Skip to main content

Class I PI3K Biology

  • Chapter
  • First Online:
PI3K and AKT Isoforms in Immunity

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 436))

Abstract

This chapter is an introduction to phosphoinositide 3-kinases (PI3K), with class I PI3Ks as the central focus. First, the various PI3K isoforms in class I are presented with emphasis on their overall structure, subunits, subunit constitutive domains, domain-domain interactions, and functional relevance. This structural analysis is followed by a comprehensive history of seminal investigations into PI3K activity. Next, we highlight the divergent roles of the isoforms: PI3Kα, PI3Kβ, PI3Kδ, and PI3Kγ. This section details signaling pathways in which these PI3K isoforms are involved, including the key upstream regulators of PI3K activity and some downstream cellular effects. Nodes of the PI3K pathway are also presented. Inhibitors of some isoforms are discussed to give an overview of the basis of some immunotherapies that are being used to target cell signaling. Finally, the chapter ends with a discussion of the dysregulation of PI3Ks in diseases including APDS, asthma, arthritis, and oncogenic mutations.

T. Y. Aytenfisu, H. M. Campbell, M. Chakrabarti: These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some papers refer to phosphoinositide-3-kinases as phosphoinositol-3-kinases or PtdIns-3-Kinases.

Abbreviations

ATP:

Adenosine triphosphate

APDS:

Activated phosphoinositide 3-kinase δ syndrome

APDS1:

Activated phosphoinositide 3-kinase δ syndrome type 1

APDS2:

Activated phosphoinositide 3-kinase δ syndrome type 2

ABD:

Adaptor-binding domain

BCAP:

B-cell associated protein

BCR:

B-cell receptor

BLASTp:

Basic local alignment search tool for proteins

cSH2:

C-terminal Src homology 2

DNA:

Deoxyribonucleic acid

DAG:

Diacylglycerol

EGFR:

EGF receptor

EGF:

Epidermal growth factor

FYVE:

Fab1, YOTB, Vac1, and EEA1 (the abbreviation from the first four proteins in which the domain was discovered)

FcRs:

Fc receptors

GPCRs:

G-protein coupled receptors

PIK3CA/B/D/G:

Genes encoding p110α/β/δ/γ

GSV:

GLUT4 storage vesicles

GMPPNP:

Guanosine 5ʹ-[beta,gamma-imido]triphosphate

GLUT-4:

Glucose transporter type 4

GSK-3:

Glycogen synthase kinase 3

GS:

Glycogen synthase

HDX:

Hydrogen-deuterium exchange

HD:

Helical domain

HDX-MS:

Hydrogen-deuterium exchange mass spectroscopy

IGF1R:

IGF-1 receptor

ITAM:

Immunoreceptor tyrosine-based activation motif

ICOS:

Inducible T-cell co-stimulator

IP3:

Inositol 1,4,5-trisphosphate

IRS:

Insulin receptor substrate

IR:

Insulin receptor

IGF-1:

Insulin-like growth factor 1

IGF-IR:

Insulin-like growth factor 1 receptor

IGFs:

Insulin-like growth factors

iSH2:

Inter-SH2

IFN-α:

Interferon-α

IL2:

Interleukin-2

IL2R:

Interleukin-2 receptor

IL4:

Interleukin-4

IL4R:

Interleukin-4 receptor

kDa:

Kilodalton

KD:

Kinase domain

mABs:

Monoclonal antibodies

NGF:

Nerve growth factor

nSH2:

N-terminal Src homology 2

PDK1:

Pyruvate dehydrogenase lipoamide kinase isozyme 1

PDB:

Protein data bank

PTEN:

Phosphatase and tensin homolog

PtdIns:

Phosphatidylinositol

PIP3:

Phosphatidylinositol-3,4,5-trisphosphate

PIP2:

Phosphatidylinositol-4,5-bisphosphate

PI3Ks:

Phosphoinositide 3-kinases

pYXXM:

Phosphorylated YXXM motif

PDGF:

Platelet-derived growth factor

PH:

Pleckstrin-homology

PDK1:

PtdIns-3,4,5-P3-dependent protein kinase-1

PI-3,4-P2:

PtdIns-3,4-bisphosphate

PI3P:

PtdIns-3-phosphate

PI4P:

PtdIns-4-phosphate

GAP:

Rab GTPase activating protein

RGC:

Ral-GTPase activating protein heterodimeric complex

RBD:

Ras-binding domain

ROS:

Reactive oxygen species

RTK:

Receptor tyrosine kinase

mTOR:

Mechanistic target of rapamycin

RSV:

Rous sarcoma virus

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SH2:

Src homology 2

SH3:

Src homology 3

TLRs:

Toll-like

VEGF:

Vascular endothelial growth factor

WNV:

West Nile virus

References

  • Akhtar RA, Abdel-Latif A (1980) Requirement for calcium ions in acetylcholine-stimulated phosphodiesteratic cleavage of phosphatidyl-myo-inositol 4,5-bisphosphate in rabbit iris smooth muscle. Biochem J 192:783–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albeck JG, Mills GB, Brugge JS (2013) Frequency-modulated pulses of ERK activity transmit quantitative proliferation signals. Mol Cell 49:249–261

    Article  CAS  PubMed  Google Scholar 

  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alessi DR, Deak M, Casamayor A, Barry Caudwell F, Morrice N, Norman DG, Gaffney P, Reese CB, Macdougall CN, Harbison D, Ashworth A, Bownes M (1997a) 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 7:776–789

    Google Scholar 

  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997b) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol CB 7:261–269

    Article  CAS  PubMed  Google Scholar 

  • Ali K, Bilancio A, Thomas M, Pearce W, Gilfillan AM, Tkaczyk C, Kuehn N, Gray A, Giddings J, Peskett E, Fox R, Bruce I, Walker C, Sawyer C, Okkenhaug K, Finan P, Vanhaesebroeck B (2004) Essential role for the p110delta phosphoinositide 3-kinase in the allergic response. Nature 431:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Altschuler D, Yamamoto K, Lapetina EG (1994) Insulin-like growth factor-1-mediated association of p85 phosphatidylinositol 3-kinase with pp 185: requirement of SH2 domains for in vivo interaction. Mol Endocrinol (Baltimore, MD) 8:1139–1146

    Google Scholar 

  • Anderson D, Koch CA, Grey L, Ellis C, Moran MF, Pawson T (1990) Binding of SH2 domains of phospholipase C gamma 1, GAP, and Src to activated growth factor receptors. Science (New York, NY) 250:979–982

    Google Scholar 

  • Anderson KE, Coadwell J, Stephens LR, Hawkins PT (1998) Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B. Curr Biol 8:684–691

    Article  CAS  PubMed  Google Scholar 

  • Andre F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, Iwata H, Conte P, Mayer IA, Kaufman B, Yamashita T, Lu YS, Inoue K, Takahashi M, Papai Z, Longin AS, Mills D, Wilke C, Hirawat S, Juric D, Group S-S (2019) Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med 380:1929–1940

    Google Scholar 

  • Antonetti DA, Algenstaedt P, Kahn CR (1996) Insulin receptor substrate 1 binds two novel splice variants of the regulatory subunit of phosphatidylinositol 3-kinase in muscle and brain. Mol Cell Biol 16:2195–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbibe L, Mira JP, Teusch N, Kline L, Guha M, Mackman N, Godowski PJ, Ulevitch RJ, Knaus UG (2000) Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Nat Immunol 1:533–540

    Article  CAS  PubMed  Google Scholar 

  • Arcaro A, Wymann MP (1993) Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J 296(Pt 2):297–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arcaro A, Volinia S, Zvelebil MJ, Stein R, Watton SJ, Layton MJ, Gout I, Ahmadi K, Downward J, Waterfield MD (1998) Human phosphoinositide 3-kinase C2beta, the role of calcium and the C2 domain in enzyme activity. J Biol Chem 273:33082–33090

    Article  CAS  PubMed  Google Scholar 

  • Auger KR, Serunian LA, Soltoff SP, Libby P, Cantley LC (1989) PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 57:167–175

    Article  CAS  PubMed  Google Scholar 

  • Backer JM, Myers MG Jr, Shoelson SE, Chin DJ, Sun XJ, Miralpeix M, Hu P, Margolis B, Skolnik EY, Schlessinger J et al (1992a) Phosphatidylinositol 3ʹ-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J 11:3469–3479

    Google Scholar 

  • Backer JM, Schroeder GG, Kahn CR, Myers MG, Wilden PA, Cahill DA, White MF (1992b) Insulin stimulation of phosphatidylinositol 3-kinase activity maps to insulin receptor regions required for endogenous substrate phosphorylation. J Biol Chem 267:1367–1374

    Article  CAS  PubMed  Google Scholar 

  • Bader AG, Kang S, Vogt PK (2006) Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci U S A 103:1475–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae SS, Cho H, Mu J, Birnbaum MJ (2003) Isoform-specific regulation of insulin-dependent glucose uptake by Akt/protein kinase B. J Biol Chem 278:49530–49536

    Article  CAS  PubMed  Google Scholar 

  • Bardelli A, Maina F, Gout I, Fry MJ, Waterfield MD, Comoglio PM, Ponzetto C (1992) Autophosphorylation promotes complex formation of recombinant hepatocyte growth factor receptor with cytoplasmic effectors containing SH2 domains. Oncogene 7:1973–1978

    CAS  PubMed  Google Scholar 

  • Battram AM, Durrant TN, Agbani EO, Heesom KJ, Paul DS, Piatt R, Poole AW, Cullen PJ, Bergmeier W, Moore SF, Hers I (2017) The phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) binder Rasa3 regulates phosphoinositide 3-kinase (PI3K)-dependent Integrin αIIbβ3 outside-in signaling. J Biol Chem 292:1691–1704

    Article  CAS  PubMed  Google Scholar 

  • Becattini B, Marone R, Zani F, Arsenijevic D, Seydoux J, Montani JP, Dulloo AG, Thorens B, Preitner F, Wymann MP, Solinas G (2011) PI3Kgamma within a nonhematopoietic cell type negatively regulates diet-induced thermogenesis and promotes obesity and insulin resistance. Proc Natl Acad Sci U S A 108:E854–E863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bédard PL, Davies MA, Kopetz S, Juric D, Shapiro GI, Luke JJ, Spreafico A, Wu B, Castell C, Gomez C, Cartot-Cotton S, Mazuir F, Dubar M, Micallef S, Demers B, Flaherty KT (2018) First-in-human trial of the PI3Kβ-selective inhibitor SAR260301 in patients with advanced solid tumors: phase I PI3Kβ Inhibitor SAR260301. Cancer 124:315–324

    Article  PubMed  Google Scholar 

  • Ben Mkaddem S, Benhamou M, Monteiro RC (2019) Understanding Fc receptor involvement in inflammatory diseases: from mechanisms to new therapeutic tools. Front Immunol 10:811

    Google Scholar 

  • Berndt A, Miller S, Williams O, Le DD, Houseman BT, Pacold JI, Gorrec F, Hon WC, Liu Y, Rommel C, Gaillard P, Ruckle T, Schwarz MK, Shokat KM, Shaw JP, Williams RL (2010) The p110delta structure: mechanisms for selectivity and potency of new PI(3)K inhibitors. Nat Chem Biol 6:244

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J 212:849–858

    Google Scholar 

  • Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S, Carbuccia N, Soria JC, Dien AT, Adnani Y, Kamal M, Garnier S, Meurice G, Jimenez M, Dogan S, Verret B, Chaffanet M, Bachelot T, Campone M, Lefeuvre C, Bonnefoi H, Dalenc F, Jacquet A, de Filippo MR, Babbar N, Birnbaum D, Filleron T, le Tourneau C, Andre F (2019) Genomic characterization of metastatic breast cancers. Nature 569:560–564

