Skip to main content

Functionality of Resistant and Slowly Digesting Starch in Cereals

  • Chapter
  • First Online:
Functional Cereals and Cereal Foods

Abstract

Cereals especially whole meal cereal represents leading sources of dietary starches which are the main carbohydrate component in food, important in human nutrition and provides specific contributions to health. The rate of enzymatic digestion or breakdown of starch into glucose (digestibility) may vary from rapid to resisted which forms the basis for starch classification into the rapid digesting fraction, slow digesting fraction and the fraction resisting digestion represented by RDS, SDS and RS respectively. Crop breeding and modifications have promoted significant SDS and RS contents in cereals owing to their nutritional significance and important contributions to health; hence, have gained enormous research interest. SDS and RS contribute relevant functional properties (physicochemical and nutraceutical) by conferring desirable quality features to foods, especially promoting water binding capacity, rheological and textural properties. RS is an indigestible type of starch thus, does not contribute to postprandial glucose and lower insulin response thereby representing a new remedial measure for the control of diabetes. This chapter gives an insight to the potential of cereal grains and cereal-based products as important sources of resistant and slowly digesting starches which play important technological and beneficial physiological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AACC. (2001). The definition of dietary fiber. Association of American Cereal Chemists report. Cereal Food World, 46, 112–126.

    Google Scholar 

  • Adebowale, K. O., Afolabi, T. A., & Olu-Owolabi, B. I. (2005). Hydrothermal treatments of finger millet (Eleusine coracana) starch. Food Hydrocolloids, 19(6), 974–983.

    Article  CAS  Google Scholar 

  • Alhambra, C. M., Dhital, S., Sreenivasulu, N., & Butardo, V. M. (2019). Quantifying grain digestibility of starch fractions in milled rice. In N. Sreenivasulu (Ed.), Rice grain quality. Methods in molecular biology (Vol. 1892). Humana Press. https://doi.org/10.1007/978-1-4939-8914-0_13

    Chapter  Google Scholar 

  • Ali, T. M., & Hasnain, A. (2016). Effect of annealing on morphological and functional properties of Pakistani white sorghum (Sorghum bicolor) starch. Journal of Basic & Applied Sciences, 12, 358–364.

    Article  CAS  Google Scholar 

  • Aller, E. E., Abete, I., Astrup, A., Martinez, A., & Baak, M. A. (2011). Starches, sugars and obesity. Nutrients, 3(3), 341–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsaffar, A. A. (2011). Effect of food processing on the resistant starch content of cereals and cereal products-A review. International Journal of Food Science & Technology, 46(3), 455–462.

    Article  CAS  Google Scholar 

  • American Diabetes Association. (2018). Standards of medical care in diabetes – 2018. Diabetes Care, 41.

    Google Scholar 

  • Amini, A., Khalili, L., Keshtiban, A. K., & Homayouni, A. (2016). Resistant starch as a bioactive compound in colorectal cancer prevention. In R. R. Watson & V. R. Preedy (Eds.), Probiotics, prebiotics, and synbiotics: Bioactive foods in health promotion (pp. 773–780). Academic.

    Chapter  Google Scholar 

  • Anguita, M., Gasa, J., Martín-Orue, S. M., & Pérez, J. F. (2006). Study of the effect of technological processes on starch hydrolysis, non-starch polysaccharides solubilization and physicochemical properties of different ingredients using a two-step in vitro system. Animal Feed Science & Technology, 129(1–2), 99–115.

    Article  CAS  Google Scholar 

  • Ashwar, B. A., Gani, A., Shah, A., & Masoodi, F. A. (2016). Production of RS4 from rice by acetylation: Physico-chemical, thermal, and structural characterization. Starch/Stärke, 69, 1600052. https://doi.org/10.1002/star.201600052

    Article  CAS  Google Scholar 

  • Ashwar, B. A., Gani, A., Shah, A., & Masoodi, F. A. (2017). Physicochemical properties, in-vitro digestibility and structural elucidation of RS4 from rice starch. International Journal of Biological Macromolecules, 105, 471–477.

    Article  CAS  PubMed  Google Scholar 

  • Ashwar, B. A., Gani, A., Shah, A., & Masoodi, F. A. (2018). Production of RS4 from rice starch and its utilization as an encapsulating agent for targeted delivery of probiotics. Food Chemistry, 239, 287–294.

    Article  CAS  PubMed  Google Scholar 

  • Ashwar, B. A., Gani, A., Shah, A., Ahmad, M., Gani, A., Jhan, F., & Noor, N. (2021). Resistant starch and slowly digestible starch. In A. Gani & B. A. Ashwar (Eds.), Food biopolymers: Structural, functional and nutraceutical properties. https://doi.org/10.1007/978-3-030-2706-2

    Chapter  Google Scholar 

  • Awika, J. M. (2011). Major cereal grains production and use around the world. ACS Symposium Series, 1089, 1–13.

    Article  CAS  Google Scholar 

  • Barros, J. H., Telis, V. R., Taboga, S., & Franco, C. M. (2018). Resistant starch: Effect on rheology, quality, and staling rate of white wheat bread. Journal of Food Science & Technology, 55(11), 4578–4588.

