Skip to main content

Molecular Computing Approaches

  • Chapter
  • First Online:
Dimensionality Reduction in Data Science

Abstract

Molecular approaches exploit structural properties built deep into DNA by millions of years of evolution on Earth to code and/or extract some significant features from raw datasets for the purpose of extreme dimensionality reduction and solution efficiency. After describing the deep structure, it is leveraged to render several variations of this theme. They can be used obviously with genomic data, but perhaps surprisingly, with ordinary abiotic data just as well. Two major families of techniques of this kind are reviewed, namely genomic and pmeric coordinate systems for dimensionality reduction and data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson J. D., & Crick, F. H. C. (1953). Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature, 171(4356), 737–738.

    Article  Google Scholar 

  2. Mainali, S., Garzon, M., & Colorado, F. A. (2020). New genomic information systems (GenISs): Species delimitation and identification. In International Work-Conference on Bioinformatics and Biomedical Engineering (pp. 163–174). Springer.

    Google Scholar 

  3. Mainali, S., Colorado F. A., & Garzon M. H. (2021). Foretelling the phenotype of a genomic sequence. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(2), 777–783.

    Article  Google Scholar 

  4. Mainali, S., Garzon, M., & Colorado F. A. (2020). Profiling environmental conditions from DNA. In International Work-Conference on Bioinformatics and Biomedical Engineering (pp. 647–658). Springer.

    Google Scholar 

  5. Adleman Leonard, M. (1994). Molecular computation of solutions to combinatorial problems. Science, 266(5187), 1021–1024.

    Article  Google Scholar 

  6. Garzon, M. H., & Bobba, K. C. (2012). A geometric approach to Gibbs energy landscapes and optimal DNA codeword design. In International Workshop on DNA-Based Computers (pp. 73–85). Springer.

    Google Scholar 

  7. Seeman N. C. (2003). DNA in a material world. Nature, 421(6921), 427–431.

    Article  Google Scholar 

  8. Linnaeus, C. (1758). System naturae (Vol. 1). Stockholm Laurentii Salvii.

    Google Scholar 

  9. Kumar, S., Stecher, G., Suleski, M., & Hedges S. B. (2017). TimeTree: a resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution, 34(7), 1812–1819.

    Article  Google Scholar 

  10. Wake, M. H. (2008). Integrative biology: Science for the 21st century. BioScience, 58(4), 349–353.

    Article  Google Scholar 

  11. Mizrachi, I. (2007). GenBank: the nucleotide sequence database. The NCBI handbook [Internet], updated, 22.

    Google Scholar 

  12. Garzon, M. H., Bobba, K., Neel, A., & Phan, V. (2010). DNA-based indexing. International Journal of Nanotechnology and Molecular Computation (IJNMC), 2(3), 25–45.

    Article  Google Scholar 

  13. Neel, A. J., & Garzon, M. H. (2008). DNA-based memories: a survey. In New developments in formal languages and applications (pp. 259–275). Springer.

    Google Scholar 

  14. Neel, A., & Garzon, M. H. (2012). Semantic methods for textual entailment. In Applied natural language processing: Identification, investigation and resolution (pp. 479–494). IGI Global.

    Google Scholar 

  15. Goldman, N., Bertone, P., Chen, S., Dessimoz, C., LeProust, E. M., Sipos, B., & Birney, E. (2013). Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature, 494(7435), 77–80.

    Article  Google Scholar 

  16. Winfree, E., Liu, F., Wenzler L. A., & Seeman N. C. (1998). Design and self-assembly of two-dimensional DNA crystals. Nature, 394(6693), 539–544.

    Article  Google Scholar 

  17. Garzon, M., Neathery, P., Deaton, R., Murphy, R. C., Franceschetti, D. R., & Stevens Jr., S. E. (1997). A new metric for DNA computing. In Proceedings of the 2nd Genetic Programming Conference (pp. 472–478). Morgan Kaufman.

    Google Scholar 

  18. Frutos, A. G., Condon, A., & Corn, R. (1997). Demonstration of a word design strategy for DNA computing on surface. Nucleic Acids Research, 25, 4748–4757.

    Article  Google Scholar 

  19. Deaton, R., Garzon, M., Murphy, R. C., Rose, J. A., Franceschetti, D., & Stevens Jr., S. E. (1998). The reliability and efficiency of a DNA computation. Physical Review Letters, 80, 417.

    Article  Google Scholar 

  20. Garzon, M. H., & Mainali, S. (2017). Towards reliable microarray analysis and design. In 9th International Conference on Bioinformatics and Computational Biology (ISCA) (6 pp.).

    Google Scholar 

  21. Wetmur, J. G. (1997). Physical chemistry of nucleic acid hybridization. In DIMACS series in discrete mathematics (vol. 48, pp. 1–23).