    Article  CAS  PubMed  Google Scholar 

  • Bi L, Okabe I, Bernard DJ, Nussbaum RL (2002) Early embryonic lethality in mice deficient in the p110β catalytic subunit of PI 3-kinase. Mamm Genome 13:169–172

    CAS  PubMed  Google Scholar 

  • Bilancio A, Okkenhaug K, Camps M, Emery JL, Ruckle T, Rommel C, Vanhaesebroeck B (2006) Key role of the p110delta isoform of PI3K in B-cell antigen and IL-4 receptor signaling: comparative analysis of genetic and pharmacologic interference with p110delta function in B cells. Blood 107:642–650

    Article  CAS  PubMed  Google Scholar 

  • Bilanges B, Posor Y, Vanhaesebroeck B (2019) PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev Mol Cell Biol 20:515–534

    Article  CAS  PubMed  Google Scholar 

  • Bjorge JD, Chan TO, Antczak M, Kung HJ, Fujita DJ (1990) Activated type I phosphatidylinositol kinase is associated with the epidermal growth factor (EGF) receptor following EGF stimulation. Proc Natl Acad Sci 87:3816–3820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Björnholm M, He AR, Attersand A, Lake S, Liu SCH, Lienhard GE, Taylor SS, Arner P, Zierath J (2002) Absence of functional insulin receptor substrate-3 (IRS-3) gene in humans. Diabetologia 45:1697–1702

    Google Scholar 

  • Bohnacker T, Marone R, Collmann E, Calvez R, Hirsch E, Wymann MP (2009) PI3Kgamma adaptor subunits define coupling to degranulation and cell motility by distinct PtdIns(3,4,5)P3 pools in mast cells. Sci Signal 2:ra27

    Google Scholar 

  • Boucher J, Kleinridders A, Kahn CR (2014) Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 6:a009191

    Article  PubMed  PubMed Central  Google Scholar 

  • Brazzatti JA, Klingler-Hoffmann M, Haylock-Jacobs S, Harata-Lee Y, Niu M, Higgins MD, Kochetkova M, Hoffmann P, McColl SR (2012) Differential roles for the p101 and p84 regulatory subunits of PI3Kgamma in tumor growth and metastasis. Oncogene 31:2350–2361

    Article  CAS  PubMed  Google Scholar 

  • Brock C, Schaefer M, Reusch HP, Czupalla C, Michalke M, Spicher K, Schultz G, Nurnberg B (2003) Roles of G beta gamma in membrane recruitment and activation of p110 gamma/p101 phosphoinositide 3-kinase gamma. J Cell Biol 160:89–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burger JA, Chiorazzi N (2013) B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol 34:592–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgering BM, Coffer PJ (1995) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602

    Article  CAS  PubMed  Google Scholar 

  • Cai D, Dhe-Paganon S, Melendez PA, Lee J, Shoelson SE (2003) Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. J Biol Chem 278:25323–25330

    Article  CAS  PubMed  Google Scholar 

  • Carpenter G, Lembach KJ, Morrison MM, Cohen S (1975) Characterization of the binding of 125-I-labeled epidermal growth factor to human fibroblasts. J Biol Chem 250:4297–4304

    Article  CAS  PubMed  Google Scholar 

  • Carpenter G, King L, Cohen S (1978) Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro. Nature 276:409–410

    Article  CAS  PubMed  Google Scholar 

  • Carpenter CL, Duckworth BC, Auger KR, Cohen B, Schaffhausen BS, Cantley LC (1990) Purification and characterization of phosphoinositide 3-kinase from rat liver. J Biol Chem 265:19704–19711

    Article  CAS  PubMed  Google Scholar 

  • Castellano E, Downward J (2011) RAS interaction with PI3K: more than just another effector pathway. Genes Cancer 2:261–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarti M, Gabelli SB, Amzel LM (2020) Allosteric activation of PI3Kalpha results in dynamic access to catalytically competent conformations. Structure 28:465–474.e5

    Google Scholar 

  • Chang HW, Aoki M, Fruman D, Auger KR, Bellacosa A, Tsichlis PN, Cantley LC, Roberts TM, Vogt PK (1997) Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. Science 276:1848–1850

    Article  CAS  PubMed  Google Scholar 

  • Chantry D, Vojtek A, Kashishian A, Holtzman DA, Wood C, Gray PW, Cooper JA, Hoekstra MF (1997) p110delta, a novel phosphatidylinositol 3-kinase catalytic subunit that associates with p85 and is expressed predominantly in leukocytes. J Biol Chem 272:19236–19241

    Article  CAS  PubMed  Google Scholar 

  • Chen X-W, Leto D, Xiong T, Yu G, Cheng A, Decker S, Saltiel AR (2011) A Ral GAP complex links PI 3-kinase/Akt signaling to RalA activation in insulin action. Mol Biol Cell 22:141–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Deng YL, Bergqvist S, Falk MD, Liu W, Timofeevski S, Brooun A (2014) Engineering of an isolated p110alpha subunit of PI3Kalpha permits crystallization and provides a platform for structure-based drug design. Protein Sci 23:1332–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung LW, Hennessy BT, Li J, Yu S, Myers AP, Djordjevic B, Lu Y, Stemke-Hale K, Dyer MD, Zhang F, Ju Z, Cantley LC, Scherer SE, Liang H, Lu KH, Broaddus RR, Mills GB (2011) High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov 1:170–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu JY, Dransfield I, Rossi AG, Vermeren S (2016) Non-canonical PI3K-Cdc42-Pak-Mek-Erk signaling promotes immune-complex-induced apoptosis in human neutrophils. Cell Rep 17:374–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu N, Salguero AL, Liu AZ, Chen Z, Dempsey DR, Ficarro SB, Alexander WM, Marto JA, Li Y, Amzel LM, Gabelli SB, Cole PA (2018) Akt kinase activation mechanisms revealed using protein semisynthesis. Cell 174:897–907.e14

    Google Scholar 

  • Ciraolo E, Iezzi M, Marone R, Marengo S, Curcio C, Costa C, Azzolino O, Gonella C, Rubinetto C, Wu H, Dastru W, Martin EL, Silengo L, Altruda F, Turco E, Lanzetti L, Musiani P, Ruckle T, Rommel C, Backer JM, Forni G, Wymann MP, Hirsch E (2008) Phosphoinositide 3-kinase p110 activity: key role in metabolism and mammary gland cancer but not development. Sci Signal 1:ra3–ra3

    Google Scholar 

  • Cohen S (1962) Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem 237:1555–1562

    Google Scholar 

  • Cohen S, Levi-Montalcini R (1957) Purification and properties of a nerve growth-promoting factor isolated from mouse sarcoma 180. Can Res 17:15–20

    CAS  Google Scholar 

  • Cooper JA, Bowen-Pope D, Raines E, Ross R, Hunter T (1982) Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins. Cell 31:263–273

    Article  CAS  PubMed  Google Scholar 

  • Corbalan-Garcia S, Gomez-Fernandez JC (2014) Signaling through C2 domains: more than one lipid target. Biochim Biophys Acta 1838:1536–1547

    Article  CAS  PubMed  Google Scholar 

  • Costa C, Martin-Conte EL, Hirsch E (2011) Phosphoinositide 3-kinase p110gamma in immunity. IUBMB Life 63:707–713

    CAS  PubMed  Google Scholar 

  • Coughlin SR, Escobedo J, Williams L (1989) Role of phosphatidylinositol kinase in PDGF receptor signal transduction. Science 243:1191–1194

    Google Scholar 

  • Courtneidge SA, Heber A (1987) An 81 kd protein complexed with middle T antigen and pp60c-src: a possible phosphatidylinositol kinase. Cell 50:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Cross DAE, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789

    Article  CAS  PubMed  Google Scholar 

  • Cross DAE, Watt PW, Shaw M, van der Kaay J, Downes CP, Holder JC, Cohen P (1997) Insulin activates protein kinase B, inhibits glycogen synthase kinase-3 and activates glycogen synthase by rapamycin-insensitive pathways in skeletal muscle and adipose tissue. FEBS Lett 406:211–215

    Article  CAS  PubMed  Google Scholar 

  • Currie RA, Walker KS, Gray A, Deak M, Casamayor A, Downes CP, Cohen P, Alessi DR, Lucocq J (1999) Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem J 337(Pt 3):575–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czupalla C, Culo M, Muller EC, Brock C, Reusch HP, Spicher K, Krause E, Nurnberg B (2003) Identification and characterization of the autophosphorylation sites of phosphoinositide 3-kinase isoforms beta and gamma. J Biol Chem 278:11536–11545

    Article  CAS  PubMed  Google Scholar 

  • Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC, Pearl LH (2001) Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 105:721–732

    Article  CAS  PubMed  Google Scholar 

  • Damilano F, Franco I, Perrino C, Schaefer K, Azzolino O, Carnevale D, Cifelli G, Carullo P, Ragona R, Ghigo A, Perino A, Lembo G, Hirsch E (2011) Distinct effects of leukocyte and cardiac phosphoinositide 3-kinase gamma activity in pressure overload-induced cardiac failure. Circulation 123:391–399

    Article  CAS  PubMed  Google Scholar 

  • Dbouk HA, Pang H, Fiser A, Backer JM (2010) A biochemical mechanism for the oncogenic potential of the p110beta catalytic subunit of phosphoinositide 3-kinase. Proc Natl Acad Sci U S A 107:19897–19902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dbouk HA, Vadas O, Shymanets A, Burke JE, Salamon RS, Khalil BD, Barrett MO, Waldo GL, Surve C, Hsueh C, Perisic O, Harteneck C, Shepherd PR, Harden TK, Smrcka AV, Taussig R, Bresnick AR, Nurnberg B, Williams RL, Backer JM (2012) G protein-coupled receptor-mediated activation of p110beta by Gbetagamma is required for cellular transformation and invasiveness. Sci Signal 5:ra89

    Google Scholar 

  • de Henau O, Rausch M, Winkler D, Campesato LF, Liu C, Cymerman DH, Budhu S, Ghosh A, Pink M, Tchaicha J, Douglas M, Tibbitts T, Sharma S, Proctor J, Kosmider N, White K, Stern H, Soglia J, Adams J, Palombella VJ, McGovern K, Kutok JL, Wolchok JD, Merghoub T (2016) Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature 539:443–447

    Article  PubMed  PubMed Central  Google Scholar 

  • Deau MC, Heurtier L, Frange P, Suarez F, Bole-Feysot C, Nitschke P, Cavazzana M, Picard C, Durandy A, Fischer A, Kracker S (2014) A human immunodeficiency caused by mutations in the PIK3R1 gene. J Clin Invest 124:3923–3928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dil N, Marshall AJ (2009) Role of phosphoinositide 3-kinase p110 delta in TLR4- and TLR9-mediated B cell cytokine production and differentiation. Mol Immunol 46:1970–1978

    Article  CAS  PubMed  Google Scholar 

  • Ding VW, Chen R-H, McCormick F (2000) Differential regulation of glycogen synthase kinase 3β by insulin and Wnt signaling. J Biol Chem 275:32475–32481

    Article  CAS  PubMed  Google Scholar 

  • Domin J, Waterfield MD (1997) Using structure to define the function of phosphoinositide 3-kinase family members. FEBS Lett 410:91–95

