Skip to main content

Motoneuronal Regulation of Central Pattern Generator and Network Function

  • Chapter
  • First Online:
Vertebrate Motoneurons

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 28))

Abstract

This chapter reviews recent work showing that vertebrate motoneurons can trigger spontaneous rhythmic activity in the developing spinal cord and can modulate the function of several different central pattern generators later in development. In both the embryonic chick and the fetal mouse spinal cords, antidromic activation of motoneurons can trigger bouts of rhythmic activity. In the neonatal mouse, optogenetic manipulation of motoneuron firing can modulate the frequency of fictive locomotion activated by a drug cocktail. In adult animals, motoneurons have been shown to regulate swimming in the zebrafish, and vocalization in fish and frogs. We discuss the significance of these findings and the degree to which motoneurons may be considered a part of these central pattern generators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ampatzis K, Song J, Ausborn J, El Manira A (2014) Separate microcircuit modules of distinct v2a interneurons and motoneurons control the speed of locomotion. Neuron 83(4):934–943

    Article  CAS  PubMed  Google Scholar 

  • Arai Y, Mentis GZ, Wu JY, O’Donovan MJ (2007) Ventrolateral origin of each cycle of rhythmic activity generated by the spinal cord of the chick embryo. PLoS One 2(5):e417

    Article  PubMed  PubMed Central  Google Scholar 

  • Bass AH, Marchaterre MA, Baker R (1994) Vocal-acoustic pathways in a teleost fish. J Neurosci 14(7):4025–4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beattie MS, Bresnahan JC, Mawe GM, Finn S (1987) Distribution and ultrastructure of ventral root afferents to lamina I of the cat sacral spinal cord. Neurosci Lett 76(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Bhumbra GS, Beato M (2018) Recurrent excitation between motoneurones propagates across segments and is purely glutamatergic. PLoS Biol 16(3):e2003586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonnot A, Chub N, Pujala A, O’Donovan MJ (2009) Excitatory actions of ventral root stimulation during network activity generated by the disinhibited neonatal mouse spinal cord. J Neurophysiol 101(6):2995–3011

    Article  PubMed  PubMed Central  Google Scholar 

  • Borodinsky LN, Root CM, Cronin JA, Sann SB, Gu X, Spitzer NC (2004) Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature 429(6991):523–530

    Article  CAS  PubMed  Google Scholar 

  • Brock LG, Coombs JS, Eccles JC (1952) The recording of potentials from motoneurones with an intracellular electrode. J Physiol 117(4):431–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazalets JR, Sqalli-Houssaini Y, Clarac F (1992) Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. J Physiol 455:187–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chagnaud BP, Baker R, Bass AH (2011) Vocalization frequency and duration are coded in separate hindbrain nuclei. Nat Commun 2(1):346

    Article  PubMed  CAS  Google Scholar 

  • Chagnaud BP, Bass AH (2014) Vocal behavior and vocal central pattern generator organization diverge among toadfishes. Brain Behav Evol 84(1):51–65

    Article  PubMed  Google Scholar 

  • Chagnaud BP, Perelmuter JT, Forlano PM, Bass AH (2021) Gap junction-mediated glycinergic inhibition ensures precise temporal patterning in vocal behavior. elife 10

    Google Scholar 

  • Chalif JI, Martínez-Silva MDL, Pagiazitis JG, Murray AJ, Mentis GZ (2022) Control of mammalian locomotion by ventral spinocerebellar tract neurons. Cell 185(2):328–344.e326

    Article  CAS  PubMed  Google Scholar 

  • Chopek JW, Nascimento F, Beato M, Brownstone RM, Zhang Y (2018) Sub-populations of spinal V3 interneurons form focal modules of layered pre-motor microcircuits. Cell Rep 25(1):146–156 e143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463(7277):98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chub N, O’Donovan MJ (2001) Post-episode depression of GABAergic transmission in spinal neurons of the chick embryo. J Neurophysiol 85(5):2166–2176

