Skip to main content

The Shaggy Dog Story of Enteric Signaling: Serotonin, a Molecular Megillah

  • Conference paper
  • First Online:
The Enteric Nervous System II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1383))

Abstract

Historically and quantitatively, the enteric site of serotonin (5-HT) storage has primacy over those of any other organ. 5-HT, by the name of “enteramine”, was first discovered in the bowel, and the gut produces most of the body’s 5-HT. Not only does the bowel secrete 5-HT prodigiously but it also expresses a kaleidoscopic abundance of 5-HT receptors. The larger of two enteric 5-HT stores is mucosal, biosynthetically dependent upon tryptophan hydroxylase1 (TPH1), and located in EC cells. Mechanical stimuli, nutrients, luminal bacteria, and neurotransmitters such as acetylcholine and norepinephrine are all able to stimulate EC cells. Paracrine actions of 5-HT allow the mucosa to signal to neurons to initiate peristaltic and secretory reflexes as well as to inflammatory cells to promote intestinal inflammation. Endocrine effects of 5-HT allow EC cells to influence distant organs, including bone, liver, and endocrine pancreas. The smaller enteric 5-HT store is biosynthetically dependent upon TPH2 and is located within a small subset of myenteric neurons. 5-HT is responsible for slow excitatory neurotransmission manifested primarily in type II/AH neurons. Importantly, neuronal 5-HT also promotes enteric nervous system (ENS) neurogenesis, both pre- and postnatally, through 5-HT2B and especially 5-HT4 receptors. The early birth of serotonergic neurons allows these cells to function as sculptors of the mature ENS. The inactivation of secreted 5-HT depends on transmembrane transport mediated by a serotonin transporter (SERT; SLC6A4). The importance of SERT in control of 5-HT’s function means that pharmacological inhibition of SERT, as well as gain- or loss-of-function mutations in SLC6A4, can exert profound effects on development and function of the ENS. Extra-enteric, TPH1-derived 5-HT from yolk sac and placenta promotes neurogenesis before enteric neurons synthesize 5-HT and contribute to ENS patterning. The impressive multi-functional nature of enteric 5-HT has made the precise identification of individual physiological roles difficult and sometimes controversial.

The authors’ work discussed in this chapter has been supported by grant number NS15547 of the National Institutes of Health of the US Public Health Service

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anwar MA, Ford WR, Broadley KJ, Herbert AA (2012) Vasoconstrictor and vasodilator responses to tryptamine of rat-isolated perfused mesentery: comparison with tyramine and beta-phenylethylamine. Br J Pharmacol 165:2191–2202

    Article  CAS  Google Scholar 

  2. Auerbach L (1864) Fernere vorlaufige Mittielung über den Nervenapparat des Darmes. Arch Pathol Anat Physiol 30:457–460

    Article  Google Scholar 

  3. Bayliss WM, Starling EH (1899) The movements and innervation of the small intestine. J Physiol Lond 24:99–143

    Article  CAS  Google Scholar 

  4. Bayliss WM, Starling EH (1900) The movements and innervation of the large intestine. J Physiol Lond 26:107–118

    Article  CAS  Google Scholar 

  5. Bayliss WM, Starling EH (1901) The movements and innervation of the small intestine. J Physiol Lond 26:125–138

    Article  CAS  Google Scholar 

  6. Bertrand PP (2004) Real-time detection of serotonin release from enterochromaffin cells of the Guinea-pig ileum. Neurogastroenterol Motil 16:511–514

    Article  CAS  Google Scholar 

  7. Bertrand PP, Bertrand RL (2010) Serotonin release and uptake in the gastrointestinal tract. Auton Neurosci 153(1–2):47–57. https://doi.org/10.1016/j.autneu.2009.08.002. Epub 2009 Sep 2. PMID: 19729349.

