Skip to main content

Strain-Gradient Modeling and Computation of 3-D Printed Metamaterials for Verifying Constitutive Parameters Determined by Asymptotic Homogenization

  • Chapter
  • First Online:
Theoretical Analyses, Computations, and Experiments of Multiscale Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 175))

Abstract

Metamaterials exhibit significantly different mechanical deformation than in classical “first-order” theory. One possible modeling approach is to use a “straingradient” theory by incorporating also higher gradients of displacements into the formulation. This procedure clearly brings in additional constitutive parameters. In this study, a numerical framework is presented by applying strain-gradient theory to 3-D printed structures with an infill ratio used frequently in additive manufacturing for weight reduction. This choice causes metamaterials; the additional constitutive parameters in the strain-gradient model are determined by an asymptotic homogenization. In order to demonstrate the reliability of this methodology, we verify the accuracy by computations using the finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abali BE (2017) Computational Reality, Solving Nonlinear and Coupled Problems in Continuum Mechanics. Advanced Structured Materials, Springer

    Google Scholar 

  • Abali BE (2021) Supply code for computations. http://bilenemek.abali.org/

  • Abali BE, Barchiesi E (2021) Additive manufacturing introduced substructure and computational determination of metamaterials parameters by means of the asymptotic homogenization. Continuum Mechanics and Thermodynamics 33:993–1009

    Google Scholar 

  • Abali BE, Müller WH, Eremeyev VA (2015) Strain gradient elasticity with geometric nonlinearities and its computational evaluation. Mechanics of Advanced Materials and Modern Processes 1(1):1–11

    Google Scholar 

  • Abali BE, Klunker A, Barchiesi E, Placidi L (2021) A novel phase-field approach to brittle damage mechanics of gradient metamaterials combining action formalism and history variable. ZAMM Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 101(9):e202000,289

    Google Scholar 

  • Alibert JJ, Seppecher P, Dell’Isola F (2003) Truss modular beams with deformation energy depending on higher displacement gradients. Mathematics and Mechanics of Solids 8(1):51–73

    Google Scholar 

  • Barchiesi E, Spagnuolo M, Placidi L (2019) Mechanical metamaterials: a state of the art. Mathematics and Mechanics of Solids 24(1):212–234

    Google Scholar 

  • Barchiesi E, Yang H, Tran C, Placidi L, Müller WH (2021) Computation of brittle fracture propagation in strain gradient materials by the fenics library. Mathematics and Mechanics of Solids 26(3):325–340

    Google Scholar 

  • Berezovski A, Yildizdag ME, Scerrato D (2020) On the wave dispersion in microstructured solids. Continuum Mechanics and Thermodynamics 32(3):569–588

    Google Scholar 

  • Casalotti A, D’Annibale F, Rosi G (2020) Multi-scale design of an architected composite structure with optimized graded properties. Composite Structures 252:112,608

    Google Scholar 

  • Ciallella A, Pasquali D, Gołaszewski M, D’Annibale F, Giorgio I (2021) A rate-independent internal friction to describe the hysteretic behavior of pantographic structures under cyclic loads. Mechanics Research Communications 116:103,761

    Google Scholar 

  • dell’Isola F, Andreaus U, Placidi L (2015) At the origins and in the vanguard of peridynamics, nonlocal and higher-gradient continuum mechanics: an underestimated and still topical contribution of gabrio piola. Mathematics and Mechanics of Solids 20(8):887–928

    Google Scholar 

  • dell’Isola F, Giorgio I, Pawlikowski M, Rizzi NL (2016) Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472(2185):20150,790

    Google Scholar 

  • dell’Isola F, Seppecher P, Alibert JJ, Lekszycki T, Grygoruk R, Pawlikowski M, Steigmann D, Giorgio I, Andreaus U, Turco E, et al (2019a) Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Continuum Mechanics and Thermodynamics 31(4):851–884

