Skip to main content

Strategies to Optimize Peptide Stability and Prolong Half-Life

  • Chapter
  • First Online:
Peptide Therapeutics

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 47))

Abstract

Peptide drugs represent 5% of the global pharmaceutical market, but growing twice as fast as the rest of the drug market. The development of peptide therapeutics is challenging due to their low stability, short half-life, and poor oral bioavailability. However, peptides typically have exquisite potency, selectivity, and low toxicity, making them particularly attractive for certain disease targets. Significant technological innovations have enabled the rapid advancement of peptide therapeutics to the clinic. Here, strategies to improve peptide proteolytic stability and prolong half-life are discussed. Structural modifications are highly effective for enhancing peptide stability, including replacing the natural L-amino acids with D- or unnatural amino acids, peptide backbone modifications, protecting N- and C-termini, and cyclization. In vitro and in vivo assays are available to assess peptide stability and develop structure-stability relationships to enable the design of more stable peptides. Peptides will continue to play an important role in filling the gaps between small molecule drugs and protein therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADA:

antidrug antibody

BBMV:

brush border membrane vesicles

CaV:

voltage-gated calcium channel

CNS:

central nervous system

CYP:

cytochrome P450

DPP-4:

dipeptidyl peptidase 4

EDTA:

ethylenediaminetetraacetic acid

Fa:

fraction absorbed

Fc:

fragment crystallizable

GI:

gastrointestinal

GIP:

glucose-dependent insulinotropic polypeptide

GLP-1:

glucagon-like-peptide-1

HIV:

human immunodeficiency virus

HPLC:

High-performance liquid chromatography

LC-MS:

liquid chromatography–mass spectrometry

MW:

molecular weight

PK/PD:

pharmacokinetics/pharmacodynamics

PMSF:

phenylmethylsulfonyl fluoride

SAR:

structure-activity relationship

SC:

subcutaneously

SGF:

simulated gastric fluid

SIF:

simulated intestinal fluid

T2DM:

type 2 diabetes mellitus

TMDD:

target-mediated drug disposition

UGT:

uridine 5′-diphospho-glucuronosyltransferase

References

  • Adessi C, Soto C. Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr Med Chem. 2002;9:963–78.

    Article  CAS  PubMed  Google Scholar 

  • Agerso H, Jensen LB, Elbrond B, Rolan P, Zdravkovic M. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia. 2002;45:195–202.

    Article  CAS  PubMed  Google Scholar 

  • Ahren B, Simonsson E, Larsson H, Landin-Olsson M, Torgeirsson H, Jansson P-A, Sandqvist M, Bavenholm P, Efendic S, Eriksson JW, Dickinson S, Holmes D. Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study period in type 2 diabetes. Diabetes Care. 2002;25:869–75.

    Article  CAS  PubMed  Google Scholar 

  • Anderson J. Degarelix: a novel gonadotropin-releasing hormone blocker for the treatment of prostate cancer. Future Oncol. 2009;5:433–43.

    Article  CAS  PubMed  Google Scholar 

  • Aridoss G, Kim D-M, Kim JI, Kang JE. Ziconotide (ω-conotoxin MVIIA)-Efficient solid-phase synthesis of a linear precursor peptide and its strategic native folding. Pept Sci. 2021;113(5):e24223.

    Article  CAS  Google Scholar 

  • Barr RK, Verdile G, Wijaya LK, Morici M, Taddei K, Gupta VB, Pedrini S, Jin L, Nicolazzo JA, Knock E, Fraser PE, Martins RN. Validation and characterization of a novel peptide that binds monomeric and aggregated β-Amyloid and inhibits the formation of neurotoxic oligomers. J Biol Chem. 2016;291:547–59.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Yedidia T, Beignon A-S, Partidos CD, Muller S, Arnon R. A retro-inverso peptide analogue of influenza virus hemagglutinin B-cell epitope 91-108 induces a strong mucosal and systemic immune response and confers protection in mice after intranasal immunization. Mol Immunol. 2002;39:323–31.

    Article  CAS  PubMed  Google Scholar 

  • Bendre S, Zhang Z, Kuo H-T, Rousseau J, Zhang C, Merkens H, Roxin A, Benard F, Lin K-S. Evaluation of Met-Val-Lys as a renal brush border enzyme-cleavable linker to reduce kidney uptake of 68Ga-labeled DOTA-conjugated peptides and peptidomimetics. Molecules. 2020;25:3854.

    Article  CAS  PubMed Central  Google Scholar 

  • Biber J, Stieger B, Stange G, Murer H. Isolation of renal proximal tubular brush-border membranes. Nat Protoc. 2007;2:1356–9.