    Google Scholar 

  22. Arita, M., & Kobayashi, S. (2002). DNA sequence design using templates. New Generation Computing, 20(3), 263.

    Article  Google Scholar 

  23. Roman, J. (1995). The theory of error-correcting codes (1st ed.). Springer-Verlag.

    Google Scholar 

  24. Mohammadi-Kambs, M., Hölz, K., & Somoza, M. M. (2017). Hamming distance as a concept in DNA molecular recognition. ACS Omega, 2, 1302–1308.

    Article  Google Scholar 

  25. Phan, V., & Garzon Max, H. (2009). On codeword design in metric DNA spaces. Natural Computing, 8(3), 571.

    Article  MathSciNet  Google Scholar 

  26. Garzon, M. H., & Mainali, S. (2021). Deep structure of DNA for genomic analysis. Human Molecular Genetics, 31(4), 576–586. https://doi.org/10.1093/hmg/ddab272

    Article  Google Scholar 

  27. Schena, M. (2003). Microarray analysis. Wiley-Liss.

    Google Scholar 

  28. Garzon, M. H., & Mainali, S. (2017). Towards a universal genomic positioning system: phylogenetics and species identification. In International Conference on Bioinformatics and Biomedical Engineering (pp. 469–479). Springer.

    Google Scholar 

  29. Behjati, S., & Tarpey P. S. (2013). What is next generation sequencing? Archives of Disease in Childhood-Education and Practice, 98(6), 236–238.

    Article  Google Scholar 

  30. Marcus, G. (2018). Innateness, AlphaZero, and Artificial Intelligence. Preprint. arXiv:1801.05667.

    Google Scholar 

  31. Garzon, M. H. (2014). DNA codeword design: Theory and applications. Parallel Processing Letters, 24(02), 1–21.

    Article  MathSciNet  Google Scholar 

  32. Colorado-Garzón, F. A., Adler, P. H., García, L. F., Muñoz de Hoyos, P., Bueno, M. L., & Matta, N. E. (2017). Estimating diversity of black flies in the Simulium ignescens and Simulium tunja complexes in Colombia: chromosomal rearrangements as the core of integrative taxonomy. Journal of Heredity, 108(1), 12–24.

    Article  Google Scholar 

  33. Cook-Deegan, R., DeRienzo, C., Carbone, J., Chandrasekharan, S., Heaney, C., & Conover, C. (2010). Impact of gene patents and licensing practices on access to genetic testing for inherited susceptibility to cancer: comparing breast and ovarian cancers with colon cancers. Genetics in Medicine, 12(1), S15–S38.

    Article  Google Scholar 

  34. Jin, Z., & Liu, Y. (2018). DNA methylation in human diseases. Genes & Diseases, 5(1), 1–8.

    Article  Google Scholar 

  35. Mainali, S., Garzon, M., Venugopal, D., Jana, K., Yang, C. C., Kumar, N., Bowman, D., & Deng, L. Y. (2021). An information-theoretic approach to dimensionality reduction in data science. International Journal of Data Science and Analytics, 12, 1–19.

    Article  Google Scholar 

  36. Sun, H., & Yu, G. (2019). New insights into the pathogenicity of non-synonymous variants through multi-level analysis. Scientific Reports, 9(1), 1–11.

    Article  Google Scholar 

  37. Wang, X., Liu, J., & Chen, X. (2015). Microsoft malware classification challenge (big 2015) first place team: say no to overfitting. In No. Big.

    Google Scholar 

  38. Yang, P., Zhou, H., Zhu, Y., Liu, L., & Zhang, L. (2020). Malware classification based on shallow neural network. Future Internet, 12(12), 219.

    Article  Google Scholar 

  39. Yan, J., Qi, Y., & Rao, Q. (2018). Detecting malware with an ensemble method based on deep neural network. Security and Communication Networks, 2018, Article ID 7247095. https://doi.org/doi.org/10.1155/2018/7247095

  40. Yang, C. H., Wu, K. C., Chuang, L. Y., & Chang, H. W. (2021). DeepBarCoding: Deep learning for species classification using DNA barcoding. IEEE/ACM Transactions on Computational Biology and Bioinformatics.

    Google Scholar 

  41. Zhang, H., Xiao, X., Mercaldo, F., Ni, S., Martinelli, F., & Sangaiah A. K. (2019). Classification of ransomware families with machine learning based on n-gram of opcodes. Future Generation Computer Systems, 90, 211–221.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Garzon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garzon, M., Mainali, S. (2022). Molecular Computing Approaches. In: Garzon, M., Yang, CC., Venugopal, D., Kumar, N., Jana, K., Deng, LY. (eds) Dimensionality Reduction in Data Science. Springer, Cham. https://doi.org/10.1007/978-3-031-05371-9_7

Download citation

Publish with us

Policies and ethics