    Article  CAS  PubMed  Google Scholar 

  • Chung JM, Lee KH, Endo K, Coggeshall RE (1983) Activation of central neurons by ventral root afferents. Science 222(4626):934–935

    Article  CAS  PubMed  Google Scholar 

  • Chung JM, Lee KH, Kim J, Coggeshall RE (1985) Activation of dorsal horn cells by ventral root stimulation in the cat. J Neurophysiol 54(2):261–272

    Article  CAS  PubMed  Google Scholar 

  • Clifton GL, Coggeshall RE, Vance WH, Willis WD (1976) Receptive fields of unmyelinated ventral root afferent fibres in the cat. J Physiol 256(3):573–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coggeshall R (1979) Afferent fibers in the ventral root. Neurosurgery 4(5):443–448

    Article  CAS  PubMed  Google Scholar 

  • Danner SM, Zhang H, Shevtsova NA, Borowska-Fielding J, Deska-Gauthier D, Rybak IA, Zhang Y (2019) Spinal V3 interneurons and left-right coordination in mammalian locomotion. Front Cell Neurosci 13:516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dougherty KJ, Zagoraiou L, Satoh D, Rozani I, Doobar S, Arber S, Jessell TM, Kiehn O (2013) Locomotor rhythm generation linked to the output of spinal shox2 excitatory interneurons. Neuron 80(4):920–933

    Google Scholar 

  • Eklof-Ljunggren E, Haupt S, Ausborn J, Dehnisch I, Uhlen P, Higashijima S, El Manira A (2012) Origin of excitation underlying locomotion in the spinal circuit of zebrafish. Proc Natl Acad Sci U S A 109(14):5511–5516

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Gaby M, Zhang Y, Wolf K, Schwiening J, Christof OP, Shipton A, Olivia (2016) Archaerhodopsin selectively and reversibly silences synaptic transmission through altered pH. Cell Rep 16(8):2259–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enjin A, Perry S, Hilscher MM, Nagaraja C, Larhammar M, Gezelius H, Eriksson A, Leao KE, Kullander K (2017) Developmental disruption of recurrent inhibitory feedback results in compensatory adaptation in the Renshaw cell-motor neuron circuit. J Neurosci 37(23):5634–5647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falgairolle M, Puhl JG, Pujala A, Liu W, O’Donovan MJ (2017) Motoneurons regulate the central pattern generator during drug-induced locomotor-like activity in the neonatal mouse. elife 6

    Google Scholar 

  • Gabriel JP, Mahmood R, Walter AM, Kyriakatos A, Hauptmann G, Calabrese RL, El Manira A (2008) Locomotor pattern in the adult zebrafish spinal cord in vitro. J Neurophysiol 99(1):37–48

    Article  CAS  PubMed  Google Scholar 

  • Grillner S, Wallén P (1980) Does the central pattern generation for locomotion in lamprey depend on glycine inhibition? Acta Physiol Scand 110(1):103–105

    Article  CAS  PubMed  Google Scholar 

  • Grillner S, Zangger P (1979) On the central generation of locomotion in the low spinal cat. Exp Brain Res 34(2)

    Google Scholar 

  • Hall BK, Herring SW (1990) Paralysis and growth of the musculoskeletal system in the embryonic chick. J Morphol 206(1):45–56

    Article  CAS  PubMed  Google Scholar 

  • Hamburger V (1990) The developmental history of the motor neuron. Neuroembryology 15:1–37

    Google Scholar 

  • Hanson MG, Landmesser LT (2003) Characterization of the circuits that generate spontaneous episodes of activity in the early embryonic mouse spinal cord. J Neurosci 23(2):587–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson MG, Landmesser LT (2004) Normal patterns of spontaneous activity are required for correct motor axon guidance and the expression of specific guidance molecules. Neuron 43(5):687–701

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand C, Karlsson M, Risling M (1997) Ganglionic axons in motor roots and PIA mater. Prog Neurobiol 51(2):89–128