    Article  CAS  PubMed  Google Scholar 

  • Doukas J, Wrasidlo W, Noronha G, Dneprovskaia E, Fine R, Weis S, Hood J, Demaria A, Soll R, Cheresh D (2006) Phosphoinositide 3-kinase gamma/delta inhibition limits infarct size after myocardial ischemia/reperfusion injury. Proc Natl Acad Sci U S A 103:19866–19871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durandy A, Kracker S (2020) Increased activation of PI3 kinase-δ predisposes to B-cell lymphoma. Blood 135:638–643

    Article  PubMed  Google Scholar 

  • Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L, Clauser E, Ou J-H, Masiarz F, Kan YW, Goldfine ID, Roth RA, Rutter WJ (1985) The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell 40:747–758

    Article  CAS  PubMed  Google Scholar 

  • Echeverria I, Liu Y, Gabelli SB, Amzel LM (2015) Oncogenic mutations weaken the interactions that stabilize the p110alpha-p85alpha heterodimer in phosphatidylinositol 3-kinase alpha. FEBS J 282:3528–3542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckhart W, Hutchinson MA, Hunter T (1979) An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates. Cell 18:925–933

    Article  CAS  PubMed  Google Scholar 

  • Ek B, Westermark B, Wasteson Å, Heldin C-H (1982) Stimulation of tyrosine-specific phosphorylation by platelet-derived growth factor. Nature 295:419–420

    Article  CAS  PubMed  Google Scholar 

  • Embi N, Rylatt DB, Cohen P (2005) Glycogen synthase kinase-3 from rabbit skeletal muscle: separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 107:519–527

    Article  Google Scholar 

  • Escobedo JA, Kaplan DR, Kavanaugh WM, Turck CW, Williams LT (1991a) A phosphatidylinositol-3 kinase binds to platelet-derived growth factor receptors through a specific receptor sequence containing phosphotyrosine. Mol Cell Biol 11:1125–1132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Escobedo JA, Navankasattusas S, Kavanaugh WM, Milfay D, Fried VA, Williams LT (1991b) cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF beta-receptor. Cell 65:75–82

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Yu SX, Lu Y, Bast RC, Woodgett JR, Mills GB (2000) Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci 97:11960–11965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felder S, Zhou M, Hu P, Ureña J, Ullrich A, Chaudhuri M, White M, Shoelson SE, Schlessinger J (1993) SH2 domains exhibit high-affinity binding to tyrosine-phosphorylated peptides yet also exhibit rapid dissociation and exchange. Mol Cell Biol 13:1449–1455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Filippa N, Sable CL, Hemmings BA, van Obberghen E (2000) Effect of phosphoinositide-dependent kinase 1 on protein kinase B translocation and its subsequent activation. Mol Cell Biol 20:5712–5721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiol CJ, Wang A, Roeske RW, Roach PJ (1990) Ordered multisite protein phosphorylation. Analysis of glycogen synthase kinase 3 action using model peptide substrates. J Biol Chem 265:6061–6065

    Article  CAS  PubMed  Google Scholar 

  • Folli F, Saad MJ, Backer JM, Kahn CR (1992) Insulin stimulation of phosphatidylinositol 3-kinase activity and association with insulin receptor substrate 1 in liver and muscle of the intact rat. J Biol Chem 267:22171–22177

    Article  CAS  PubMed  Google Scholar 

  • Frame S, Cohen P, Biondi RM (2001) A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell 7:1321–1327

    Article  CAS  PubMed  Google Scholar 

  • Franke TF (1997) Direct regulation of the akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275:665–668

    Google Scholar 

  • Franke TF, Yang S-I, Chan TO, Datta K, Kazlauskas A, Morrison DK, Kaplan DR, Tsichlis PN (1995) The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81:727–736

    Article  CAS  PubMed  Google Scholar 

  • Frech M, Andjelkovic M, Ingley E, Reddy KK, Falck JR, Hemmings BA (1997) High affinity binding of inositol phosphates and phosphoinositides to the pleckstrin homology domain of RAC/protein kinase B and their influence on kinase activity. J Biol Chem 272:8474–8481

    Article  CAS  PubMed  Google Scholar 

  • Fruman DA, Meyers RE, Cantley LC (1998) Phosphoinositide kinases. Annu Rev Biochem 67:481–507

    Article  CAS  PubMed  Google Scholar 

  • Fujita H, Hatakeyama H, Watanabe TM, Sato M, Higuchi H, Kanzaki M (2010) Identification of three distinct functional sites of insulin-mediated GLUT4 trafficking in adipocytes using quantitative single molecule imaging. Mol Biol Cell 21:2721–2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukao T, Koyasu S (2003) PI3K and negative regulation of TLR signaling. Trends Immunol 24:358–363

    Article  CAS  PubMed  Google Scholar 

  • Fukumoto H, Kayano T, Buse JB, Edwards Y, Pilch PF, Bell GI, Seino S (1989) Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues. J Biol Chem 264:7776–7779

    Article  CAS  PubMed  Google Scholar 

  • Gabelli SB, Huang CH, Mandelker D, Schmidt-Kittler O, Vogelstein B, Amzel LM (2010a) Structural effects of oncogenic PI3Kalpha mutations. Curr Top Microbiol Immunol 347:43–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gabelli SB, Mandelker D, Schmidt-Kittler O, Vogelstein B, Amzel LM (2010b) Somatic mutations in PI3Kalpha: structural basis for enzyme activation and drug design. Biochim Biophys Acta 1804:533–540

    Article  CAS  PubMed  Google Scholar 

  • Garcia P, Gupta R, Shah S, Morris AJ, Rudge SA, Scarlata S, Petrova V, McLaughlin S, Rebecchi MJ (1995) The pleckstrin homology domain of phospholipase C-delta 1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry 34:16228–16234

    Article  CAS  PubMed  Google Scholar 

  • Geering B, Cutillas PR, Vanhaesebroeck B (2007) Regulation of class IA PI3Ks: is there a role for monomeric PI3K subunits? Biochem Soc Trans 35:199–203

    Article  CAS  PubMed  Google Scholar 

  • Gharbi SI, Zvelebil MJ, Shuttleworth SJ, Hancox T, Saghir N, Timms JF, Waterfield MD (2007) Exploring the specificity of the PI3K family inhibitor LY294002. Biochem J 404:15–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graupera M, Guillermet-Guibert J, Foukas LC, Phng LK, Cain RJ, Salpekar A, Pearce W, Meek S, Millan J, Cutillas PR, Smith AJ, Ridley AJ, Ruhrberg C, Gerhardt H, Vanhaesebroeck B (2008) Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature 453:662–666

    Article  CAS  PubMed  Google Scholar 

  • Gray A, van der Kaay J, Downes CP (1999) The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate in vivo. Biochem J 344(Pt 3):929–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guiducci C, Ghirelli C, Marloie-Provost MA, Matray T, Coffman RL, Liu YJ, Barrat FJ, Soumelis V (2008) PI3K is critical for the nuclear translocation of IRF-7 and type I IFN production by human plasmacytoid predendritic cells in response to TLR activation. J Exp Med 205:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillermet-Guibert J, Bjorklof K, Salpekar A, Gonella C, Ramadani F, Bilancio A, Meek S, Smith AJ, Okkenhaug K, Vanhaesebroeck B (2008) The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma. Proc Natl Acad Sci U S A 105:8292–8297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillermet-Guibert J, Smith LB, Halet G, Whitehead MA, Pearce W, Rebourcet D, León K, Crépieux P, Nock G, Strömstedt M, Enerback M, Chelala C, Graupera M, Carroll J, Cosulich S, Saunders PTK, Huhtaniemi I, Vanhaesebroeck B (2015) Novel role for p110β PI 3-kinase in male fertility through regulation of androgen receptor activity in sertoli cells. PLoS Genet 11:e1005304

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo D, Jia Q, Song HY, Warren RS, Donner DB (1995) Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J Biol Chem 270:6729–6733

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Ramjaun AR, Haiko P, Wang Y, Warne PH, Nicke B, Nye E, Stamp G, Alitalo K, Downward J (2007) Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129:957–968

    Article  CAS  PubMed  Google Scholar 

  • Harlan JE, Hajduk PJ, Yoon HS, Fesik SW (1994) Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371:168–170

    Article  CAS  PubMed  Google Scholar 

  • Haslam RJ, Koide HB, Hemmings BA (1993) Pleckstrin domain homology. Nature 363:309–310

    Article  CAS  PubMed  Google Scholar 

  • Hawkins PT, Jackson TR, Stephens LR (1992) Platelet-derived growth factor stimulates synthesis of PtdIns(3,4,5)P3 by activating a PtdIns(4,5)P2 3-OH kinase. Nature 358:157–159

    Article  CAS  PubMed  Google Scholar 

  • Heffron TP, Wei B, Olivero A, Staben ST, Tsui V, Do S, Dotson J, Folkes AJ, Goldsmith P, Goldsmith R, Gunzner J, Lesnick J, Lewis C, Mathieu S, Nonomiya J, Shuttleworth S, Sutherlin DP, Wan NC, Wang S, Wiesmann C, Zhu BY (2011) Rational design of phosphoinositide 3-kinase alpha inhibitors that exhibit selectivity over the phosphoinositide 3-kinase beta isoform. J Med Chem 54:7815–7833

    Article  CAS  PubMed  Google Scholar 

  • Heffron TP, Heald RA, Ndubaku C, Wei B, Augistin M, Do S, Edgar K, Eigenbrot C, Friedman L, Gancia E, Jackson PS, Jones G, Kolesnikov A, Lee LB, Lesnick JD, Lewis C, McLean N, Mortl M, Nonomiya J, Pang J, Price S, Prior WW, Salphati L, Sideris S, Staben ST, Steinbacher S, Tsui V, Wallin J, Sampath D, Olivero AG (2016) The rational design of selective benzoxazepin inhibitors of the alpha-isoform of phosphoinositide 3-kinase culminating in the identification of (S)-2-((2-(1-isopropyl-1H-1,2,4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl)oxy)propanamide (GDC-0326). J Med Chem 59:985–1002

    Article  CAS  PubMed  Google Scholar 

  • Hemmati S, Sinclair T, Tong M, Bartholdy B, Okabe RO, Ames K, Ostrodka L, Haque T, Kaur I, Mills TS, Agarwal A, Pietras EM, Zhao JJ, Roberts TM, Gritsman K (2019) PI3K alpha and delta promote hematopoietic stem cell activation. JCI Insight 4:e125832

    Article  PubMed Central  Google Scholar 

  • Hers I (2007) Insulin-like growth factor-1 potentiates platelet activation via the IRS/PI3K{alpha} pathway. Blood 110:4243–4252

    Google Scholar 

  • Hiles ID, Otsu M, Volinia S, Fry MJ, Gout I, Dhand R, Panayotou G, Ruiz-Larrea F, Thompson A, Totty NF et al (1992a) Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit. Cell 70:419–429

    Google Scholar 

  • Hiles ID, Otsu M, Volinia S, Fry MJ, Gout I, Dhand R, Panayotou G, Ruiz-Larrea F, Thompson A, Totty NF, Hsuan JJ, Courtneidge SA, Parker PJ, Waterfield MD (1992b) Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit. Cell 70:419–429

    Article  CAS  PubMed  Google Scholar 

  • Hill MM, Clark SF, Tucker DF, Birnbaum MJ, James DE, Macaulay SL (1999) A role for protein kinase Bbeta/Akt2 in insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol 19:7771–7781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houslay DM, Anderson KE, Chessa T, Kulkarni S, Fritsch R, Downward J, Backer JM, Stephens LR, Hawkins PT (2016) Coincident signals from GPCRs and receptor tyrosine kinases are uniquely transduced by PI3Kβ in myeloid cells. Sci Signal 9:ra82–ra82