    Article  CAS  Google Scholar 

  • Bednar, G. E., Patil, A. R., Murray, S. M., Grieshop, C. M., Merchen, N. R., & Fahey, G. C. (2001). Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model. The Journal of Nutrition, 131, 276–286.

    Article  CAS  PubMed  Google Scholar 

  • Biel, W., & Jacyno, E. (2013). Chemical composition and nutritive value of spring hulled barley varieties. Bulgarian Journal of Agricultural Science, 19(4), 721–727.

    Google Scholar 

  • Biel, W., Kazimierska, K., & Bashutska, U. (2020). Nutritional value of wheat, triticale, barley and oat grains. Acta Scientiarum Polnorum Zootechnica, 19(2), 19–28.

    Article  Google Scholar 

  • Birt, D. F., Boylston, T., Hendrich, S., Jane, J.-L., et al. (2013). Resistant starch: Promise for improving human health. Advances in Nutrition, 4(6), 587–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaak, E. E., Antoine, J. M., Benton, D., Björck, I., Bozzetto, L., Brouns, F., et al. (2012). Impact of postprandial glycaemia on health and prevention of disease. Obesity Review, 13(10), 923–984.

    Article  CAS  Google Scholar 

  • Blaut, M., & Klaus, S. (2012). Intestinal microbiota and obesity. Handbook of Experimental Pharmacology, 209, 251–273.

    Google Scholar 

  • Botticella, E., Sestili, F., & Lafiandra, D. (2012). Characterization of SBEIIa homoeologous genes in bread wheat. Molecular Genetics and Genomics, 287(6), 515–524.

    Article  CAS  PubMed  Google Scholar 

  • Botticella, E., Sestili, F., Ferrazzano, G., Mantovani, P., Cammerata, A., D’Egidio, M. G., et al. (2016). The impact of the SSIIa null mutations on grain traits and composition in durum wheat. Breeding Science, 66(4), 572–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand-Miller, J., McMillan-Price, J., Steinbec, K., & Caterson, I. (2009). Dietary glycemic index: Health implications. Journal of the American College of Nutrition, 28, 446–449.

    Article  Google Scholar 

  • Brites, C. M., Trigo, M. J., Carrapico, B., et al. (2011). Maize and resistant starch enriched breads reduce postprandial glycemic responses in rats. Nutrition Research, 31(4), 302–308.

    Article  CAS  PubMed  Google Scholar 

  • Carcea, M. (2020). Nutritional value of grain-based foods. Food, 9(4). https://doi.org/10.3390/foods9040504

  • Cervini, M., Frustace, A., Duserm Garrido, G., Rocchetti, G., & Giuberti, G. (2021a). Nutritional, physical and sensory characteristics of gluten-free biscuits incorporated with a novel resistant starch ingredient. Heliyon, 7(3), e06562.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cervini, M., Gruppi, A., Bassani, A., Spigno, G., & Giuberti, G. (2021b). Potential application of resistant starch sorghum in gluten-free pasta: Nutritional, structural and sensory evaluations. Food, 10(5), 908. https://doi.org/10.3390/foods10050908

    Article  CAS  Google Scholar 

  • Chang, Y. K., Martinez-Flores, H. E., Martinez-Bustos, F., & Sgarbieri, V. C. (2002). Effect of extruded products made with cassava starch blended with oat fiber and resistant starch on the hypocholesterolemic properties as evaluated in hamsters. Nutraceuticals & Food, 7, 133–138.

    CAS  Google Scholar 

  • Chung, H.-J., Shin, D.-H., & Lim, S.-T. (2008). In vitro starch digestibility and estimated glycemic index of chemically modified corn starches. Food Research International, 41, 579–585.

    Article  CAS  Google Scholar 

  • Chung, H. J., Liu, Q., & Hoover, R. (2009). Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polymers, 75(3), 436–447.

    Article  CAS  Google Scholar 

  • Coudray, C., Bellanger, J., Castigilia-Delavaud, C., Rémésy, C., Vermorel, M., & Rayssignuier, N. Y. (1997). Effect of soluble or partly soluble dietary fibres supplementation on absorption and balance of calcium, magnesium, iron and zinc in healthy young men. European Journal of Clinical Nutrition, 51, 375–380.

    Article  CAS  PubMed  Google Scholar 

  • Cox, R. A., & García-Palmieri, M. R. (1990). Chapter 31: Cholesterol, triglycerides, and associated lipoproteins. In H. K. Walker, W. D. Hall, & J. W. Hurst (Eds.), Clinical methods: The history, physical, and laboratory examinations (3rd ed.). Butterworths. Available from: https://www.ncbi.nlm.nih.gov/books/NBK351/

    Google Scholar 

  • Cummings, J. H., Beatty, E. R., Kingman, S. M., Bingham, S. A., & Englyst, H. N. (1996). Digestion and physiological properties of resistant starch in the human large bowel. British Journal of Nutrition, 75(5), 733–747.

    Article  CAS  PubMed  Google Scholar 

  • Darandakumbura, H. D., Wijesinghe, D. G., & Prasantha, B. D. (2013). Effect of processing conditions and cooking methods on resistant starch, dietary fiber and glycemic index of rice. Tropical Agricultural Research, 24(2), 163–174.