    Article  CAS  PubMed  Google Scholar 

  • Hinckley CA, Hartley R, Wu L, Todd A, Ziskind-Conhaim, L (2005) Locomotor-Like Rhythms in a Genetically Distinct Cluster of Interneurons in the Mammalian Spinal Cord. J Neurophysiol 93(3):1439–1449. https://doi.org/10.1152/jn.00647.2004

  • Humphreys JM, Whelan PJ (2012) Dopamine exerts activation-dependent modulation of spinal locomotor circuits in the neonatal mouse. J Neurophysiol 108(12):3370–3381

    Article  CAS  PubMed  Google Scholar 

  • Iles JF, Nicolopoulos-Stournaras S (1996) Fictive locomotion in the adult decerebrate rat. Exp Brain Res 109(3):393–398

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Carlin KP, Brownstone RM (1999) An in vitro functionally mature mouse spinal cord preparation for the study of spinal motor networks. Brain Res 816(2):493–499

    Article  CAS  PubMed  Google Scholar 

  • Kiehn O, Iizuka M, Kudo N (1992) Resetting from low threshold afferents of N-methyl-D-aspartate-induced locomotor rhythm in the isolated spinal cord-hindlimb preparation from newborn rats. Neurosci Lett 148(1-2):43–46

    Article  CAS  PubMed  Google Scholar 

  • Kudo N, Yamada T (1987) locomotor activity in a spinal cord-indlimb muscles preparation of the newborn rat studied in vitro. Neurosci Lett 75(1):43–48

    Article  CAS  PubMed  Google Scholar 

  • Kwan AC, Dietz SB, Webb WW, Harris-Warrick RM (2009) Activity of Hb9 interneurons during fictive locomotion in mouse spinal cord. J Neurosci 29(37):11601–11613

    Google Scholar 

  • Landmesser LT, O’Donovan MJ (1984) Activation patterns of embryonic chick hind limb muscles recorded in ovo and in an isolated spinal cord preparation. J Physiol 347(1):189–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawton KJ, Perry WM, Yamaguchi A, Zornik E (2017) Motor neurons tune premotor activity in a vertebrate central pattern generator. J Neurosci 37(12):3264–3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WC, Soffe SR, Roberts A (2004) Glutamate and acetylcholine corelease at developing synapses. Proc Natl Acad Sci U S A 101(43):15488–15493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Light AR, Metz CB (1978) The morphology of the spinal cord efferent and afferent neurons contributing to the ventral roots of the cat. J Comp Neurol 179(3):501–515

    Article  CAS  PubMed  Google Scholar 

  • Machacek DW, Hochman S (2006) Noradrenaline unmasks novel self-reinforcing motor circuits within the mammalian spinal cord. J Neurosci 26(22):5920–5928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLean JN, Schmidt BJ, Hochman S (1997) NMDA receptor activation triggers voltage oscillations, plateau potentials and bursting in neonatal rat lumbar motoneurons in vitro. Eur J Neurosci 9(12):2702–2711

    Article  CAS  PubMed  Google Scholar 

  • Manuel M, Li Y, Elbasiouny SM, Murray K, Griener A, Heckman CJ, Bennett DJ (2012) NMDA induces persistent inward and outward currents that cause rhythmic bursting in adult rodent motoneurons. J Neurophysiol 108(11):2991–2998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mawe GM, Bresnahan JC, Beattie MS (1984) Primary afferent projections from dorsal and ventral roots to autonomic preganglionic neurons in the cat sacral spinal cord: light and electron microscopic observations. Brain Res 290(1):152–157

    Article  CAS  PubMed  Google Scholar 

  • Maynard CW, Leonard RB, Dan Coulter J, Coggeshall RE (1977) Central connections of ventral root afferents as demonstrated by the HRP method. J Comp Neurol 172(4):601–608