    Google Scholar 

  • Hresko RC, Mueckler M (2005) mTOR·RICTOR is the Ser 473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 280:40406–40416

    Article  CAS  PubMed  Google Scholar 

  • Hu P, Margolis B, Skolnik EY, Lammers R, Ullrich A, Schlessinger J (1992) Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors. Mol Cell Biol 12:981–990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu P, Mondino A, Skolnik EY, Schlessinger J (1993) Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85. Mol Cell Biol 13:7677–7688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CH, Mandelker D, Schmidt-Kittler O, Samuels Y, Velculescu VE, Kinzler KW, Vogelstein B, Gabelli SB, Amzel LM (2007) The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Science 318:1744–1748

    Article  CAS  PubMed  Google Scholar 

  • Hubbard SR, Mohammadi M, Schlessinger J (1998) Autoregulatory mechanisms in protein-tyrosine kinases. J Biol Chem 273:11987–11990

    Article  CAS  PubMed  Google Scholar 

  • Hunter T, Cooper JA (1981) Epidermal growth factor induces rapid tyrosine phosphorylation of proteins in A431 human tumor cells. Cell 24:741–752

    Article  CAS  PubMed  Google Scholar 

  • Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci 77:1311–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurel SJ, Rochford JJ, Borthwick AC, Wells AM, Vandenheede JR, Turnbull DM, Yeaman SJ (1996) Insulin action in cultured human myoblasts: contribution of different signalling pathways to regulation of glycogen synthesis. Biochem J 320:871–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue G, Cheatham B, Emkey R, Kahn CR (1998) Dynamics of insulin signaling in 3T3-L1 adipocytes: differential compartmentalization and trafficking of insulin receptor substrate (IRS)-1 and IRS-2. J Biol Chem 273:11548–11555

    Article  CAS  PubMed  Google Scholar 

  • Inukai K, Anai M, van Breda E, Hosaka T, Katagiri H, Funaki M, Fukushima Y, Ogihara T, Yazaki Y, Kikuchi M, Oka Y, Asano T (1996) A novel 55-kDa regulatory subunit for phosphatidylinositol 3-kinase structurally similar to p55PIK is generated by alternative splicing of the p85 gene. J Biol Chem 271:5317–5320

    Article  CAS  PubMed  Google Scholar 

  • Inukai K, Funaki M, Ogihara T, Katagiri H, Kanda A, Anai M, Fukushima Y, Hosaka T, Suzuki M, Shin BC, Takata K, Yazaki Y, Kikuchi M, Oka Y, Asano T (1997) p85alpha gene generates three isoforms of regulatory subunit for phosphatidylinositol 3-kinase (PI 3-kinase), p50alpha, p55alpha, and p85alpha, with different PI 3-kinase activity elevating responses to insulin. J Biol Chem 272:7873–7882

    Article  CAS  PubMed  Google Scholar 

  • Inukai K, Funaki M, Anai M, Ogihara T, Katagiri H, Fukushima Y, Sakoda H, Onishi Y, Ono H, Fujishiro M, Abe M, Oka Y, Kikuchi M, Asano T (2001) Five isoforms of the phosphatidylinositol 3-kinase regulatory subunit exhibit different associations with receptor tyrosine kinases and their tyrosine phosphorylations. FEBS Lett 490:32–38

    Article  CAS  PubMed  Google Scholar 

  • Isakoff SJ, Cardozo T, Andreev J, Li Z, Ferguson KM, Abagyan R, Lemmon MA, Aronheim A, Skolnik EY (1998) Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J 17:5374–5387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isakoff SJ, Engelman JA, Irie HY, Luo J, Brachmann SM, Pearline RV, Cantley LC, Brugge JS (2005) Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res 65:10992–11000

    Article  CAS  PubMed  Google Scholar 

  • Jackson SP, Schoenwaelder SM, Goncalves I, Nesbitt WS, Yap CL, Wright CE, Kenche V, Anderson KE, Dopheide SM, Yuan Y, Sturgeon SA, Prabaharan H, Thompson PE, Smith GD, Shepherd PR, Daniele N, Kulkarni S, Abbott B, Saylik D, Jones C, Lu L, Giuliano S, Hughan SC, Angus JA, Robertson AD, Salem HH (2005) PI 3-kinase p110β: a new target for antithrombotic therapy. Nat Med 11:507–514

    Article  CAS  PubMed  Google Scholar 

  • James SR, Peter Downes C, Gigg R, Grove SJA, Holmes AB, Alessi DR (1996) Specific binding of the Akt-1 protein kinase to phosphatidylinositol 3,4,5-trisphosphate without subsequent activation. Biochem J 315:709–713

    Google Scholar 

  • Jia S, Liu Z, Zhang S, Liu P, Zhang L, Lee SH, Zhang J, Signoretti S, Loda M, Roberts TM, Zhao JJ (2008) Essential roles of PI(3)K–p110β in cell growth, metabolism and tumorigenesis. Nature 454:776–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahn CR, Baird KL, Jarrett DB, Flier JS (1978) Direct demonstration that receptor crosslinking or aggregation is important in insulin action. Proc Natl Acad Sci 75:4209–4213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S, Woo G, Nguyen AV, Figueiredo CC, Foubert P, Schmid MC, Pink M, Winkler DG, Rausch M, Palombella VJ, Kutok J, McGovern K, Frazer KA, Wu X, Karin M, Sasik R, Cohen EE, Varner JA (2016) PI3Kgamma is a molecular switch that controls immune suppression. Nature 539:437–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang S, Bader AG, Vogt PK (2005) Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci U S A 102:802–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan DR, Whitman M, Schaffhausen B, Raptis L, Garcea RL, Pallas D, Roberts TM, Cantley L (1986) Phosphatidylinositol metabolism and polyoma-mediated transformation. Proc Natl Acad Sci 83:3624–3628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan DR, Whitman M, Schaffhausen B, Pallas DC, White M, Cantley L, Roberts TM (1987) Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity. Cell 50:1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Karunanithi S, Xiong T, Uhm M, Leto D, Sun J, Chen X-W, Saltiel AR (2014) A Rab10:RalA G protein cascade regulates insulin-stimulated glucose uptake in adipocytes. Mol Biol Cell 25:3059–3069

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasuga M, Zick Y, Blithe DL, Crettaz M, Kahn CR (1982) Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nature 298:667–669

    Article  CAS  PubMed  Google Scholar 

  • Kavanaugh WM, Klippel A, Escobedo JA, Williams LT (1992) Modification of the 85-kilodalton subunit of phosphatidylinositol-3 kinase in platelet-derived growth factor-stimulated cells. Mol Cell Biol 12:3415–3424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kavran JM, Klein DE, Lee A, Falasca M, Isakoff SJ, Skolnik EY, Lemmon MA (1998) Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains. J Biol Chem 273:30497–30508

    Article  CAS  PubMed  Google Scholar 

  • Kazlauskas A, Cooper JA (1989) Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell 58:1121–1133

    Article  CAS  PubMed  Google Scholar 

  • Khadem F, Jia P, Mou Z, Feiz Barazandeh A, Liu D, Keynan Y, Uzonna JE (2017) Pharmacological inhibition of p110delta subunit of PI3K confers protection against experimental leishmaniasis. J Antimicrob Chemother 72:467–477

    Google Scholar 

  • Klippel A, Escobedo JA, Fantl WJ, Williams LT (1992) The C-terminal SH2 domain of p85 accounts for the high affinity and specificity of the binding of phosphatidylinositol 3-kinase to phosphorylated platelet-derived growth factor beta receptor. Mol Cell Biol 12:1451–1459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klippel A, Kavanaugh WM, Pot D, Williams LT (1997) A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol Cell Biol 17:338–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohn AD, Kovacina KS, Roth RA (1995) Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing ser/thr kinase. EMBO J 14:4288–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komander D, Fairservice A, Deak M, Kular GS, Prescott AR, Peter Downes C, Safrany ST, Alessi DR, Van Aalten DMF (2004) Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates. EMBO J 23:3918–3928

    Google Scholar 

  • Konig C, Gavrilova-Ruch O, von Banchet GS, Bauer R, Grun M, Hirsch E, Rubio I, Schulz S, Heinemann SH, Schaible HG, Wetzker R (2010) Modulation of mu opioid receptor desensitization in peripheral sensory neurons by phosphoinositide 3-kinase gamma. Neuroscience 169:449–454

    Article  CAS  PubMed  Google Scholar 

  • Konrad S, Ali SR, Wiege K, Syed SN, Engling L, Piekorz RP, Hirsch E, Nurnberg B, Schmidt RE, Gessner JE (2008) Phosphoinositide 3-kinases gamma and delta, linkers of coordinate C5a receptor-Fcgamma receptor activation and immune complex-induced inflammation. J Biol Chem 283:33296–33303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause G, Hassenruck F, Hallek M (2018) Copanlisib for treatment of B-cell malignancies: the development of a PI3K inhibitor with considerable differences to idelalisib. Drug Des Devel Ther 12:2577–2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo H, Hazeki K, Takasuga S, Hazeki O (2005) Specific role for p85/p110β in GTP-binding-protein-mediated activation of Akt. Biochem J 392:607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni S, Sitaru C, Jakus Z, Anderson KE, Damoulakis G, Davidson K, Hirose M, Juss J, Oxley D, Chessa TAM, Ramadani F, Guillou H, Segonds-Pichon A, Fritsch A, Jarvis GE, Okkenhaug K, Ludwig R, Zillikens D, Mocsai A, Vanhaesebroeck B, Stephens LR, Hawkins PT (2011) PI3Kβ plays a critical role in neutrophil activation by immune complexes. Sci Signal 4:ra23–ra23

    Google Scholar 

  • Kupriyanova TA, Kandror KV (1999) Akt-2 binds to Glut4-containing vesicles and phosphorylates their component proteins in response to insulin. J Biol Chem 274:1458–1464

    Article  CAS  PubMed  Google Scholar 

  • Kurig B, Shymanets A, Bohnacker T, Prajwal Brock C, Ahmadian MR, Schaefer M, Gohla A, Harteneck C, Wymann MP, Jeanclos E, Nurnberg B (2009) Ras is an indispensable coregulator of the class IB phosphoinositide 3-kinase p87/p110gamma. Proc Natl Acad Sci U S A 106:20312–20317

    Google Scholar 

  • Kurosu H, Maehama T, Okada T, Yamamoto T, Hoshino S, Fukui Y, Ui M, Hazeki O, Katada T (1997) Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110beta is synergistically activated by the betagamma subunits of G proteins and phosphotyrosyl peptide. J Biol Chem 272:24252–24256

    Article  CAS  PubMed  Google Scholar 

  • Larance M, Ramm G, Stöckli J, van Dam EM, Winata S, Wasinger V, Simpson F, Graham M, Junutula JR, Guilhaus M, James DE (2005) Characterization of the role of the Rab GTPase-activating protein AS160 in insulin-regulated GLUT4 trafficking. J Biol Chem 280:37803–37813

    Article  CAS  PubMed  Google Scholar 

  • Laurent P-A, Séverin S, Hechler B, Vanhaesebroeck B, Payrastre B, Gratacap M-P (2015) Platelet PI3Kβ and GSK3 regulate thrombus stability at a high shear rate. Blood 125:881–888

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JC, Hiken JF, Depaoli-Roach A, Roach PJ (1983) Hormonal control of glycogen synthase in rat hemidiaphragms. Effects of insulin and epinephrine on the distribution of phosphate between two cyanogen bromide fragments. J Biol Chem 258:10710–10719

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JC, Zhang JN (1994) Control of glycogen synthase and phosphorylase by amylin in rat skeletal muscle. Hormonal effects on the phosphorylation of phosphorylase and on the distribution of phosphate in the synthase subunit. J Biol Chem 269:11595–11600

    Article  CAS  PubMed  Google Scholar 

  • Lemmon MA, Ferguson KM, O’Brien R, Sigler PB, Schlessinger J (1995) Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci 92:10472–10476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy-Toledano R, Taouis M, Blaettler DH, Gorden P, Taylor SI (1994) Insulin-induced activation of phosphatidyl inositol 3-kinase. Demonstration that the p85 subunit binds directly to the COOH terminus of the insulin receptor in intact cells. J Biol Chem 269:31178–31182

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947

    Article  CAS  PubMed  Google Scholar 

  • Li M, Murabito A, Ghigo A, Hirsch E (2017) PI3Ks in diabetic cardiomyopathy. J Cardiovasc Pharmacol 70:422–429

    Article  CAS  PubMed  Google Scholar 

  • Liefers-Visser J, Meijering RAM, Reyners AKL, van der Zee AGJ, de Jong S (2017) IGF system targeted therapy: therapeutic opportunities for ovarian cancer. Cancer Treat Rev 60:90–99

    Article  CAS  PubMed  Google Scholar 

  • Lietzke SE, Bose S, Cronin T, Klarlund J, Chawla A, Czech MP, Lambright DG (2000) Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. Mol Cell 6:385–394

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Shreder KR, Gai W, Corral S, Ferris DK, Rosenblum JS (2005) Wortmannin, a widely used phosphoinositide 3-kinase inhibitor, also potently inhibits mammalian polo-like kinase. Chem Biol 12:99–107

    Article  CAS  PubMed  Google Scholar 

  • Lizunov VA, Matsumoto H, Zimmerberg J, Cushman SW, Frolov VA (2005) Insulin stimulates the halting, tethering, and fusion of mobile GLUT4 vesicles in rat adipose cells. J Cell Biol 169:481–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopiccolo J, Kim SJ, Shi Y, Wu B, Wu H, Chait BT, Singer RH, Sali A, Brenowitz M, Bresnick AR, Backer JM (2015) Assembly and molecular architecture of the phosphoinositide 3-kinase p85alpha homodimer. J Biol Chem 290:30390–30405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendira U, Avery DT, Moens L, Cannons JL, Biancalana M, Stoddard J, Ouyang W, Frucht DM, Rao VK, Atkinson TP, Agharahimi A, Hussey AA, Folio LR, Olivier KN, Fleisher TA, Pittaluga S, Holland SM, Cohen JI, Oliveira JB, Tangye SG, Schwartzberg PL, Lenardo MJ, Uzel G (2014) Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110delta result in T cell senescence and human immunodeficiency. Nat Immunol 15:88–97

    Article  CAS  PubMed  Google Scholar 

  • Lucas CL, Chandra A, Nejentsev S, Condliffe AM, Okkenhaug K (2016) PI3Kδ and primary immunodeficiencies. Nat Rev Immunol 16:702–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macara IG, Marinetti GV, Balduzzi PC (1984) Transforming protein of avian sarcoma virus UR2 is associated with phosphatidylinositol kinase activity: possible role in tumorigenesis. Proc Natl Acad Sci 81:2728–2732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen RR, Vanhaesebroeck B (2020) Cracking the context-specific PI3K signaling code. Sci Signal 13

    Google Scholar 

  • Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari S, Miller MS, O’Meally R, Cole RN, Amzel LM, Gabelli SB (2017) Kinetic and structural analyses reveal residues in phosphoinositide 3-kinase alpha that are critical for catalysis and substrate recognition. J Biol Chem 292:13541–13550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier U, Babich A, Nurnberg B (1999) Roles of non-catalytic subunits in gbetagamma-induced activation of class I phosphoinositide 3-kinase isoforms beta and gamma. J Biol Chem 274:29311–29317

    Article  CAS  PubMed  Google Scholar 

  • Maier U, Babich A, Macrez N, Leopoldt D, Gierschik P, Illenberger D, Nurnberg B (2000) Gbeta 5gamma 2 is a highly selective activator of phospholipid-dependent enzymes. J Biol Chem 275:13746–13754

    Article  CAS  PubMed  Google Scholar 

  • Malaguarnera R, Belfiore A (2011) The insulin receptor: a new target for cancer therapy. Front Endocrinol 2:93

    Article  Google Scholar 

  • Mandelker D, Gabelli SB, Schmidt-Kittler O, Zhu J, Cheong I, Huang CH, Kinzler KW, Vogelstein B, Amzel LM (2009) A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. Proc Natl Acad Sci U S A 106:16996–17001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169:381–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markham A (2014) Idelalisib: first global approval. Drugs 74:1701–1707

    Google Scholar 

  • Martin V, Guillermet-Guibert J, Chicanne G, Cabou C, Jandrot-Perrus M, Plantavid M, Vanhaesebroeck B, Payrastre B, Gratacap M-P (2010) Deletion of the p110β isoform of phosphoinositide 3-kinase in platelets reveals its central role in Akt activation and thrombus formation in vitro and in vivo. Blood 115:2008–2013

    Article  CAS  PubMed  Google Scholar 

  • Matsuda M, Mayer B, Fukui Y, Hanafusa H (1990) Binding of transforming protein, P47gag-crk, to a broad range of phosphotyrosine-containing proteins. Science 248:1537–1539

    Article  CAS  PubMed  Google Scholar 

  • Mayer BJ, Ren R, Clark KL, Baltimore D (1993) A putative modular domain present in diverse signaling proteins. Cell 73:629–630

    Article  CAS  PubMed  Google Scholar 

  • McGlade CJ, Ellis C, Reedijk M, Anderson D, Mbamalu G, Reith AD, Panayotou G, End P, Bernstein A, Kazlauskas A (1992) SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors. Mol Cell Biol 12:991–997

    CAS  PubMed  PubMed Central  Google Scholar 

  • McMullen JR, Shioi T, Zhang L, Tarnavski O, Sherwood MC, Kang PM, Izumo S (2003) Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci U S A 100:12355–12360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michell RH, Kirk CJ, Jones LM, Downes CP, Creba JA (1981) The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: defined characteristics and unanswered questions. Philos Trans R Soc Lond B Biol Sci 296:123–138

    Google Scholar 

  • Mîinea CP, Sano H, Kane S, Sano E, Fukuda M, Peränen J, Lane WS, Lienhard GE (2005) AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochem J 391:87–93

    Google Scholar 

  • Miled N, Yan Y, Hon WC, Perisic O, Zvelebil M, Inbar Y, Schneidman-Duhovny D, Wolfson HJ, Backer JM, Williams RL (2007) Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science 317:239–242

    Article  CAS  PubMed  Google Scholar 

  • Miller MS, Schmidt-Kittler O, Bolduc DM, Brower ET, Chaves-Moreira D, Allaire M, Kinzler KW, Jennings IG, Thompson PE, Cole PA, Amzel LM, Vogelstein B, Gabelli SB (2014) Structural basis of nSH2 regulation and lipid binding in PI3Kalpha. Oncotarget 5:5198–5208

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller MS, Maheshwari S, McRobb FM, Kinzler KW, Amzel LM, Vogelstein B, Gabelli SB (2017) Identification of allosteric binding sites for PI3Kalpha oncogenic mutant specific inhibitor design. Bioorg Med Chem 25:1481–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MS, Thompson PE, Gabelli SB (2019) Structural determinants of isoform selectivity in PI3K inhibitors. Biomolecules 9

    Google Scholar 

  • Misawa H, Ohtsubo M, Copeland NG, Gilbert DJ, Jenkins NA, Yoshimura A (1998) Cloning and characterization of a novel class II phosphoinositide 3-kinase containing C2 domain. Biochem Biophys Res Commun 244:531–539

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi M, Schlessinger J, Hubbard SR (1996) Structure of the FGF receptor tyrosine kinase domain reveals a novel autoinhibitory mechanism. Cell 86:577–587

    Article  CAS  PubMed  Google Scholar 

  • Moore SF, van den Bosch MTJ, Hunter RW, Sakamoto K, Poole AW, Hers I (2013) Dual regulation of glycogen synthase kinase 3 (GSK3)α/β by protein kinase C (PKC)α and Akt promotes thrombin-mediated integrin αIIbβ3 activation and granule secretion in platelets. J Biol Chem 288:3918–3928

    Article  CAS  PubMed  Google Scholar 

  • Moran MF, Koch CA, Anderson D, Ellis C, England L, Martin GS, Pawson T (1990) Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc Natl Acad Sci 87:8622–8626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moule SK, Edgell NJ, Welsh GI, Diggle TA, Foulstone EJ, Heesom KJ, Proud CG, Denton RM (1995) Multiple signalling pathways involved in the stimulation of fatty acid and glycogen synthesis by insulin in rat epididymal fat cells. Biochem J 311:595–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murillo MM, Rana S, Spencer-Dene B, Nye E, Stamp G, Downward J (2018) Disruption of the interaction of RAS with PI 3-kinase induces regression of EGFR-mutant-driven lung cancer. Cell Rep 25:3545–3553.e2

    Google Scholar 

  • Myers MG, Backer JM, Sun XJ, Shoelson S, Hu P, Schlessinger J, Yoakim M, Schaffhausen B, White MF (1992) IRS-1 activates phosphatidylinositol 3ʹ-kinase by associating with src homology 2 domains of p85. Proc Natl Acad Sci U S A 89:10350–10354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naga Prasad SV, Jayatilleke A, Madamanchi A, Rockman HA (2005) Protein kinase activity of phosphoinositide 3-kinase regulates beta-adrenergic receptor endocytosis. Nat Cell Biol 7:785–796

    Google Scholar 

  • Nakashima N, Sharma PM, Imamura T, Bookstein R, Olefsky JM (2000) The tumor suppressor PTEN negatively regulates insulin signaling in 3T3-L1 adipocytes. J Biol Chem 275:12889–12895

    Article  CAS  PubMed  Google Scholar 

  • Nalefski EA, Falke JJ (1996) The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci 5:2375–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narita M, Ohnishi O, Nemoto M, Yajima Y, Suzuki T (2002) Implications of phosphoinositide 3-kinase in the mu- and delta-opioid receptor-mediated supraspinal antinociception in the mouse. Neuroscience 113:647–652

    Article  CAS  PubMed  Google Scholar 

  • Nashed BF, Zhang T, Al-Alwan M, Srinivasan G, Halayko AJ, Okkenhaug K, Vanhaesebroeck B, Hayglass KT, Marshall AJ (2007) Role of the phosphoinositide 3-kinase p110delta in generation of type 2 cytokine responses and allergic airway inflammation. Eur J Immunol 37:416–424

    Article  CAS  PubMed  Google Scholar 

  • Ni J, Liu Q, Xie S, Carlson C, Von T, Vogel K, Riddle S, Benes C, Eck M, Roberts T, Gray N, Zhao J (2012) Functional characterization of an isoform-selective inhibitor of PI3K-p110β as a potential anticancer agent. Cancer Discov 2:425–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolte RT, Eck MJ, Schlessinger J, Shoelson SE, Harrison SC (1996) Crystal structure of the PI 3-kinase p85 amino-terminal SH2 domain and its phosphopeptide complexes. Nat Struct Biol 3:364–374

    Article  CAS  PubMed  Google Scholar 

  • Nunes-Santos C, Uzel G, Rosenzweig SD (2019) PI3K pathway defects leading to immunodeficiency and immune dysregulation. J Allergy Clin Immunol 143:1676–1687

    Article  CAS  PubMed  Google Scholar 

  • Nurnberg B, Beer-Hammer S (2019) Function, regulation and biological roles of PI3Kgamma variants. Biomolecules 9

    Google Scholar 

  • Okada T, Maeda A, Iwamatsu A, Gotoh K, Kurosaki T (2000) BCAP: the tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation. Immunity 13:817–827

    Article  CAS  PubMed  Google Scholar 

  • Ono F, Nakagawa T, Saito S, Owada Y, Sakagami H, Goto K, Suzuki M, Matsuno S, Kondo H (1998) A novel class II phosphoinositide 3-kinase predominantly expressed in the liver and its enhanced expression during liver regeneration. J Biol Chem 273:7731–7736

    Article  CAS  PubMed  Google Scholar 

  • Otsu M, Hiles I, Gout I, Fry MJ, Ruiz-Larrea F, Panayotou G, Thompson A, Dhand R, Hsuan J, Totty N (1991) Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell 65:91–104

    Article  CAS  PubMed  Google Scholar 

  • Ottinger EA, Hui TY, Man Z, Barany G, Bernlohr DA (1995) In vitro association of the phosphatidylinositol 3-kinase regulatory subunit (p85) with the human insulin receptor. Int J Pept Protein Res 46:346–353

    Article  CAS  PubMed  Google Scholar 

  • Pacold ME, Suire S, Perisic O, Lara-Gonzalez S, Davis CT, Walker EH, Hawkins PT, Stephens L, Eccleston JF, Williams RL (2000) Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 103:931–943

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Lee KS, Kim SR, Min KH, Moon H, Lee MH, Chung CR, Han HJ, Puri KD, Lee YC (2010) Phosphoinositide 3-kinase delta inhibitor suppresses interleukin-17 expression in a murine asthma model. Eur Respir J 36:1448–1459

    Article  CAS  PubMed  Google Scholar 

  • Parker PJ, Caudwell FB, Cohen P (2005) Glycogen synthase from rabbit skeletal muscle; effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. Eur J Biochem 130:227–234

    Article  Google Scholar 

  • Parsons DW, Wang TL, Samuels Y, Bardelli A, Cummins JM, Delong L, Silliman N, Ptak J, Szabo S, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Lengauer C, Velculescu VE (2005) Colorectal cancer: mutations in a signalling pathway. Nature 436:792

    Article  CAS  PubMed  Google Scholar 

  • Patrucco E, Notte A, Barberis L, Selvetella G, Maffei A, Brancaccio M, Marengo S, Russo G, Azzolino O, Rybalkin SD, Silengo L, Altruda F, Wetzker R, Wymann MP, Lembo G, Hirsch E (2004) PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 118:375–387

    Article  CAS  PubMed  Google Scholar 

  • Perino A, Ghigo A, Ferrero E, Morello F, Santulli G, Baillie GS, Damilano F, Dunlop AJ, Pawson C, Walser R, Levi R, Altruda F, Silengo L, Langeberg LK, Neubauer G, Heymans S, Lembo G, Wymann MP, Wetzker R, Houslay MD, Iaccarino G, Scott JD, Hirsch E (2011) Integrating cardiac PIP3 and cAMP signaling through a PKA anchoring function of p110gamma. Mol Cell 42:84–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccione E, Case RD, Domchek SM, Hu P, Chaudhuri M, Backer JM, Schlessinger J, Shoelson SE (1993) Phosphatidylinositol 3-kinase p85 SH2 domain specificity defined by direct phosphopeptide/SH2 domain binding. Biochemistry 32:3197–3202

    Article  CAS  PubMed  Google Scholar 

  • Podlecki DA, Smith RM, Kao M, Tsai P, Huecksteadt T, Brandenburg D, Lasher RS, Jarett L, Olefsky JM (1987) Nuclear translocation of the insulin receptor. A possible mediator of insulin’s long term effects. J Biol Chem 262:3362–3368

    Article  CAS  PubMed  Google Scholar 

  • Pons S, Asano T, Glasheen E, Miralpeix M, Zhang Y, Fisher TL, Myers MG, Sun XJ, White MF (1995) The structure and function of p55PIK reveal a new regulatory subunit for phosphatidylinositol 3-kinase. Mol Cell Biol 15:4453–4465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulter L, Ang S-G, Gibson BW, Williams DH, Holmes CFB, Caudwell FB, Pitcher J, Cohen P (1988) Analysis of the in vivo phosphorylation state of rabbit skeletal muscle glycogen synthase by fast-atom-bombardment mass spectrometry. Eur J Biochem 175:497–510

    Article  CAS  PubMed  Google Scholar 

  • Powis G, Bonjouklian R, Berggren MM, Gallegos A, Abraham R, Ashendel C, Zalkow L, Matter WF, Dodge J, Grindey G et al (1994) Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res 54:2419–2423

    Google Scholar 

  • Poyner DR, Hawkins PT, Benton HP, Hanley MR (1990) Changes in inositol lipids and phosphates after stimulation of the MAS-transfected NG115-401L-C3 cell line by mitogenic and non-mitogenic stimuli. Biochem J 271:605–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preite S, Huang B, Cannons JL, McGavern DB, Schwartzberg PL (2018) PI3K orchestrates T follicular helper cell differentiation in a context dependent manner: implications for autoimmunity. Front Immunol 9:3079

    Article  CAS  PubMed  Google Scholar 

  • Puri KD, Doggett TA, Douangpanya J, Hou Y, Tino WT, Wilson T, Graf T, Clayton E, Turner M, Hayflick JS, Diacovo TG (2004) Mechanisms and implications of phosphoinositide 3-kinase delta in promoting neutrophil trafficking into inflamed tissue. Blood 103:3448–3456

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal R, Waller AS, Mendoza JD, Wightman PD (2008) The covalent modification and regulation of TLR8 in HEK-293 cells stimulated with imidazoquinoline agonists. Biochem J 409:275–287

    Article  CAS  PubMed  Google Scholar 

  • Rameh LE, Arvidsson A-K, Carraway KL, Couvillon AD, Rathbun G, Crompton A, Vanrenterghem B, Czech MP, Ravichandran KS, Burakoff SJ, Wang D-S, Chen C-S, Cantley LC (1997) A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J Biol Chem 272:22059–22066

    Article  CAS  PubMed  Google Scholar 

  • Ramm G, Larance M, Guilhaus M, James DE (2006) A role for 14-3-3 in insulin-stimulated GLUT4 translocation through its interaction with the RabGAP AS160. J Biol Chem 281:29174–29180

    Article  CAS  PubMed  Google Scholar 

  • Randis TM, Puri KD, Zhou H, Diacovo TG (2008) Role of PI3Kdelta and PI3Kgamma in inflammatory arthritis and tissue localization of neutrophils. Eur J Immunol 38:1215–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao VK, Webster S, Dalm V, Sediva A, van Hagen PM, Holland S, Rosenzweig SD, Christ AD, Sloth B, Cabanski M, Joshi AD, de Buck S, Doucet J, Guerini D, Kalis C, Pylvaenaeinen I, Soldermann N, Kashyap A, Uzel G, Lenardo MJ, Patel DD, Lucas CL, Burkhart C (2017) Effective “activated PI3Kdelta syndrome”-targeted therapy with the PI3Kdelta inhibitor leniolisib. Blood 130:2307–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedel H, Dull TJ, Schlessinger J, Ullrich A (1986) A chimaeric receptor allows insulin to stimulate tyrosine kinase activity of epidermal growth factor receptor. Nature 324:68–70

    Article  CAS  PubMed  Google Scholar 

  • Robinson DR, Wu Y-M, Lin S-F (2000) The protein tyrosine kinase family of the human genome. Oncogene 19:5548–5557

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues DA, Sagrillo FS, Fraga CAM (2019) Duvelisib: a 2018 novel FDA-approved small molecule inhibiting phosphoinositide 3-kinases. Pharmaceuticals (Basel) 12

    Google Scholar 

  • Rolf J, Bell SE, Kovesdi D, Janas ML, Soond DR, Webb LM, Santinelli S, Saunders T, Hebeis B, Killeen N, Okkenhaug K, Turner M (2010) Phosphoinositide 3-kinase activity in T cells regulates the magnitude of the germinal center reaction. J Immunol 185:4042–4052

    Article  CAS  PubMed  Google Scholar 

  • Rommel C, Camps M, Ji H (2007) PI3K delta and PI3K gamma: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat Rev Immunol 7:191–201

    Article  CAS  PubMed  Google Scholar 

  • Ruderman NB, Kapeller R, White MF, Cantley LC (1990) Activation of phosphatidylinositol 3-kinase by insulin. Proc Natl Acad Sci 87:1411–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rylatt DB, Aitken A, Bilham T, Condon GD, Embi N, Cohen P (2005) Glycogen synthase from rabbit skeletal muscle: amino acid sequence at the sites phosphorylated by glycogen synthase kinase-3, and extension of the N-terminal sequence containing the site phosphoryl. Eur J Biochem 107:529–537

    Article  Google Scholar 

  • Rynkiewicz NK, Anderson KE, Suire S, Collins DM, Karanasios E, Vadas O, Williams R, Oxley D, Clark J, Stephens LR, Hawkins PT (2020) Gbetagamma is a direct regulator of endogenous p101/p110gamma and p84/p110gamma PI3Kgamma complexes in mouse neutrophils. Sci Signal 13

    Google Scholar 

  • Sadowski I, Stone JC, Pawson T (1986) A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps. Mol Cell Biol 6:4396–4408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304:554

    Article  CAS  PubMed  Google Scholar 

  • Sano H, Kane S, Sano E, Mîinea CP, Asara JM, Lane WS, Garner CW, Lienhard GE (2003) Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem 278:14599–14602

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17:596–603

    Article  CAS  PubMed  Google Scholar 

  • Sarkar SN, Peters KL, Elco CP, Sakamoto S, Pal S, Sen GC (2004) Novel roles of TLR3 tyrosine phosphorylation and PI3 kinase in double-stranded RNA signaling. Nat Struct Mol Biol 11:1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Sawyer C, Sturge J, Bennett DC, O’Hare MJ, Allen WE, Bain J, Jones GE, Vanhaesebroeck B (2003) Regulation of breast cancer cell chemotaxis by the phosphoinositide 3-kinase p110delta. Cancer Res 63:1667–1675

    CAS  PubMed  Google Scholar 

  • Scheffold A, Jebaraj BMC, Tausch E, Bloehdorn J, Ghia P, Yahiaoui A, Dolnik A, Blatte TJ, Bullinger L, Dheenadayalan RP, Li L, Schneider C, Chen SS, Chiorazzi N, Dietrich S, Seiffert M, Tannheimer S, Dohner H, Mertens D, Stilgenbauer S (2019) IGF1R as druggable target mediating PI3K-delta inhibitor resistance in a murine model of chronic lymphocytic leukemia. Blood 134:534–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheid MP, Marignani PA, Woodgett JR (2002) Multiple phosphoinositide 3-kinase-dependent steps in activation of protein kinase B. Mol Cell Biol 22:6247–6260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlessinger J (1988) Signal transduction by allosteric receptor oligomerization. Trends Biochem Sci 13:443–447

    Google Scholar 

  • Schmid MC, Avraamides CJ, Dippold HC, Franco I, Foubert P, Ellies LG, Acevedo LM, Manglicmot JR, Song X, Wrasidlo W, Blair SL, Ginsberg MH, Cheresh DA, Hirsch E, Field SJ, Varner JA (2011) Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kgamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell 19:715–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmit F, Utermark T, Zhang S, Wang Q, Von T, Roberts TM, Zhao JJ (2014) PI3K isoform dependence of PTEN-deficient tumors can be altered by the genetic context. Proc Natl Acad Sci 111:6395–6400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber AB, Libermann TA, Lax I, Yarden Y, Schlessinger J (1983) Biological role of epidermal growth factor-receptor clustering. Investigation with monoclonal anti-receptor antibodies. J Biol Chem 258:846–853

    Article  CAS  PubMed  Google Scholar 

  • Schu P, Takegawa K, Fry M, Stack J, Waterfield M, Emr S (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260:88–91

    Article  CAS  PubMed  Google Scholar 

  • Serunian LA, Auger KR, Roberts TM, Cantley LC (1990) Production of novel polyphosphoinositides in vivo is linked to cell transformation by polyomavirus middle T antigen. J Virol 64:4718–4725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw M, Cohen P (1999) Role of protein kinase B and the MAP kinase cascade in mediating the EGF-dependent inhibition of glycogen synthase kinase 3 in Swiss 3T3 cells 1. FEBS Lett 461:120–124

    Article  CAS  PubMed  Google Scholar 

  • Shibasaki F, Homma Y, Takenawa T (1991) Two types of phosphatidylinositol 3-kinase from bovine thymus. Monomer and heterodimer form. J Biol Chem 266:8108–8114

    Article  CAS  PubMed  Google Scholar 

  • Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ, Izumo S (2003) Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation 107:1664–1670

    Article  CAS  PubMed  Google Scholar 

  • Shoelson SE, Sivaraja M, Williams KP, Hu P, Schlessinger J, Weiss MA (1993) Specific phosphopeptide binding regulates a conformational change in the PI 3-kinase SH2 domain associated with enzyme activation. EMBO J 12:795–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shymanets A, Prajwal, Bucher K, Beer-Hammer S, Harteneck C, Nurnberg B (2013) p87 and p101 subunits are distinct regulators determining class IB phosphoinositide 3-kinase (PI3K) specificity. J Biol Chem 288:31059–31068

    Google Scholar 

  • Shymanets A, Prajwal, Vadas O, Czupalla C, Lopiccolo J, Brenowitz M, Ghigo A, Hirsch E, Krause E, Wetzker R, Williams RL, Harteneck C, Nurnberg B (2015) Different inhibition of Gbetagamma-stimulated class IB phosphoinositide 3-kinase (PI3K) variants by a monoclonal antibody. Specific function of p101 as a Gbetagamma-dependent regulator of PI3Kgamma enzymatic activity. Biochem J 469:59–69

    Google Scholar 

  • Singh A, Joshi V, Jindal AK, Mathew B, Rawat A (2020) An updated review on activated PI3 kinase delta syndrome (APDS). Genes Dis 7:67–74

    Article  CAS  PubMed  Google Scholar 

  • Skolnik EY, Margolis B, Mohammadi M, Lowenstein E, Fischer R, Drepps A, Ullrich A, Schlessinger J (1991) Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65:83–90

    Article  CAS  PubMed  Google Scholar 

  • Skurat AV, Roach PJ (1995) Phosphorylation of sites 3a and 3b (Ser640 and Ser644) in the control of rabbit muscle glycogen synthase. J Biol Chem 270:12491–12497

    Article  CAS  PubMed  Google Scholar 

  • Soond DR, Bjorgo E, Moltu K, Dale VQ, Patton DT, Torgersen KM, Galleway F, Twomey B, Clark J, Gaston JS, Tasken K, Bunyard P, Okkenhaug K (2010) PI3K p110delta regulates T-cell cytokine production during primary and secondary immune responses in mice and humans. Blood 115:2203–2213

    Article  CAS  PubMed  Google Scholar 

  • Stack JH, Herman PK, Schu PV, Emr SD (1993) A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J 12:2195–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staubs PA, Reichart DR, Saltiel AR, Milarski KL, Maegawa H, Berhanu P, Olefsky JM, Seely BL (1994) Localization of the insulin receptor binding sites for the SH2 domain proteins p85, Syp, and GAP. J Biol Chem 269:27186–27192

    Article  CAS  PubMed  Google Scholar 

  • Stefanini L, Paul DS, Robledo RF, Chan ER, Getz TM, Campbell RA, Kechele DO, Casari C, Piatt R, Caron KM, Mackman N, Weyrich AS, Parrott MC, Boulaftali Y, Adams MD, Peters LL, Bergmeier W (2015) RASA3 is a critical inhibitor of RAP1-dependent platelet activation. J Clin Investig 125:1419–1432

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephens LR, Hughes KT, Irvine RF (1991) Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature 351:33–39

    Article  CAS  PubMed  Google Scholar 

  • Stephens L, Cooke FT, Walters R, Jackson T, Volinia S, Gout I, Waterfield MD, Hawkins PT (1994a) Characterization of a phosphatidylinositol-specific phosphoinositide 3-kinase from mammalian cells. Curr Biol 4:203–214

    Article  CAS  PubMed  Google Scholar 

  • Stephens L, Smrcka A, Cooke FT, Jackson TR, Sternweis PC, Hawkins PT (1994b) A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein beta gamma subunits. Cell 77:83–93

    Article  CAS  PubMed  Google Scholar 

  • Stephens LR, Eguinoa A, Erdjument-Bromage H, Lui M, Cooke F, Coadwell J, Smrcka AS, Thelen M, Cadwallader K, Tempst P, Hawkins PT (1997) The G beta gamma sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell 89:105–114

    Article  CAS  PubMed  Google Scholar 

  • Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, Holmes AB, Gaffney PRJ, Reese CB, McCormick F, Tempst P, Coadwell J, Hawkins PT (1998) Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279:710–714

    Article  CAS  PubMed  Google Scholar 

  • Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF, Holmes AB, Mccormick F, Hawkins PT (1997) Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science (New York, NY) 277:567–570

    Google Scholar 

  • Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkov M, Malek D, Stoyanova S, Vanhaesebroeck B, Dhand R, Nurnberg B, Al E (1995a) Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269:690–693

    Article  CAS  PubMed  Google Scholar 

  • Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkov M, Malek D, Stoyanova S, Vanhaesebroeck B, Dhand R, Nurnberg B et al (1995b) Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269:690–693

    Google Scholar 

  • Subramaniam PS, Whye DW, Efimenko E, Chen J, Tosello V, De Keersmaecker K, Kashishian A, Thompson MA, Castillo M, Cordon-Cardo C, Davé UP, Ferrando A, Lannutti BJ, Diacovo TG (2012) Targeting nonclassical oncogenes for therapy in T-ALL. Cancer Cell 21:459–472

    Google Scholar 

  • Sugimoto Y, Whitman M, Cantley LC, Erikson RL (1984) Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol. Proc Natl Acad Sci 81:2117–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suire S, Coadwell J, Ferguson GJ, Davidson K, Hawkins P, Stephens L (2005) p84, a new Gbetagamma-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110gamma. Curr Biol 15:566–570

    Article  CAS  PubMed  Google Scholar 

  • Suire S, Lecureuil C, Anderson KE, Damoulakis G, Niewczas I, Davidson K, Guillou H, Pan D, Jonathan C, Phillip TH, Stephens L (2012) GPCR activation of Ras and PI3Kc in neutrophils depends on PLCb2/b3 and the RasGEF RasGRP4. EMBO J 31:3118–3129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein BJ, White MF (1991) Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352:73–77

    Article  CAS  PubMed  Google Scholar 

  • Sun XJ, Wang L-M, Zhang Y, Yenush L, Myers MG Jr, Glasheen E, Lane WS, Pierce JH, White MF (1995) Role of IRS-2 in insulin and cytokine signalling. Nature 377:173–177

    Google Scholar 

  • Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J, Gavrilova N, Mueller B, Liu X, Wu H (1999) PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci 96:6199–6204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun M, Hillmann P, Hofmann BT, Hart JR, Vogt PK (2010) Cancer-derived mutations in the regulatory subunit p85alpha of phosphoinositide 3-kinase function through the catalytic subunit p110alpha. Proc Natl Acad Sci U S A 107:15547–15552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland C, Cohen P (1994) The α-isoform of glycogen synthase kinase-3 from rabbit skeletal muscle is inactivated by p70 S6 kinase or MAP kinase-activated protein kinase-1 in vitro. FEBS Lett 338:37–42

    Article  CAS  PubMed  Google Scholar 

  • Sutherland C, Leighton IA, Cohen P (1993) Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J 296(Pt 1):15–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takenaka N, Sumi Y, Matsuda K, Fujita J, Hosooka T, Noguchi T, Aiba A, Satoh T (2015) Role for RalA downstream of Rac1 in skeletal muscle insulin signalling. Biochem J 469:445–454

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Downes CP (1997) Purification and characterization of Gbetagamma-responsive phosphoinositide 3-kinases from pig platelet cytosol. J Biol Chem 272:14193–14199

    Article  CAS  PubMed  Google Scholar 

  • Ter Haar E, Coll JT, Austen DA, Hsiao HM, Swenson L, Jain J (2001) Structure of GSK3beta reveals a primed phosphorylation mechanism. Nat Struct Biol 8:593–596

    Article  PubMed  Google Scholar 

  • Thomas CC, Deak M, Alessi DR, van Aalten DMF (2002) High-resolution structure of the pleckstrin homology domain of protein kinase B/Akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Curr Biol 12:1256–1262

    Article  CAS  PubMed  Google Scholar 

  • Thomas M, Edwards MJ, Sawicka E, Duggan N, Hirsch E, Wymann MP, Owen C, Trifilieff A, Walker C, Westwick J, Finan P (2009) Essential role of phosphoinositide 3-kinase gamma in eosinophil chemotaxis within acute pulmonary inflammation. Immunology 126:413–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • To Y, Ito K, Kizawa Y, Failla M, Ito M, Kusama T, Elliott WM, Hogg JC, Adcock IM, Barnes PJ (2010) Targeting phosphoinositide-3-kinase-delta with theophylline reverses corticosteroid insensitivity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 182:897–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traynor-Kaplan A, Harris AL, Thompson BL, Taylor P, Sklar LA (1988) An inositol tetrakisphosphate-containing phospholipid in activated neutrophils. Nature 334:353–356

    Article  CAS  PubMed  Google Scholar 

  • Trenker R, Jura N (2020) Receptor tyrosine kinase activation: from the ligand perspective. Curr Opin Cell Biol 63:174–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsolakos N, Durrant TN, Chessa T, Suire SM, Oxley D, Kulkarni S, Downward J, Perisic O, Williams RL, Stephens L, Hawkins PT (2018) Quantitation of class IA PI3Ks in mice reveals p110-free-p85s and isoform-selective subunit associations and recruitment to receptors. Proc Natl Acad Sci U S A 115:12176–12181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida T, Myers MG, White MF (2000) IRS-4 mediates protein kinase B signaling during insulin stimulation without promoting antiapoptosis. Mol Cell Biol 20:126–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueki K, Algenstaedt P, Mauvais-Jarvis F, Kahn CR (2000) Positive and negative regulation of phosphoinositide 3-kinase-dependent signaling pathways by three different gene products of the p85alpha regulatory subunit. Mol Cell Biol 20:8035–8046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, Dull TJ, Gray A, Coussens L, Liao YC, Tsubokawa M, Mason A, Seeburg PH, Grunfeld C, Rosen OM, Ramachandran J (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313:756–761