    Google Scholar 

  • Devitt, A. A., Williams, J. A., Choe, Y. S., Hustead, D. S., & Mustad, V. A. (2013). Glycemic responses to glycemia-targeted specialized-nutrition beverages with varying carbohydrates compared to a standard nutrition beverage in adults with type 2 diabetes. Advances in Bioscience and Biotechnology, 4(09), 1–10.

    Article  CAS  Google Scholar 

  • Ding, Y., Wang, M., Shen, Y., Shu, X., Xu, D., & Song, W. (2021). Physicochemical properties of resistant starch and its enhancement approaches in rice. Rice Science, 28(1), 31–42.

    Article  Google Scholar 

  • Doehlert, D. C., Simsek, S., Thavarajah, D., Thavarajah, P., & Ohm, J. B. (2013). Detailed composition analyses of diverse oat genotype kernels grown in different environments in North Dakota. Cereal Chemistry, 90(6), 572–578.

    Article  CAS  Google Scholar 

  • Dupuis, J. H., Liu, Q., & Yada, R. Y. (2014). Methodologies for increasing the resistant starch content of food starches: A review. Comprehensive Reviews in Food Science and Food Safety, 13(6), 1219–1234.

    Article  CAS  Google Scholar 

  • EFSA, European Food Safety Authority. (2011). Scientific opinion on the substantiation of health claims related to resistant starch and reduction of post-prandial glycaemic responses (ID 681), “digestive health benefits” (ID 682) and “favours a normal colon metabolism” (ID 783) pursuant to article 13(1) of regulation (EC) no 1924/2006. EFSA panel on dietetic products, nutrition and allergies (NDA). The EFSA Journal, 9, 2024–2041.

    Article  CAS  Google Scholar 

  • Ekmekcioglu, C., & Touitou, Y. (2011). Chronobiological aspects of food intake and metabolism and their relevance on energy balance and weight regulation. Obesity Reviews, 12(1), 14–25.

    Article  CAS  PubMed  Google Scholar 

  • Emilien, C. H., Hsu, W. H., & Hollis, J. H. (2017). Effect of resistant wheat starch on subjective appetite and food intake in healthy adults. Nutrition, 43–44, 69–74.

    Article  PubMed  CAS  Google Scholar 

  • Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46(suppl 2), 33–50.

    Google Scholar 

  • Food and Drug Administration. (2021). RE: Petition for a health claim for high-amylose maize starch (containing type-2 resistant starch) and reduced risk type 2 diabetes mellitus; Docket Number FDA2015-Q-2352. Letter dated December 12, 2016. Available at: http://wayback.archiveit.org/7993/20171115122025/https://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/LabelingNutrition/UCM546963.pdf. Accessed December 2021.

  • Foschia, M., Beraldo, P., & Peressini, D. (2017). Evaluation of the physicochemical properties of gluten-free pasta enriched with resistant starch. Journal of the Science of Food & Agriculture, 97(2), 572–577.

    Article  CAS  Google Scholar 

  • Fuentes-Zaragoza, E., Riquelme-Navarrete, M., Sánchez-Zapata, E., & Pérez-Alvarez, J. (2010). Resistant starch as functional ingredient: A review. Food Research International, 43(4), 931–942.

    Article  CAS  Google Scholar 

  • Fuentes-Zaragoza, E., Sanchez-Zapata, E., Sendra, E., Sayas, E., Navarro, C., & Fernandez-Lopez, J. (2011). Resistant starch as prebiotic: A review. Starch/Stärke, 63(7), 406–415.

    Article  CAS  Google Scholar 

  • Garg, N. K., Dahuja, A., Singh, A., & Chaudhary, D. P. (2020). Understanding the starch digestibility characteristics of Indian maize hybrids. Indian Journal of Experimental Biology, 58, 738–744.

    CAS  Google Scholar 

  • Giacco, R., Clemente, G., Brighenti, F., Mancini, M., D’Avanzo, A., Coppolu, S., et al. (1998). Metabolic effects of resistant starch in patients with type 2 diabetes. Diabetes Nutrition Metabolism, 11(6), 330–335.

    Google Scholar 

  • Granfeldt, Y., Drews, A., & Bjorck, I. (1995). Arepas made from high amylose corn flour produce favorably low glucose and insulin responses in healthy humans. Journal of Nutrition, 125(3), 459–465.

    CAS  PubMed  Google Scholar 

  • Gunaratne, A., & Hoover, R. (2002). Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydrate Polymers, 49(4), 425–437.

    Article  CAS  Google Scholar 

  • Halajzadeh, J., Milajerdi, A., Reiner, Ž., Amirani, E., Kolahdooz, F., Barekat, M., Mirzaei, H., Mirhashemi, S. M., & Asemi, Z. (2020). Effects of resistant starch on glycemic control, serum lipoproteins and systemic inflammation in patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled clinical trials. Critical Reviews in Food Science & Nutrition, 60(18), 3172–3184.