    Article  CAS  PubMed  Google Scholar 

  • Meehan CF, Grondahl L, Nielsen JB, Hultborn H (2012) Fictive locomotion in the adult decerebrate and spinal mouse in vivo. J Physiol 590(2):289–300

    Article  CAS  PubMed  Google Scholar 

  • Mentis GZ, Alvarez FJ, Bonnot A, Richards DS, Gonzalez-Forero D, Zerda R, O’Donovan MJ (2005) Noncholinergic excitatory actions of motoneurons in the neonatal mammalian spinal cord. Proc Natl Acad Sci U S A 102(20):7344–7349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milner LD, Landmesser LT (1999) Cholinergic and GABAergic inputs drive patterned spontaneous motoneuron activity before target contact. J Neurosci 19(8):3007–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakanishi ST, Whelan PJ (2012) A decerebrate adult mouse model for examining the sensorimotor control of locomotion. J Neurophysiol 107(1):500–515

    Article  PubMed  Google Scholar 

  • Nishimaru H, Restrepo CE, Ryge J, Yanagawa Y, Kiehn O (2005) Mammalian motor neurons corelease glutamate and acetylcholine at central synapses. Proc Natl Acad Sci U S A 102(14):5245–5249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donovan M, Ho S, Yee W (1994) Calcium imaging of rhythmic network activity in the developing spinal cord of the chick embryo. J Neurosci 14(11 Pt 1):6354–6369

    Article  PubMed  PubMed Central  Google Scholar 

  • Perrins R, Roberts A (1995) Cholinergic contribution to excitation in a spinal locomotor central pattern generator in Xenopus embryos. J Neurophysiol 73(3):1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Pham BN, Luo J, Anand H, Kola O, Salcedo P, Nguyen C, Gaunt S, Zhong H, Garfinkel A, Tillakaratne N, Edgerton VR (2020) Redundancy and multifunctionality among spinal locomotor networks. J Neurophysiol 124(5):1469–1479

    Article  PubMed  PubMed Central  Google Scholar 

  • Popa LS, Ebner TJ (2018) Cerebellum, predictions and errors. Front Cell Neurosci 12:524

    Article  PubMed  Google Scholar 

  • Pratt CA, Jordan LM (1987) Ia inhibitory interneurons and Renshaw cells as contributors to the spinal mechanisms of fictive locomotion. J Neurophysiol 57(1):56–71

    Article  CAS  PubMed  Google Scholar 

  • Provine RR, Sharma SC, Sandel TT, Hamburger V (1970) Electrical activity in the spinal cord of the chick embryo, in situ. Proc Natl Acad Sci 65(3):508–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pujala A, Blivis D, O’Donovan MJ (2016) Interactions between dorsal and ventral root stimulation on the generation of locomotor-like activity in the neonatal mouse spinal cord. eneuro 3(3):ENEURO.0101-0116

    Article  Google Scholar 

  • Rancic V, Ballanyi K, Gosgnach S (2020) Mapping the dynamic recruitment of spinal neurons during fictive locomotion. J Neurosci 40(50):9692–9700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards DS, Griffith RW, Romer SH, Alvarez FJ (2014) Motor axon synapses on Renshaw cells contain higher levels of aspartate than glutamate. PLoS One 9(5):e97240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin HK, Kim J, Nam SC, Paik KS, Chung JM (1986) Spinal entry route for ventral root afferent fibers in the cat. Exp Neurol 94(3):714–725

    Article  CAS  PubMed  Google Scholar 

  • Smith JC, Feldman JL (1987) In vitro brainstem-spinal cord preparations for study of motor systems for mammalian respiration and locomotion. J Neurosci Methods 21(2-4):321–333

    Article  CAS  PubMed  Google Scholar 

  • Song J, Ampatzis K, Bjornfors ER, El Manira A (2016) Motor neurons control locomotor circuit function retrogradely via gap junctions. Nature 529(7586):399–402