  8. Bischoff SC, Mailer R, Pabst O, Weier G, Sedlik W, Li Z, Chen JJ, Murphy DL, Gershon MD (2009) Role of serotonin in intestinal inflammation: knockout of serotonin reuptake transporter exacerbates 2,4,6-trinitrobenzene sulfonic acid colitis in mice. Am J Physiol Gastrointest Liver Physiol 296:G685–G695

    Article  CAS  Google Scholar 

  9. Black CA, Bucher ML, Bradner JM, Jonas L, Igarza K, Miller GW (2021) Assessing vesicular monoamine transport and toxicity using fluorescent false neurotransmitters. Chem Res Toxicol 34:1256–1264

    Article  CAS  Google Scholar 

  10. Blakely RD, Berson HE, Fremeau RT, Caron MG, Peek MM, Prince HK, Bradley CC (1991) Cloning and expression of a functional serotonin transporter from rat brain. Nature 354:66–70

    Article  CAS  Google Scholar 

  11. Blashko H, Levine WG (1966) Metabolism of indolealkylamines. In: Erspamer V (ed) Handbook of experimental pharmacology: 5-Hydroxytryptamine and related Indolealkylamines. Springer-Verlag, New York

    Google Scholar 

  12. Boullin DJ (1964) Observations on the significance of 5-hydroxytryptamine in relation to the peristaltic reflex of the rat. Brit J Pharmacol 23:14–33

    CAS  Google Scholar 

  13. Bulbring E (1961) Motility of the intestine. Proc R Soc Med 54:773–775

    CAS  Google Scholar 

  14. Bülbring E, Crema A (1958) Observations concerning the action of 5-hydroxytryptamine on the peristaltic reflex. Br J Pharmacol 13:444–457

    Google Scholar 

  15. Bülbring E, Crema A (1959a) The action of 5-hydroxytryptamine, 5-hydroxytryptophan and reserpine on intestinal peristalsis in anaesthetized Guinea-pigs. J Physiol Lond 146:29–53

    Article  Google Scholar 

  16. Bülbring E, Crema A (1959b) The release of 5-hydroxytryptamine in relation to pressure exerted on the intestinal mucosa. J Physiol Lond 146:18–28

    Article  Google Scholar 

  17. Bulbring E, Crema A, Saxby OB (1958) A method for recording peristalsis in isolated intestine. Br J Pharmacol Chemother 13:440–443

    Article  CAS  Google Scholar 

  18. Bülbring E, Gershon MD (1967) 5-hydroxytryptamine participation in the vagal inhibitory innervation of the stomach. J Physiol Lond 192:823–846

    Article  Google Scholar 

  19. Bülbring E, Lin RCY (1958) The effect of intraluminal application of 5-hydroxytryptamine and 5-hydroxytryptophan on peristalsis, the local production of 5-hydroxytryptamine and its release in relation to intraluminal pressure and propulsive activity. J Physiol Lond 140:381–407

    Google Scholar 

  20. Bülbring E, Lin RCY, Schofield G (1958) An investigation of the peristaltic reflex in relation to anatomical observations. Q J Exp Physiol 43:26–37

    Article  Google Scholar 

  21. Chalazonitis A, Pham TD, Li Z, Roman D, Guha U, Gomes W, Kan L, Kessler JA, Gershon MD (2008) Bone morphogenetic protein regulation of enteric neuronal phenotypic diversity: relationship to timing of cell cycle exit. J Comp Neurol 509:474–492

    Article  CAS  Google Scholar 

  22. Chen JX, Pan H, Rothman TP, Wade PR, Gershon MD (1998) Guinea pig 5-HT transporter: cloning, expression, distribution, and function in intestinal sensory reception. Am J Phys 275:G433–G448

    CAS  Google Scholar 

  23. Coates MD, Tekin I, Vrana KE, Mawe GM (2017) Review article: the many potential roles of intestinal serotonin (5-hydroxytryptamine, 5-HT) signalling in inflammatory bowel disease. Aliment Pharmacol Ther 46:569–580

    Article  CAS  Google Scholar 

  24. De Vadder F, Grasset E, Manneras Holm L, Karsenty G, Macpherson AJ, Olofsson LE, Backhed F (2018) Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc Natl Acad Sci U S A 115:6458–6463

    Article  CAS  Google Scholar 

  25. Erspamer V (1937) Ricerche sperimentali sul significato biologico delle enuerocromaffini. Arch Fisiol 37:156–169

    Google Scholar 

  26. Erspamer V (1953) Über den 5-Hydroytryptamin-(Enteramin)Gehalt des Magen-Darmtraktes bei den Wirbelten. Naturwissenschaften 40:318–319