    Article  CAS  Google Scholar 

  • Haralampu, S. G. (2000). Resistant starch – A review of the physical properties and biological impact of RS3. Carbohydrate Polymers, 41(3), 285–292.

    Article  CAS  Google Scholar 

  • Harrold, J., Breslin, L., Walsh, J., Halford, J., & Pelkman, C. (2014). Satiety effects of a whole-grain fibre composite ingredient: Reduced food intake and appetite ratings. Food & Function, 5(10), 2574–2581.

    Article  CAS  Google Scholar 

  • Hasjim, J., Lee, S.-O., Hendrich, S., Setiawan, S., Ai, Y., & Jane, J.-l. (2010). Characterization of a novel resistant-starch and its effects on postprandial plasma-glucose and insulin responses. Cereal Chemistry, 87(4), 257–262.

    Article  CAS  Google Scholar 

  • Heba, I. M., Eman M. F., Abdul Basit, K., Rafiq L. Mahmoud R. S. (2022). Sorghum: Nutritional Factors, Bioactive Compounds, Pharmaceutical and Application in Food Systems: A Review. Phyton: International Journal of Experimental Botany, https://doi.org/10.32604/phyton.2022.020642

  • Higgins, J. A. (2014). Resistant starch and energy balance: Impact on weight loss and maintenance. Critical Reviews in Food Science and Technology, 54(9), 1158–1166.

    Article  CAS  Google Scholar 

  • Hormdok, R., & Noomhorm, A. (2007). Hydrothermal treatments of rice starch for improvement of rice noodle quality. LWT-Food Science and Technology, 40(10), 1723–1731.

    Article  CAS  Google Scholar 

  • Hruby, A., & Hu, F. B. (2015). The epidemiology of obesity: A big picture. PharmacoEconomics, 33(7), 673–689.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, P., Zhao, H., Duan, Z., Linlin, Z., & Wu, D. (2004). Starch digestibility and the estimated glycemic score of different types of rice differing in amylose contents. Journal of Cereal Science, 40(3), 231–237.

    Article  CAS  Google Scholar 

  • Huang, M., Li, X., Hu, L., Xiao, Z., Chen, J., & Cao, F. (2021). Comparing texture and digestion properties between white and brown rice of Indica cultivars preferred by Chinese consumers. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-98681-7

  • Hung, P. V., Vien, N. L., & Phi, N. T. L. (2016). Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments. Food Chemistry, 191, 67–73.

    Article  CAS  PubMed  Google Scholar 

  • International Diabetes Federation. (2017). IDF diabetes Atlas (8th ed.) International Diabetes Federation. [Cited 2019 Jun 23]. Available from: https://www.diabetesatlas.org

  • Itoh, K., Ozaki, H., Okada, K., Hori, H., Takeda, Y., & Mitsui, T. (2003). Introduction of Wx transgene into rice wx mutants leads to both high-and low-amylose rice. Plant Cell Physiology, 44(5), 473–480.

    Article  CAS  PubMed  Google Scholar 

  • Itoh, Y., Crofts, N., Abe, M., Hosaka, Y., & Fujita, N. (2017). Characterization of the endosperm starch and the pleiotropic effects of biosynthetic enzymes on their properties in novel mutant rice lines with high resistant starch and amylose content. Plant Science, 258, 52–60.

    Article  CAS  PubMed  Google Scholar 

  • Jukanti, A. K., Pautong, P. A., Liu, Q., & Sreenivasulu, N. (2020). Low glycemic index rice-a desired trait in starchy staples. Trends in Food Science & Technology, 106, 132–149.

    Article  CAS  Google Scholar 

  • Kaur, H., Gill, B. S., & Karwasra, B. L. (2018). In vitro digestibility, pasting, and structural properties of starches from different cereals. International Journal of Food Properties, 21(1), 70–85.

    Article  CAS  Google Scholar 

  • Kaur, B., Koh, M., Ponnalagu, S., & Henry, C. J. (2020). Postprandial blood glucose response: Does the glycaemic index (GI) value matter even in the low GI range? Nutrition and Diabetes, 10(15). https://doi.org/10.1038/s41387-020-0118-5

  • Khan, A., Siddiqui, S., Rahman, U. U., Ali, H., Saba, M., Azhar, F. A., et al. (2020). Physicochemical properties of enzymatically prepared resistant starch from maize flour and its use in cookies formulation. International Journal of Food Properties, 23(1), 549–569.

    Article  CAS  Google Scholar 

  • Lehmann, U., & Robin, F. (2007). Slowly digestible starch – Its structure and health implications: A review. Trends in Food Science & Technology, 18(7), 346–355.

    Article  CAS  Google Scholar 

  • Leu, R. K., Hu, Y., Brown, I. L., & Young, G. P. (2009). Effect of high amylose maize starches on colonic fermentation and apoptotic response to DNA-damage in the colon of rats. Nutrition & Metabolism, 6(11). https://doi.org/10.1186/1743-7075-6-11

  • Li, X. (2018). Resistant starch and its applications. In Z. Jin (Ed.), Functional starch and applications in food (pp. 63–90). Springer.

    Google Scholar 

  • Li, L., Jiang, H., Campbell, M., Blanco, M., & Jane, J. (2008). Characterization of maize amylose-extender (ae) mutant starches. Part I: Relationship between resistant starch contents and molecular structures. Carbohydrate Polymers, 74(3), 396–404.

    Article  CAS  Google Scholar 

  • Li, M., Piao, J.-H., Tian, Y., Li, W.-D., Li, K.-J., & Yang, X.-G. (2010). Postprandial glycaemic and insulinaemic responses to GM-resistant starch-enriched rice and the production of fermentation-related H2 in healthy Chinese adults. British Journal of Nutrition, 103(7), 1029–1034.

    Article  CAS  PubMed  Google Scholar 

  • Li, A., Gao, Q., & Ward, R. (2011). Physicochemical properties and in vitro digestibility of resistant starch from mung bean (Phaseolus radiatus) starch. Starch/Stärke, 63(3), 171–178.

    Article  CAS  Google Scholar 

  • Li, R., Dai, L., Peng, H., Jiang, P., Liu, N., Zhang, D., Wang, C., & Li, Z. (2021). Effects of microwave treatment on sorghum grains: Effects on the physicochemical properties and in vitro digestibility of starch. Journal of Food Process Engineering, 44(10). https://doi.org/10.1111/jfpe.13804

  • Livesey, G., Taylor, R., Livesey, H. F., Buyken, A. E., Jenkins, D. J. A., Augustin, L. S. A., et al. (2019). Dietary glycemic index and load and the risk of type 2 diabetes: A systematic review and updated meta-analyses of prospective cohort studies. Nutrients, 11(6), 1280. https://doi.org/10.3390/nu11061280

    Article  CAS  PubMed Central  Google Scholar 

  • Ludwig, D. S. (2002). The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA, 287(18), 2414–2423.

    Article  CAS  PubMed  Google Scholar 

  • Lunn, J., & Buttriss, J. L. (2007). Carbohydrates and dietary fbre. Nutrition Bulletin, 32(1), 21–64.

    Article  Google Scholar 

  • Ma, T., & Lee, C.-D. (2021). Effect of high dose resistant starch on human glycemic response. Journal of Nutritional Medicine and Diet Care, 7(1). https://doi.org/10.23937/2572-3278/1510048

  • Magallanes-Cruz, P. A., Flores-Silva, P. C., & Bello-Perez, L. A. (2017). Starch structure influences its digestibility: A Review. Journal of Food Science, 82(9), 2016–2023.

    Google Scholar 

  • Masina, N., Choonara, Y. E., Kumar, P., du Toit, L. C., Govender, M., Indermun, S., & Pillay, V. (2017). A review of the chemical modification techniques of starch. Carbohydrate Polymers, 157, 1226–1236.

    Article  CAS  PubMed  Google Scholar 

  • McKevith, B. (2004). Nutritional aspects of cereals. Nutrition Bulletin, 29, 111–124.

    Article  Google Scholar 

  • Miao, M., Jiang, B., & Zhang, T. (2009). Effect of pullulanase debranching and recrystallization on structure and digestibility of waxy maize starch. Carbohydrate Polymers, 76, 214–221.

    Article  CAS  Google Scholar 

  • Milašinović- Šeremešić, M. S., Radosavljević, M. M., & Dokić, L. P. (2012). Starch properties of various ZP maize genotypes. Acta Periodica Technologica, 43, 61–68.

    Article  CAS  Google Scholar 

  • Mishra, S., & Monro, J. (2012). Wholeness and primary and secondary food structure effects on in vitro digestion patterns determine nutritionally distinct carbohydrate fractions in cereal foods. Food Chemistry, 135(3), 1968–1974.

    Article  CAS  PubMed  Google Scholar 

  • Nugent, A. P. (2005). Health properties of resistant starch. Nutrition Bulletin, 30, 27–54.

    Article  Google Scholar 

  • Nurmilah, S., & Subrooto, E. (2021). Chemical modification of starch for the production of resistant starch type-4 (RS4): A review. International Journal of Engineering Trends & Technology, 69(7), 45–50.

    Article  Google Scholar 

  • Nutrition Science Corner. (2015). Mondelez International R&D. In Slowly digestible starch. https://www.mondelezinternationalnutritionscience.com/

  • Park, O. J., Kang, N. E., Chang, M. J., & Kim, W. K. (2004). Resistant starch supplementation influences blood lipid concentrations and glucose control in overweight subjects. Journal of Nutritional Science and Vitaminology, 50(2), 93–99.

    Article  CAS  PubMed  Google Scholar 

  • Pereira, M. A., Swain, J., Goldfine, A. B., Rifai, N., & Ludwig, D. S. (2004). Effects of a low-glycemic load diet on resting energy expenditure and heart disease risk factors during weight loss. JAMA, 292(20), 2482–2490.

    Article  CAS  PubMed  Google Scholar 

  • Polesi, L. F., da Matta Junior, M. D., Sarmento, S. B., & Canniatti-Brazaca, S. G. (2017). Starch digestibility and physicochemical and cooking properties of irradiated rice grains. Rice Science, 24(1), 48–55.

    Article  Google Scholar 

  • Punia, S. (2020a). Barley starch: Structure, properties and in vitro digestibility-A review. International Journal of Biological Macromolecules, 155, 868–875.

    Article  CAS  PubMed  Google Scholar 

  • Punia, S. (2020b). Barley starch modifications: Physical, chemical and enzymatic-A review. International Journal of Biological Macromolecules, 144, 578–585.

    Article  CAS  PubMed  Google Scholar 

  • Punia Bangar, S., Ashogbon, A. O., Dhull, S. B., Thirumdas, R., Kumar, M., Hasan, M., … Pathem, S. (2021a). Proso-millet starch: Properties, functionality, and applications. International Journal of Biological Macromolecules, 190, 960–968.

    Article  CAS  Google Scholar 

  • Punia Bangar, S., Singh Sandhu, K., Trif, M., Rusu, A., IOANA, P., & Kumar, M. (2021b). Increasing yield and enrichment of different health components of barley flour using twin-screw extrusion technology to support nutritionally balanced diets. Frontiers in Nutrition, 1259.

    Google Scholar 

  • Punia Bangar, S., Kumar, M., & Whiteside, W. S. (2021c). Mango seed starch: A sustainable and eco-friendly alternative to increasing industrial requirements. International Journal of Biological Macromolecules.

    Google Scholar 

  • Punia, S., Sandhu, K. S., & Sharma, S. (2017). Comparative studies of color, pasting and antioxidant properties of wheat cultivars as affected by toasting and roasting. Nutrafoods, 16, 95–1021.

    CAS  Google Scholar 

  • Punia, S., Siroha, A. K., Sandhu, K. S., & Kaur, M. (2019). Rheological behavior of wheat starch and barley resistant starch (type IV) blends and their starch noodles making potential. International Journal of Biological Macromolecules, 130, 595–604.

    Article  CAS  PubMed  Google Scholar 

  • Punia, S., Sandhu, K. S., Dhull, S. B., Siroha, A. K., Purewal, S. S., Kaur, M., & Kidwai, M. K. (2020). Oat starch: Physico-chemical, morphological, rheological characteristics and its applications-A review. International Journal of Biological Macromolecules, 154, 493–498.

    Article  CAS  PubMed  Google Scholar 

  • Raigond, P., Dutt, S., & Singh, B. (2019). Resistant starch in food. In J.-M. Merillon & K. G. Ramawat (Eds.), Bioactive molecules in food (Reference series in phytochemistry) (pp. 815–846).

    Chapter  Google Scholar 

  • Remya, R., & Jyothi, A. N. (2015). A comparative study on the resistant starch content from different botanical sources in relation to their physicochemical properties. Journal of Root Crops, 41(1), 37–47.

    Google Scholar 

  • Ren, N., Ma, Z., Xu, J., & Hu, X. (2020). Insights into the supramolecular structure and techno-functional properties of starch isolated from oat rice kernels subjected to different processing treatments. Food Chemistry, 317, 126464. https://doi.org/10.1016/j.foodchem.2020.126464

    Article  CAS  PubMed  Google Scholar 

  • Robertson, M. D. (2012). Dietary-resistant starch and glucose metabolism. Current Opinion in Clinical Nutrition & Metabolic Care, 15(4), 362–367.

    Article  CAS  Google Scholar 

  • Rochfort, S., & Panozzo, J. (2007). Phytochemicals for health, the role of pulses. Journal of Agricultural & Food Chemistry, 55, 7981–7994.

    Article  CAS  Google Scholar 

  • Sajilata, M. G., Singhal, R. S., & Kulkarni, P. R. (2006). Resistant starch – A review. Comprehensive Reviews in Food Science & Food Safety, 5, 1–17.

    Article  CAS  Google Scholar 

  • Sánchez-Rivera, M. M., Núñez-Santiago, M. D. C., Bello-Perez, L. A., Agama-Acevedo, E., & Alvarez-Ramirez, J. (2017a). Citric acid esterification of unripe plantain flour: Physicochemical properties and starch digestibility. Starch/Stärke, 69, 1700019.

    Article  CAS  Google Scholar 

  • Sánchez-Rivera, M. M., Núñez-Santiago, M. D. C., Bello-Perez, L. A., Agama- Acevedo, E., & Alvarez-Ramirez, J. (2017b). Citric acid esterification of unripe plantain flour: Physicochemical properties and starch digestibility. Starch/Stärke, 69. https://doi.org/10.1002/star.201700019

  • Sandhu, K. S., & Punia, S. (2017). Enhancement of bioactive compounds in barley cultivars by solid substrate fermentation. Journal of Food Measurement and Characterization, 11(3), 1355–1361.

    Article  Google Scholar 

  • Sandhu, K. S., Punia, S., & Kaur, M. (2016). Effect of duration of solid state fermentation by aspergillus awamorinakazawa on antioxidant properties of wheat cultivars. LWT-Food Science and Technology, 71, 323–328.

    Article  CAS  Google Scholar 

  • Sandhu, K. S., Punia, S., & Kaur, M. (2017). Fermentation in cereals: A tool to enhance bioactive compounds. In S. K. Gahlawat & J. S. Duhan (Eds.), Plant biotechnology: Recent advancements and developments (pp. 157–170). Springer.

    Chapter  Google Scholar 

  • Shen, R.-L., Zhang, W.-J., & Dong, J.-L. (2016). Preparation, structural characteristics and digestibility of resistant starches from highland barley, oats and buckwheat starches. Journal of Food and Nutrition Research, 55(4), 303–312.

    CAS  Google Scholar 

  • Shewry, P. R. (2009). Wheat. Journal of Experimental Botany, 60(6), 1537–1553.

    Article  CAS  PubMed  Google Scholar 

  • Shin, S. I., Choi, H. J., Chung, K. M., Hamaker, B. R., Park, K. H., & Moon, T. W. (2004). Slowly digestible starch from debranched waxy sorghum starch: Preparation and properties. Cereal Chemistry, 81, 404–408.

    Article  CAS  Google Scholar 

  • Shin, S. I., Lee, C. J., Kim, D. I., Lee, H. A., Cheong, J. J., et al. (2007). Formation, characterization, and glucose response in mice to rice starch with low digestibility produced by citric acid treatment. Journal of Cereal Science, 45(1), 24–33.

    Article  CAS  Google Scholar 

  • Shu, X., Jia, L., Ye, H., Li, C., & Wu, D. (2009). Slow digestion properties of rice different in resistant starch. Journal of Agricultural and Food Chemistry, 57(16), 7552–7559.

    Article  CAS  PubMed  Google Scholar 

  • Silva, W. M., Biduski, B., Lima, K. O., Pinto, V. Z., Hoffmann, J. F., Vanier, N. L., & Dias, A. R. (2017). Starch digestibility and molecular weight distribution of proteins in rice grains subjected to heat-moisture treatment. Food Chemistry, 219, 260–267.

    Article  CAS  PubMed  Google Scholar 

  • Singh, J., Dartois, A., & Kaur, L. (2010). Starch digestibility in food matrix: A review. Trends in Food Science & Technology, 21(4), 168–180.

    Article  CAS  Google Scholar 

  • Singh, J., Kaur, L., & Singh, H. (2013). Food microstructure and starch digestion. In J. Henry (Ed.), Advances in food and nutrition research (Vol. 70, pp. 137–179). Academic.

    Google Scholar 

  • Sivert, D., & Pomeranz, Y. (1989). Enzyme-resistant starch. I. Characterization and evaluation by enzymatic, thermo analytical, and microscopic methods. Cereal Chemistry, 66, 342–347.

    Google Scholar 

  • Sone, H., Nakagami, T., Nishimura, R., & Tajima, N. (2016). Comparison of lipid parameters to predict cardiovascular events in Japanese mild-to-moderate hypercholestemic patients with and without type 2 diabetes: Subanalysis of the MEGA study. Diabetes Research and Clinical Practice, 113, 14–22.

    Article  CAS  PubMed  Google Scholar 

  • Sparla, F., Falini, G., Botticella, E., Pirone, C., Talamè, V., Bovina, R., et al. (2014). New starch phenotypes produced by TILLING in barley. PLoS One, 9(10). https://doi.org/10.1371/journal.pone.0107779

  • Štêrbová, L., Bradová, J., Sedláček, T., Holasová, M., Fiedlerová, V., Dvořáček, V., & Smrčková, P. (2016). Influence of technological processing of wheat grain on starch digestibility and resistant starch content. Starch/Stãrke, 68(7–8), 593–602.

    Article  CAS  Google Scholar 

  • Tabibloghmany, F. S., & Ehsandoost, E. (2014). Investigation of nutritional and functional properties of resistant starch in food industry: A review. International Journal of Recent Research and Review, 3(1), 27–44.

    Google Scholar 

  • Teixeira, D. C., Rocha, M. C., Amorim, A. C. P., Soares, T. O., Monteiro, M. A. M., et al. (2015). Resistant starch content among several sorghum (Sorghum bicolor) genotypes and the effect of heat treatment on resistant starch retention in two genotypes. Food Chemistry, 197(Pt A), 291–296.

    Google Scholar 

  • The Nutrition Source. Whole Grains: Harvard T.H. Chan School of Public Health. Available at https://www.hsph.harvard.edu/nutritionsource/what-should-you-eat/whole-grains.

  • Tian, S., & Sun, Y. (2020). Influencing factor of resistant starch formation and application in cereal products: A review. International Journal of Biological Macromolecules, 149, 424–431.

    Article  CAS  PubMed  Google Scholar 

  • Tuaño, A. P., Barcellano, E. C., & Rodriguez, M. S. (2021). Resistant starch levels and in vitro starch digestibility of selected cooked Philippine brown and milled Rices varying in apparent amylose content and glycemic index. Food Chemistry: Molecular Sciences, 2. https://doi.org/10.1016/j.fochms.2021.100010

  • Vinoy, S., Anbert, R., & Chapelot, D. (2020). A cereal product high in slowly digestible starch increases subsequent feelings of satiety and decreases glucose and insulin responses. Journal of Human Nutrition & Food Science, 8(1), 1132.