    Google Scholar 

  • dell’Isola F, Seppecher P, Spagnuolo M, Barchiesi E, Hild F, Lekszycki T, Giorgio I, Placidi L, Andreaus U, Cuomo M, Eugster SR, Pfaff A, Hoschke K, Langkemper R, Turco E, Sarikaya R, Misra A, De Angelo M, D’Annibale F, Bouterf A, Pinelli X, Misra A, Desmorat B, Pawlikowski M, Dupuy C, Scerrato D, Peyre P, Laudato M, Manzari L, Göransson P, Hesch C, Hesch S, Franciosi P, Dirrenberger J, Maurin F, Vangelatos Z, Grigoropoulos C, Melissinaki V, Farsari M, Muller W, Abali BE, Liebold C, Ganzosch G, Harrison P, Drobnicki R, Igumnov L, Alzahrani F, Hayat T (2019b) Advances in pantographic structures: design, manufacturing, models, experiments and image analyses. Continuum Mechanics and Thermodynamics 31(4):1231–1282

    Google Scholar 

  • dell’Isola F, Turco E, Misra A, Vangelatos Z, Grigoropoulos C, Melissinaki V, Farsari M (2019c) Force–displacement relationship in micro-metric pantographs: Experiments and numerical simulations. Comptes Rendus Mécanique 347(5):397–405

    Google Scholar 

  • Desmorat B, Spagnuolo M, Turco E (2020) Stiffness optimization in nonlinear pantographic structures. Mathematics and Mechanics of Solids 25(12):2252–2262

    Google Scholar 

  • Eremeyev VA (2021) Strong ellipticity conditions and infinitesimal stability within nonlinear strain gradient elasticity. Mechanics Research Communications 117:103,782

    Google Scholar 

  • Eremeyev VA, Turco E (2020) Enriched buckling for beam-lattice metamaterials. Mechanics Research Communications 103:103,458

    Google Scholar 

  • George D, Allena R, Remond Y (2018) A multiphysics stimulus for continuum mechanics bone remodeling. Mathematics and Mechanics of Complex Systems 6(4):307–319

    Google Scholar 

  • Giorgio I, Andreaus U, Scerrato D, dell’Isola F (2016) A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomechanics and modeling in mechanobiology 15(5):1325–1343

    Google Scholar 

  • Giorgio I, Andreaus U, dell’Isola F, Lekszycki T (2017) Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Extreme Mechanics Letters 13:141–147

    Google Scholar 

  • Giorgio I, Harrison P, dell’Isola F, Alsayednoor J, Turco E (2018) Wrinkling in engineering fabrics: a comparison between two different comprehensive modelling approaches. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2216):20180,063

    Google Scholar 

  • Giorgio I, dell’Isola F, Andreaus U, Alzahrani F, Hayat T, Lekszycki T (2019) On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon. Biomechanics and modeling in mechanobiology 18(6):1639–1663

    Google Scholar 

  • Giorgio I, Spagnuolo M, Andreaus U, Scerrato D, Bersani AM (2021) In-depth gaze at the astonishing mechanical behavior of bone: A review for designing bio-inspired hierarchical metamaterials. Mathematics and Mechanics of Solids 26(7):1074–1103

    Google Scholar 

  • Gnu Public (2007) Gnu general public license. http://www.gnu.org/copyleft/gpl.html

  • Hild F, Misra A, dell’Isola F (2021) Multiscale dic applied to pantographic structures. Experimental Mechanics 61(2):431–443

    Google Scholar 

  • Hoffman J, Jansson J, Johnson C, Knepley M, Kirby R, Logg A, Scott LR,Wells GN (2005) Fenics. http://www.fenicsproject.org/

  • Khakalo S, Niiranen J (2020) Anisotropic strain gradient thermoelasticity for cellular structures: Plate models, homogenization and isogeometric analysis. Journal of the Mechanics and Physics of Solids 134:103,728

    Google Scholar 

  • Kwon J, Evans K, Ma L, Arnold D, Yildizdag ME, Zohdi T, Ritchie RO, Xu T (2020) Scalable electrically conductive spray coating based on block copolymer nanocomposites. ACS applied materials & interfaces 12(7):8687–8694

    Google Scholar 

  • Laudato M, Manzari L, Giorgio I, Spagnuolo M, Göransson P (2021) Dynamics of pantographic sheet around the clamping region: experimental and numerical analysis. Mathematics and Mechanics of Solids p 1081286521992646

    Google Scholar 

  • Lekszycki T, dell’Isola F (2012) A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMMJournal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 92(6):426–444

    Google Scholar 

  • Logg A, Mardal KA, Wells GN (2011) Automated Solution of Differential Equations by the Finite Element Method, The FEniCS Book, Lecture Notes in Computational Science and Engineering, vol 84. Springer