    Article  CAS  Google Scholar 

  27. Erspamer V (1954) Pharmacology of indolealklyamines. Pharmacol Rev 6:425–487

    CAS  Google Scholar 

  28. Fiorica-Howells E, Maroteaux L, Gershon MD (2000) Serotonin and the 5-HT(2B) receptor in the development of enteric neurons. J Neurosci 20:294–305

    Article  CAS  Google Scholar 

  29. Foxx-Orenstein AE, Kuemmerle JF, Grider JR (1996) Distinct 5-HT receptors mediate the peristaltic reflex induced by mucosal stimuli in human and Guinea pig intestine. Gastroenterology 111:1281–1290

    Article  CAS  Google Scholar 

  30. Frigo GM, Lecchini S (1970) An improved method for studying the peristaltic reflex in the isolated colon. Br J Pharmacol 39:346–356

    Article  CAS  Google Scholar 

  31. Gershon MD (2013) 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20:14–21

    Article  CAS  Google Scholar 

  32. Gershon MD, Ross LL (1966) Radioisotopic studies of the binding, exchange, and distribution of 5-hydroxytryptamine synthesized from its radioactive precursor. J Physiol 186:451–476

    Article  CAS  Google Scholar 

  33. Gershon MD, Tack J (2007) The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132:397–414

    Article  CAS  Google Scholar 

  34. Ghia JE, Li N, Wang H, Collins M, Deng Y, El-Sharkawy RT, Cote F, Mallet J, Khan WI (2009) Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 137:1649–1660

    Article  CAS  Google Scholar 

  35. Grider JR (2003) Neurotransmitters mediating the intestinal peristaltic reflex in the mouse. J Pharmacol Exp Ther 307:460–467

    Article  CAS  Google Scholar 

  36. Grimaldi R, Gibson GR, Vulevic J, Giallourou N, Castro-Mejia JL, Hansen LH, Leigh Gibson E, Nielsen DS, Costabile A (2018) A prebiotic intervention study in children with autism spectrum disorders (ASDs). Microbiome 6:133

    Article  Google Scholar 

  37. Gross ER, Gershon MD, Margolis KG, Gertsberg ZV, Cowles RA (2012) Neuronal serotonin regulates growth of the intestinal mucosa in mice. Gastroenterology 143(408–17):e2

    Google Scholar 

  38. Heredia DJ, Gershon MD, Koh SD, Corrigan RD, Okamoto T, Smith TK (2013) Important role of mucosal serotonin in colonic propulsion and peristaltic reflexes: in vitro analyses in mice lacking tryptophan hydroxylase 1. J Physiol 591:5939–5957

    Article  CAS  Google Scholar 

  39. Heredia DJ, Grainger N, Mccann CJ, Smith TK (2012) Insights from a novel model of slow-transit constipation generated by partial outlet obstruction in the murine large intestine. Am J Physiol Gastrointest Liver Physiol 303:G1004–G1016

    Article  CAS  Google Scholar 

  40. Hoffman B, Mezey E, Brownstein M (1991) Cloning of a serotonin transporter affected by antidepressants. Science 254:579–580

    Article  CAS  Google Scholar 

  41. Israelyan N, Del Colle A, Li Z, Park Y, Xing A, Jacobsen JPR, Luna RA, Jensen DD, Madra M, Saurman V, Rahim R, Latorre R, Law K, Carson W, Bunnett NW, Caron MG, Margolis KG (2019) Effects of serotonin and slow-release 5-Hydroxytryptophan on gastrointestinal motility in a mouse model of depression. Gastroenterology 157(507–521):e4

    Google Scholar 

  42. Kadowaki M, Wade PR, Gershon MD (1996) Participation of 5-HT3, 5-HT4, and nicotinic receptors in the peristaltic reflex of the Guinea pig distal colon. Am J Phys 271:G849–G857

    CAS  Google Scholar 

  43. Karsenty G, Gershon MD (2011) The importance of the gastrointestinal tract in the control of bone mass accrual. Gastroenterology 141:439–442

    Article  Google Scholar 

  44. Keating DJ, Spencer NJ (2010) Release of 5-hydroxytryptamine from the mucosa is not required for the generation or propagation of colonic migrating motor complexes. Gastroenterology 138:659-70–670 e1-2

    Article  Google Scholar 

  45. Kuhn DM, Wolf WA, Youdim MB (1985) 5-Hydroxytryptamine release in vivo from a cytoplasmic pool: studies on the 5-HT behavioural syndrome in reserpinized rats. Br J Pharmacol 84:121–129

    CAS  Google Scholar 

  46. Langley JN (1921) The autonomic nervous system, part 1. W. Heffer, Cambridge

    Google Scholar 

  47. Li Z, Chalazonitis A, Huang YY, Mann JJ, Margolis KG, Yang QM, Kim DO, Cote F, Mallet J, Gershon MD (2011) Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J Neurosci 31:8998–9009

    Article  CAS  Google Scholar 

  48. Liu MT, Kuan YH, Wang J, Hen R, Gershon MD (2009) 5-HT4 receptor-mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J Neurosci 29:9683–9699

    Article  CAS  Google Scholar 

  49. Liu YL, Chen Y, Fan WT, Cao P, Yan J, Zhao XZ, Dong WG, Huang WH (2020) Mechanical distension induces serotonin release from intestine as revealed by stretchable electrochemical sensing. Angew Chem Int Ed Engl 59:4075–4081

    Article  CAS  Google Scholar 

  50. Margolis KG, Gershon MD (2016) Enteric neuronal regulation of intestinal inflammation. Trends Neurosci 39:614–624

    Article  CAS  Google Scholar 

  51. Margolis KG, Li ZS, Stevanovic K, Saurman V, Israelyan N, Anderson GM, Snyder I, Veenstra-Vanderweele J, Blakely RD, Gershon MD (2016) Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function. J Clin Investig 126:2221–2235

    Article  Google Scholar 

  52. Margolis KG, Stevanovic K, Li Z, Yang QM, Oravecz T, Zambrowicz B, Jhaver KG, Diacou A, Gershon MD (2014) Pharmacological reduction of mucosal but not neuronal serotonin opposes inflammation in mouse intestine. Gut 63:928–937

    Article  CAS  Google Scholar 

  53. Meissner G (1857) Über die Nerven der Darmwand. Z Ration Med 8:364–366

    Google Scholar 

  54. Pham TD, Gershon MD, Rothman TP (1991) Time of origin of neurons in the murine enteric nervous system. J Comp Neurol 314:789–798

    Article  CAS  Google Scholar 

  55. Rapport MM, Green AA, Page IH (1948) Serum vasoconstrictor (serotonin). IV Isolation and characterization. J Biol Chem 176:1243–1251

    Article  CAS  Google Scholar 

  56. Reigstad CS, Salmonson CE, Rainey JF 3rd, Szurszewski JH, Linden DR, Sonnenburg JL, Farrugia G, Kashyap PC (2015) Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 29:1395–1403

    Article  CAS  Google Scholar 

  57. Shah, P. A., Park, C. J., Shaughnessy, M. P. & Cowles, R. A. 2021. Serotonin as a mitogen in the gastrointestinal tract: revisiting a familiar molecule in a new role. Cell Mol Gastroenterol Hepatol

    Google Scholar 

  58. Sia TC, Whiting M, Kyloh M, Nicholas S, Brookes SJ, Oliver J, Dinning P, Wattchow DA, Spencer NJ (2013) 5-HT3 and 5-HT4 antagonists inhibit peristaltic contractions in Guinea-pig distal colon by mechanisms independent of endogenous 5-HT. Front Neurosci 7:1–10

    Article  Google Scholar 

  59. Smith TK, Gershon MD (2015a) CrossTalk proposal: 5-HT is necessary for peristalsis. J Physiol 593:3225–3227

    Article  CAS  Google Scholar 

  60. Smith TK, Gershon MD (2015b) Rebuttal from Terence K Smith and Michael D Gershon. J Physiol 593:3233

    Article  CAS  Google Scholar 

  61. Spencer NJ, Hennig GW, Smith TK (2003) Stretch-activated neuronal pathways to longitudinal and circular muscle in Guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 284:G231–G241

    Article  CAS  Google Scholar 

  62. Spencer NJ, Nicholas SJ, Robinson L, Kyloh M, Flack N, Brookes SJ, Zagorodnyuk VP, Keating DJ (2011) Mechanisms underlying distension-evoked peristalsis in Guinea pig distal colon: is there a role for enterochromaffin cells? Am J Physiol Gastrointest Liver Physiol 301:G519–G527

    Article  CAS  Google Scholar 

  63. Spencer NJ, Sia TC, Brookes SJ, Costa M, Keating DJ (2015a) CrossTalk opposing view: 5-HT is not necessary for peristalsis. J Physiol 593:3229–3231

    Article  CAS  Google Scholar 

  64. Spencer NJ, Sia TC, Brookes SJ, Costa M, Keating DJ (2015b) Rebuttal from Nick J. Spencer, Tiong Cheng Sia, Simon J Brookes, Marcello Costa and Damien J. Keating. J Physiol 593:3235

    Article  CAS  Google Scholar 

  65. Takaki M, Branchek T, Tamir H, Gershon MD (1985a) Specific antagonism of enteric neural serotonin receptors by dipeptides of 5-hydroxytryptophan: evidence that serotonin is a mediatory of slow synaptic excitation in the myenteric plexus. J Neurosci 5:1769–1780

    Article  CAS  Google Scholar 

  66. Takaki M, Mawe GM, Barasch JM, Gershon MD (1985b) Physiological responses of Guinea-pig myenteric neurons secondary to the release of endogenous serotonin by tryptamine. Neuroscience 16:223–240

    Article  CAS  Google Scholar 

  67. Trendelenburg P (1917) Physiologische und pharmakologische Versuche über die Dünndarm Peristaltick. Naunyn-Schmiedeberg’s Arch Exp Pathol Pharmakol 81:55–129

    Article  Google Scholar 

  68. Twarog BM, Page IH (1953) Serotonin content of some mammalian tissues and urine and a method for its determination. Am J Phys 175:157–161

    Article  CAS  Google Scholar 

  69. Vialli M (1966) Histology of the enterochromaffin cell system. In: Erspamer V (ed) Handbook of experimental pharmacology: 5-Hydroxytryptamine and related Indolealkylamines. Springer, New York

    Google Scholar 

  70. Wade PR, Chen J, Jaffe B, Kassem IS, Blakely RD, Gershon MD (1996) Localization and function of a 5-HT transporter in crypt epithelia of the gastrointestinal tract. J Neurosci 16:2352–2364

    Article  CAS  Google Scholar 

  71. Wade PR, Tamir H, Kirchgessner AL, Gershon MD (1994) Analysis of the role of 5-HT in the enteric nervous system using anti-idiotypic antibodies to 5-HT receptors. Am J Phys 266:G403–G416

    CAS  Google Scholar 

  72. Walther DJ, Peter JU, Bashammakh S, Hortnagl H, Voits M, Fink H, Bader M (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299:76

    Article  CAS  Google Scholar 

  73. Whitaker-Azmitia PM (1999) The discovery of serotonin and its role in neuroscience. Neuropsychopharmacology 21:2S–8S

    Article  CAS  Google Scholar 

  74. Woolley DW, Shaw EN (1957) Evidence for the participation of serotonin in mental processes. Ann N Y Acad Sci 66:649–665; discussion, 665-7

    Article  CAS  Google Scholar 

  75. Wu H-H, Choi S, Levitt P (2016) Differential patterning of genes involved in serotonin metabolism and transport in extra-embryonic tissues of the mouse. Placenta 42:74–83

    Article  CAS  Google Scholar 

  76. Yadav VK, Balaji S, Suresh PS, Liu XS, Lu X, Li Z, Guo XE, Mann JJ, Balapure AK, Gershon MD, Medhamurthy R, Vidal M, Karsenty G, Ducy P (2010) Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat Med 16:308–312

    Article  CAS  Google Scholar 

  77. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–276

    Article  CAS  Google Scholar 

  78. Zagorodnyuk VP, Spencer NJ (2011) Localization of the sensory neurons and mechanoreceptors required for stretch-evoked colonic migrating motor complexes in mouse colon. Front Physiol 2:98

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Gershon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gershon, M.D. (2022). The Shaggy Dog Story of Enteric Signaling: Serotonin, a Molecular Megillah. In: Spencer, N.J., Costa, M., Brierley, S.M. (eds) The Enteric Nervous System II. Advances in Experimental Medicine and Biology, vol 1383. Springer, Cham. https://doi.org/10.1007/978-3-031-05843-1_28

Download citation

Publish with us

Policies and ethics