    Google Scholar 

  • Wahjuningsih, S. B., Haslina, H., & Marsono, M. (2018). Hypolipidaemic effects of high resistant starch sago and red bean flour-based analog rice on diabetic rats. Materia Socio Medica, 30(4), 232–239.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker, A. W., Ince, J., Duncan, S. H., Webster, L. M., Holtrop, G., Ze, X., Brown, D., Stares, M. D., et al. (2011). Dominant and diet-responsive groups of bacteria within the human colonic microbiota. The ISME Journal, 5, 220–230.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., & Copeland, L. (2013). Molecular disassembly of starch granule during gelatinization and its effect on starch digestibility: A review. Food & Function, 4, 1564–1580.

    Article  CAS  Google Scholar 

  • Wang, H., Liu, Y., Chen, L., Li, X., Wang, J., & Xie, F. (2018). Insights into the multi-scale structure and digestibility of heat-moisture treated rice starch. Food Chemistry, 242, 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Warren, J. M., Henry, C. J. K., & Simonite, V. (2003). Low glycemic index breakfasts and reduced food intake in preadolescent children. Pediatrics, 112(5), 414–419.

    Article  Google Scholar 

  • Weitkunat, K., Schumann, S., Petzke, K. J., Blaut, M., Loh, G., & Klaus, S. (2015). Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice. Journal of Nutritional Biochemistry, 26(9), 929–937.

    Article  CAS  PubMed  Google Scholar 

  • WholeEUGrain. (2021). Whole grain: Definition, evidence base review, sustainability aspects and considerations for a dietary guideline (pp. 1–97). Ed. Lourenço S.M. WholeEUGrain: Copenhagen.

    Google Scholar 

  • Wolever, T. M. S. (2003). Carbohydrate and the regulation of blood glucose and metabolism. Nutrition Reviews, 61(5 Pt 2), 40S–48S.

    Article  Google Scholar 

  • Wong, T. H., & Louie, J. C. (2016). The relationship between resistant starch and glycemic control: A review on current evidence and possible mechanisms. Starch/Stärke, 68, 1–9.

    CAS  Google Scholar 

  • Wongsagonsup, R., Varavinit, S., & BeMiller, J. N. (2008). Increasing slowly digestible starch content of normal and waxy maize starch and properties of starch products. Cereal Chemistry, 85(6), 738–745.

    Article  CAS  Google Scholar 

  • Xu, J., Kuang, Q., Wang, K., Zhou, S., Wang, S., Liu, X., & Wang, S. (2017). Insights into molecular structure and digestion rate of oat starch. Food Chemistry, 220, 25–30.

    Article  CAS  PubMed  Google Scholar 

  • Yao, T., Sui, Z., & Janaswamy, S. (2018). Annealing. In Physical modifications of starch (pp. 37–49). https://doi.org/10.1007/978-981-13-0725-6_3.

  • Ye, J. P., Liu, C. M., Luo, S. J., Hu, X. T., & McClements, D. J. (2018). Modification of the digestibility of extruded rice by enzyme (β-amylolysis): An in vitro study. Food Research International, 111, 590–596.

    Article  CAS  PubMed  Google Scholar 

  • Ye, J. P., Luo, S. J., Huang, A., Chen, J., Liu, C. M., & McClements, D. J. (2019). Synthesis and characterization of citric acid esterified rice starch by reactive extrusion: A new method of producing resistant starch. Food Hydrocolloids, 92, 135–142.

    Article  CAS  Google Scholar 

  • Yoon, M. R., Lee, J. S., Lee, J. H., Kwak, J., Areum, C., & Kim, B. K. (2013). Content and characteristics of resistant starch in high amylose mutant rice varieties derived from Ilpum. Korean Journal of Breeding Science, 45(4), 324–331.

    Article  Google Scholar 

  • Younes, H., Levrat, M. A., Demige, C., & Remesy, C. (1995). Resistant starch is more effective than cholestyramine as a lipid-lowering agent in the rat. Lipids, 30, 84–853.

    Article  Google Scholar 

  • Zavareze, E. R., & Dias, A. R. (2011). Impact of heat-moisture treatment and annealing in starches: A review. Carbohydrate Polymers, 83(2), 317–328.

    Article  CAS  Google Scholar 

  • Zhang, N., Sun, J., Xiong, H. J., Xu, K. S., Shu, X. L., & Wu, D. X. (2011). Breeding and characteristics of high resistant starch Indica rice for diabetes. China Rice, 17(6), 63–65.

    Google Scholar 

  • Zhang, K., Dong, R., Hu, X., Ren, C., & Li, W. (2021). Oat-based foods: Chemical constituents, glycemic index and the effect of processing. Food, 10(6). https://doi.org/10.3390/foods10061304

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aderonke Ibidunni Olagunju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olagunju, A.I., Omoba, O.S. (2022). Functionality of Resistant and Slowly Digesting Starch in Cereals. In: Punia Bangar, S., Kumar Siroha, A. (eds) Functional Cereals and Cereal Foods. Springer, Cham. https://doi.org/10.1007/978-3-031-05611-6_5

Download citation

Publish with us

Policies and ethics