    Google Scholar 

  • Nazarenko L, Glüge R, Altenbach H (2021a) Positive definiteness in coupled strain gradient elasticity. Continuum Mechanics and Thermodynamics 33(3):713–725

    Google Scholar 

  • Nazarenko L, Glüge R, Altenbach H (2021b) Uniqueness theorem in coupled strain gradient elasticity with mixed boundary conditions. Continuum Mechanics and Thermodynamics pp 1–14

    Google Scholar 

  • Rahali Y, Giorgio I, Ganghoffer J, dell’Isola F (2015) Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. International Journal of Engineering Science 97:148–172

    Google Scholar 

  • Reiher JC, Giorgio I, Bertram A (2017) Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. Journal of Engineering Mechanics 143(2):04016,112

    Google Scholar 

  • Scerrato D, Bersani AM, Giorgio I (2021) Bio-inspired design of a porous resorbable scaffold for bone reconstruction: A preliminary study. Biomimetics 6(1):18

    Google Scholar 

  • Shekarchizadeh N, Abali BE, Barchiesi E, Bersani AM (2021a) Inverse analysis of metamaterials and parameter determination by means of an automatized optimization problem. ZAMMJournal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik p e202000277

    Google Scholar 

  • Shekarchizadeh N, Laudato M, Manzari L, Abali BE, Giorgio I, Bersani AM (2021b) Parameter identification of a second-gradient model for the description of pantographic structures in dynamic regime. Zeitschrift für angewandte Mathematik und Physik 72(6):1–24

    Google Scholar 

  • Skrzat A, Eremeyev VA (2020) On the effective properties of foams in the framework of the couple stress theory. Continuum Mechanics & Thermodynamics 32(6)

    Google Scholar 

  • Spagnuolo M, Yildizdag ME, Andreaus U, Cazzani AM (2021) Are higher-gradient models also capable of predicting mechanical behavior in the case of wide-knit pantographic structures? Mathematics and Mechanics of Solids 26(1):18–29

    Google Scholar 

  • Turco E, dell’Isola F, Cazzani A, Rizzi NL (2016) Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Zeitschrift für angewandte Mathematik und Physik 67(4):1–28

    Google Scholar 

  • Vangelatos Z, Sheikh HM, Marcus PS, Grigoropoulos CP, Lopez VZ, Flamourakis G, Farsari M (2021a) Strength through defects: A novel bayesian approach for the optimization of architected materials. Science advances 7(41):eabk2218

    Google Scholar 

  • Vangelatos Z, Yildizdag ME, Giorgio I, dell’Isola F, Grigoropoulos C (2021b) Investigating the mechanical response of microscale pantographic structures fabricated by multiphoton lithography. Extreme Mechanics Letters 43:101,202

    Google Scholar 

  • Vazic B, Abali BE, Yang H, Newell P (2021) Mechanical analysis of heterogeneous materials with higher-order parameters. Engineering with Computers pp 1–17

    Google Scholar 

  • Yang H, Abali BE, Müller WH, Barboura S, Li J (2022) Verification of asymptotic homogenization method developed for periodic architected materials in strain gradient continuum. International Journal of Solids and Structures 238:111,386

    Google Scholar 

  • Yildizdag ME, Tran CA, Barchiesi E, Spagnuolo M, dell’Isola F, Hild F (2019) A multi-disciplinary approach for mechanical metamaterial synthesis: a hierarchical modular multiscale cellular structure paradigm. In: State of the art and future trends in material modeling, Springer, pp 485–505

    Google Scholar 

  • Yildizdag ME, Barchiesi E, dell’Isola F (2020) Three-point bending test of pantographic blocks: numerical and experimental investigation. Mathematics and Mechanics of Solids 25(10):1965–1978

    Google Scholar 

  • Zohdi TI (2018) Finite Element Primer for Beginners. Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokhan Aydin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aydin, G., Yildizdag, M.E., Abali, B.E. (2022). Strain-Gradient Modeling and Computation of 3-D Printed Metamaterials for Verifying Constitutive Parameters Determined by Asymptotic Homogenization. In: Giorgio, I., Placidi, L., Barchiesi, E., Abali, B.E., Altenbach, H. (eds) Theoretical Analyses, Computations, and Experiments of Multiscale Materials. Advanced Structured Materials, vol 175. Springer, Cham. https://doi.org/10.1007/978-3-031-04548-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04548-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04547-9

  • Online ISBN: 978-3-031-04548-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics