V., Pietrosanti, L., & Massacci, A. (2009). Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water, Air, and Soil Pollution, 197(1–4), 23–34.

    Article  CAS  Google Scholar 

  • Zahra, N., & Kalim, I. (2017). Perilous effects of heavy metals contamination on human health. Pakistan Journal of Analytical & Environmental Chemistry, 18(1), 1–17.

    Article  CAS  Google Scholar 

  • Zandalinas, S. I., Fichman, Y., Devireddy, A. R., Sengupta, S., Azad, R. K., & Mittler, R. (2020). Systemic signaling during abiotic stress combination in plants. Proceedings of the National Academy of Sciences, 117(24), 13810–13820.

    Article  CAS  Google Scholar 

  • Zandalinas, S. I., Sengupta, S., Fritschi, F. B., Azad, R. K., Nechushtai, R., & Mittler, R. (2021). The impact of multifactorial stress combination on plant growth and survival. New Phytologist, 230(3), 1034–1048.

    Article  CAS  PubMed  Google Scholar 

  • Zawoznik, M. S., Ameneiros, M., Benavides, M. P., Vázquez, S., & Groppa, M. D. (2011). Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings. Applied Microbiology and Biotechnology, 90(4), 1389–1397.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, B., Chenu, K., & Chapman, S. C. (2016). Velocity of temperature and flowering time in wheat–assisting breeders to keep pace with climate change. Global Change Biology, 22(2), 921–933.

    Article  PubMed  Google Scholar 

  • Zhou, R., Yu, X., Ottosen, C. O., Rosenqvist, E., Zhao, L., Wang, Y., et al. (2017). Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biology, 17(1), 1–13.

    Article  CAS  Google Scholar 

  • Zhu, F., Ma, S., Liu, T., & Deng, X. (2018). Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater. Journal of Cleaner Production, 174, 184–190.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majhi, P.K. et al. (2023). Future-Proofing Plants Against Climate Change: A Path to Ensure Sustainable Food Systems. In: Galanakis, C.M. (eds) Biodiversity, Functional Ecosystems and Sustainable Food Production. Springer, Cham. https://doi.org/10.1007/978-3-031-07434-9_3

Download citation

Publish with us

Policies and ethics