    Article  CAS  PubMed  Google Scholar 

  • Talpalar AE, Endo T, Low P, Borgius L, Hagglund M, Dougherty KJ, Ryge J, Hnasko TS, Kiehn O (2011) Identification of minimal neuronal networks involved in flexor-extensor alternation in the mammalian spinal cord. Neuron 71(6):1071–1084

    Article  CAS  PubMed  Google Scholar 

  • Toutant JP, Toutant MN, Renaud D, Le Douarin GH (1979) Enzymatic differentiation of muscle fibre types in embryonic Latissimus dorsii of the chick: effects of spinal cord stimulation. Cell Diff 8(5):375–382

    Article  CAS  Google Scholar 

  • Viala D, Buser P (1969) The effects of DOPA and 5-HTP on rhythmic efferent discharges in hind limb nerves in the rabbit. Brain Res 12(2):437–443

    Article  CAS  PubMed  Google Scholar 

  • Wallen PLA (1984) Do the motoneurones constitute a part of the spinal network generating the Swimming rhythm in the lamprey? J Exp Biol 113(November):493–497

    Article  Google Scholar 

  • Wenner P (2014) Homeostatic synaptic plasticity in developing spinal networks driven by excitatory GABAergic currents. Neuropharmacology 78:55–62

    Article  CAS  PubMed  Google Scholar 

  • Wenner P, O’Donovan MJ (1999) Identification of an interneuronal population that mediates recurrent inhibition of motoneurons in the developing chick spinal cord. J Neurosci 19(17):7557–7567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenner P, O’Donovan MJ (2001) Mechanisms that initiate spontaneous network activity in the developing chick spinal cord. J Neurophysiol 86(3):1481–1498

    Article  CAS  PubMed  Google Scholar 

  • Whelan P, Bonnot A, O’Donovan MJ (2000) Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse. J Neurophysiol 84(6):2821–2833

    Article  CAS  PubMed  Google Scholar 

  • Wilson JM, Hartley R, Maxwell DJ, Todd AJ, Lieberam I, Kaltschmidt JA, Yoshida Y, Jessell TM, Brownstone RM (2005) Conditional rhythmicity of ventral spinal interneurons defined by expression of the Hb9 homeodomain protein. J Neurosci 25(24):5710–5719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Windle WF (1931) Neurons of the sensory type in the ventral roots of man and of other mammals. Arch Neurol Psychiatr 26(4):791

    Article  Google Scholar 

  • Wolpert DM, Miall RC (1996) Forward models for physiological motor control. Neural Netw 9(8):1265–1279

    Article  PubMed  Google Scholar 

  • Yamamoto T, Takahashi K, Satomi H, Ise H (1977) Origins of primary afferent fibers in the spinal ventral roots in the cat as demonstrated by the horseradish peroxidase method. Brain Res 126(2):350–354

    Article  CAS  PubMed  Google Scholar 

  • Zaporozhets E, Cowley KC, Schmidt BJ (2004) A reliable technique for the induction of locomotor-like activity in the in vitro neonatal rat spinal cord using brainstem electrical stimulation. J Neurosci Methods 139(1):33–41

    Article  PubMed  Google Scholar 

  • Zhang F, Wang L-P, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446(7136):633–639

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Narayan S, Geiman E, Lanuza GM, Velasquez T, Shanks B, Akay T, Dyck J, Pearson K, Gosgnach S, Fan CM, Goulding M (2008) V3 spinal neurons establish a robust and balanced locomotor rhythm during walking. Neuron 60(1):84–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zornik E, Yamaguchi A (2012) Coding rate and duration of vocalizations of the frog, Xenopus laevis. J Neurosci 32(35):12102–12114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. O’Donovan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Falgairolle, M., O’Donovan, M.J. (2022). Motoneuronal Regulation of Central Pattern Generator and Network Function. In: O'Donovan, M.J., Falgairolle, M. (eds) Vertebrate Motoneurons. Advances in Neurobiology, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-031-07167-6_11

Download citation

Publish with us

Policies and ethics