    Article  CAS  PubMed  Google Scholar 

  • Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T, Kathuria S, Chen E (1986) Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 5:2503–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulug ET, Hawkins PT, Hanley MR, Courtneidge SA (1990) Phosphatidylinositol metabolism in cells transformed by polyomavirus middle T antigen. J Virol 64:3895–3904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ushiro H, Cohen S (1980) Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes. J Biol Chem 255:8363–8365

    Article  CAS  PubMed  Google Scholar 

  • Utermark T, Rao T, Cheng H, Wang Q, Lee SH, Wang ZC, Iglehart JD, Roberts TM, Muller WJ, Zhao JJ (2012) The p110 and p110 isoforms of PI3K play divergent roles in mammary gland development and tumorigenesis. Genes Dev 26:1573–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utermark T, Schmit F, Lee SH, Gao X, Schaffhausen BS, Roberts TM (2014) The phosphatidylinositol 3-kinase (PI3K) isoform dependence of tumor formation is determined by the genetic mode of PI3K pathway activation rather than by tissue type. J Virol 88:10673–10679

    Article  PubMed  PubMed Central  Google Scholar 

  • Vadas O, Dbouk HA, Shymanets A, Perisic O, Burke JE, Abi Saab WF, Khalil BD, Harteneck C, Bresnick AR, Nurnberg B, Backer JM, Williams RL (2013) Molecular determinants of PI3Kgamma-mediated activation downstream of G-protein-coupled receptors (GPCRs). Proc Natl Acad Sci U S A 110:18862–18867

    Google Scholar 

  • Valverde AM, Lorenzo M, Pons S, White MF, Benito M (1998) Insulin receptor substrate (IRS) proteins IRS-1 and IRS-2 differential signaling in the insulin/insulin-like growth factor-I pathways in fetal brown adipocytes. Mol Endocrinol (Baltimore, MD) 12:688–697

    Google Scholar 

  • van Horn DJ, Myers MG, Backer JM (1994) Direct activation of the phosphatidylinositol 3ʹ-kinase by the insulin receptor. J Biol Chem 269:29–32

    Article  PubMed  Google Scholar 

  • Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD (1997) Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci 22:267–272

    Article  CAS  PubMed  Google Scholar 

  • van Weeren PC, de Bruyn KMT, De Vries-Smits AMM, van Lint J, Burgering BMT (1998) Essential role for protein kinase B (PKB) in insulin-induced glycogen synthase kinase 3 inactivation: characterization of dominant-negative mutant of PKB. J Biol Chem 273:13150–13156

    Article  PubMed  Google Scholar 

  • Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70:535–602

    Article  CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Ali K, Bilancio A, Geering B, Foukas LC (2005) Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem Sci 30:194–204

    Article  CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Stephens L, Hawkins P (2012) PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol 13:195–203

    Article  CAS  PubMed  Google Scholar 

  • Varticovski L, Druker B, Morrison D, Cantley L, Roberts T (1989) The colony stimulating factor-1 receptor associates with and activates phosphatidylinositol-3 kinase. Nature 342:699–702

    Article  CAS  PubMed  Google Scholar 

  • Vasan N, Razavi P, Johnson JL, Shao H, Shah H, Antoine A, Ladewig E, Gorelick A, Lin TY, Toska E, Xu G, Kazmi A, Chang MT, Taylor BS, Dickler MN, Jhaveri K, Chandarlapaty S, Rabadan R, Reznik E, Smith ML, Sebra R, Schimmoller F, Wilson TR, Friedman LS, Cantley LC, Scaltriti M, Baselga J (2019) Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kalpha inhibitors. Science 366:714–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vega RB, Konhilas JP, Kelly DP, Leinwand LA (2017) Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metab 25:1012–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venot Q, Blanc T, Rabia SH, Berteloot L, Ladraa S, Duong JP, Blanc E, Johnson SC, Hoguin C, Boccara O, Sarnacki S, Boddaert N, Pannier S, Martinez F, Magassa S, Yamaguchi J, Knebelmann B, Merville P, Grenier N, Joly D, Cormier-Daire V, Michot C, Bole-Feysot C, Picard A, Soupre V, Lyonnet S, Sadoine J, Slimani L, Chaussain C, Laroche-Raynaud C, Guibaud L, Broissand C, Amiel J, Legendre C, Terzi F, Canaud G (2018) Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature 558:540–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venot Q, Blanc T, Rabia SH, Berteloot L, Ladraa S, Duong JP, Blanc E, Johnson SC, Hoguin C, Boccara O, Sarnacki S, Boddaert N, Pannier S, Martinez F, Magassa S, Yamaguchi J, Knebelmann B, Merville P, Grenier N, Joly D, Cormier-Daire V, Michot C, Bole-Feysot C, Picard A, Soupre V, Lyonnet S, Sadoine J, Slimani L, Chaussain C, Laroche-Raynaud C, Guibaud L, Broissand C, Amiel J, Legendre C, Terzi F, Canaud G (2019) Author correction: targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature 568:E6

    Article  CAS  PubMed  Google Scholar 

  • Vigneri R, Goldfine ID, Wong KY, Smith GJ, Pezzino V (1978) The nuclear envelope. The major site of insulin binding in rat liver nuclei. J Biol Chem 253:2098–2103

    Article  CAS  PubMed  Google Scholar 

  • Virbasius JV, Guilherme A, Czech MP (1996) Mouse p170 is a novel phosphatidylinositol 3-kinase containing a C2 domain. J Biol Chem 271:13304–13307

    Article  CAS  PubMed  Google Scholar 

  • Vlahos CJ, Matter WF, Hui KY, Brown RF (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269:5241–5248

    Article  CAS  PubMed  Google Scholar 

  • Voigt P, Dorner MB, Schaefer M (2006) Characterization of p87PIKAP, a novel regulatory subunit of phosphoinositide 3-kinase gamma that is highly expressed in heart and interacts with PDE3B. J Biol Chem 281:9977–9986

    Article  CAS  PubMed  Google Scholar 

  • Walker EH, Perisic O, Ried C, Stephens L, Williams RL (1999) Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 402:313–320

    Article  CAS  PubMed  Google Scholar 

  • Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6:909–919

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Roach PJ (1993) Inactivation of rabbit muscle glycogen synthase by glycogen synthase kinase-3. Dominant role of the phosphorylation of Ser-640 (site-3a). J Biol Chem 268:23876–23880

    Article  CAS  PubMed  Google Scholar 

  • Wang QM, Roach PJ, Fiol CJ (1994) Use of a synthetic peptide as a selective substrate for glycogen synthase kinase 3. Anal Biochem 220:397–402

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yang L, Fikrig E, Wang P (2017) An essential role of PI3K in the control of West Nile virus infection. Sci Rep 7:3724

    Article  PubMed  PubMed Central  Google Scholar 

  • Wee S, Wiederschain D, Maira SM, Loo A, Miller C, Debeaumont R, Stegmeier F, Yao YM, Lengauer C (2008) PTEN-deficient cancers depend on PIK3CB. Proc Natl Acad Sci 105:13057–13062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks KL, Gao X, Du XJ, Boey EJ, Matsumoto A, Bernardo BC, Kiriazis H, Cemerlang N, Tan JW, Tham YK, Franke TF, Qian H, Bogoyevitch MA, Woodcock EA, Febbraio MA, Gregorevic P, McMullen JR (2012) Phosphoinositide 3-kinase p110alpha is a master regulator of exercise-induced cardioprotection and PI3K gene therapy rescues cardiac dysfunction. Circ Heart Fail 5:523–534

    Article  CAS  PubMed  Google Scholar 

  • White MF, Maron R, Kahn CR (1985) Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells. Nature 318:183–186

    Article  CAS  PubMed  Google Scholar 

  • Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM (1985) Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315:239–242

    Article  CAS  PubMed  Google Scholar 

  • Whitman M, Downes CP, Keeler M, Keller T, Cantley L (1988) Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332:644–646

    Article  CAS  PubMed  Google Scholar 

  • Williams O, Houseman BT, Kunkel EJ, Aizenstein B, Hoffman R, Knight ZA, Shokat KM (2010) Discovery of dual inhibitors of the immune cell PI3Ks p110delta and p110gamma: a prototype for new anti-inflammatory drugs. Chem Biol 17:123–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodgett JR (1990) Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J 9:2431–2438

    Google Scholar 

  • Xu Y, Rubin BR, Orme CM, Karpikov A, Yu C, Bogan JS, Toomre DK (2011) Dual-mode of insulin action controls GLUT4 vesicle exocytosis. J Cell Biol 193:643–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto K, Altschuler D, Wood E, Horlick K, Jacobs S, Lapetina EG (1992) Association of phosphorylated insulin-like growth factor-I receptor with the SH2 domains of phosphatidylinositol 3-kinase p85. J Biol Chem 267:11337–11343

    Article  CAS  PubMed  Google Scholar 

  • Yarden Y, Escobedo JA, Kuang WJ, Yang-Feng T, Daniel TO, Tremble PM, Chen EY, Ando ME, Harkins RN, Francke U, Fried VA, Ullrich A, Williams LT (1986) Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors. Nature 323:226–232

    Article  CAS  PubMed  Google Scholar 

  • Yonezawa K, Ueda H, Hara K, Nishida K, Ando A, Chavanieu A, Matsuba H, Shii K, Yokono K, Fukui Y (1992) Insulin-dependent formation of a complex containing an 85-kDa subunit of phosphatidylinositol 3-kinase and tyrosine-phosphorylated insulin receptor substrate 1. J Biol Chem 267:25958–25965

    Article  CAS  PubMed  Google Scholar 

  • Zeigerer A, McBrayer MK, McGraw TE (2004) Insulin stimulation of GLUT4 exocytosis, but not its inhibition of endocytosis, is dependent on RabGAP AS160. Mol Biol Cell 15:4406–4415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Vadas O, Perisic O, Anderson KE, Clark J, Hawkins PT, Stephens LR, Williams RL (2011) Structure of lipid kinase p110beta/p85beta elucidates an unusual SH2-domain-mediated inhibitory mechanism. Mol Cell 41:567–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Vogt PK (2008a) Class I PI3K in oncogenic cellular transformation. Oncogene 27:5486–5496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Vogt PK (2008b) Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci U S A 105:2652–2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zvelebil MJ, Macdougall L, Leevers S, Volinia S, Vanhaesebroeck B, Gout I, Panayotou G, Domin J, Stein R, Pages F (1996) Structural and functional diversity of phosphoinositide 3-kinases. Philos Trans R Soc Lond Ser B Biol Sci 351:217–223

    Google Scholar 

  • http://www.nature.com/articles/333183a0

  • http://www.nature.com/articles/338083a0

  • https://pubmed.ncbi.nlm.nih.gov/23824069/

  • https://pubmed.ncbi.nlm.nih.gov/24124465/

Download references

Acknowledgements

T.Y.A. is a PURA scholar. H.M.C. is a Sr. Alma Nicholas Science Year experience fellow. This work was partially funded by the financial support of U.S. Department of Defense, DOD CDMRP BC151831 (S.B.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra B. Gabelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aytenfisu, T.Y., Campbell, H.M., Chakrabarti, M., Amzel, L.M., Gabelli, S.B. (2022). Class I PI3K Biology. In: Dominguez-Villar, M. (eds) PI3K and AKT Isoforms in Immunity . Current Topics in Microbiology and Immunology, vol 436. Springer, Cham. https://doi.org/10.1007/978-3-031-06566-8_1

Download citation

Publish with us

Policies and ethics