    Article  CAS  PubMed  Google Scholar 

  • Booka AI, Lechanteur A, Fillet M, Piel G. Therapeutic peptides for chemotherapy: trends and challenges for advanced delivery systems. Eur J Pharm Biopharm. 2021; Published ahead of print

    Google Scholar 

  • Boschi-Muller S, Gand A, Branlant G. The methionine sulfoxide reductases: catalysis and substrate specificities. Arch Biochem Biophys. 2008;474:266–73.

    Article  CAS  PubMed  Google Scholar 

  • Bottger R, Hoffmann R, Knappe D. Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PLoS One. 2017;12:e0178943/1-e43/15.

    Article  Google Scholar 

  • Brinckerhoff LH, Kalashnikov VV, Thompson LW, Yamshchikov GV, Pierce RA, Galavotti HS, Engelhard VH, Slingluff CL. Terminal modifications inhibit proteolytic degradation of an immunogenic MART-127-35 peptide: implications for peptide vaccines. Int J Cancer. 1999;83:326–34.

    Article  CAS  PubMed  Google Scholar 

  • Buckley ST, Vegge A, Pyke C, Ahnfelt-Ronne J, Madsen KG, Scheele SG, Alanentalo T, Kirk RK, Pedersen BL, Skyggebjerg RB, Benie AJ, Strauss HM, Wahlund P-O, Bjerregaard S, Knudsen LB, Baekdal TA, Maarbjerg SJ, Sondergaard FL, Borregaard J, Hartoft-Nielsen M-L, Farkas E, Fekete C, Fekete C. Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Sci Transl Med. 2018;10

    Google Scholar 

  • Chen X-W, He Z-X, Zhou Z-W, Yang T, Zhang X, Yang Y-X, Duan W, Zhou S-F. Clinical pharmacology of dipeptidyl peptidase 4 inhibitors indicated for the treatment of type 2 diabetes mellitus. Clin Exp Pharmacol Physiol. 2015;42:999–1024.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Mietlicki-Baase EG, Barrett TM, McGrath LE, Koch-Laskowski K, Ferrie JJ, Hayes MR, James Petersson E. Thioamide substitution selectively modulates proteolysis and receptor activity of therapeutic peptide hormones. J Am Chem Soc. 2017;139:16688–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Li T, Li J, Cheng S, Wang J, Verma C, Zhao Y, Chuanliu W. Stabilization of peptides against proteolysis through disulfide-bridged conjugation with synthetic aromatics. Org Biomol Chem. 2017;15:1921–9.

    Article  CAS  PubMed  Google Scholar 

  • Chiu Y-Y, Higaki K, Neudeck BL, Barnett JL, Welage LS, Amidon GL. Human jejunal permeability of cyclosporin A: influence of surfactants on P-glycoprotein efflux in Caco-2 cells. Pharm Res. 2003;20:749–56.

    Article  CAS  PubMed  Google Scholar 

  • Copley K, McCowen K, Hiles R, Nielsen LL, Young A, Parkes DG. Investigation of exenatide elimination and its in vivo and in vitro degradation. Curr Drug Metab. 2006;7:367–74.

    Article  CAS  PubMed  Google Scholar 

  • Cossum PA. Role of the red blood cell in drug metabolism. Biopharm Drug Dispos. 1988;9:321–36.

    Article  CAS  PubMed  Google Scholar 

  • Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des. 2013;81:136–47.

    Article  CAS  PubMed  Google Scholar 

  • Darlak K, Benovitz DE, Spatola AF, Grzonka Z. Dermorphin analogs: resistance to in vitro enzymic degradation is not always increased by additional D-amino acid substitutions. Biochem Biophys Res Commun. 1988;156:125–30.

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta P, Singh A, Mukherjee R. N-terminal acylation of somatostatin analog with long chain fatty acids enhances its stability and anti-proliferative activity in human breast adenocarcinoma cells. Biol Pharm Bull. 2002;25:29–36.

    Article  CAS  PubMed  Google Scholar 

  • Davenport AP, Scully CCG, de Graaf C, Brown AJH, Maguire JJ. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat Rev Drug Discov. 2020;19:389–413.

    Article  CAS  PubMed  Google Scholar 

  • Di L. Strategic approaches to optimizing peptide ADME properties. AAPS J. 2015;17:134–43.

    Article  CAS  PubMed  Google Scholar 

  • Di L, Kerns EH. Drug-like properties: concepts, structure design, and methods. Elevier: London; 2016.

    Google Scholar 

  • Dishon S, Nussbaum G, Schumacher A, Fanous J, Hoffman A, Talhami A, Gilon C, Kassis I, Karussis D. Development of a novel backbone cyclic peptide inhibitor of the innate immune TLR/IL1R signaling protein MyD88. Sci Rep. 2018;8:9476.

    Article  PubMed  PubMed Central  Google Scholar 

  • Driggers EM, Hale SP, Lee J, Terrett NK. The exploration of macrocycles for drug discovery – an underexploited structural class. Nat Rev Drug Discov. 2008;7:608–24.

    Article  CAS  PubMed  Google Scholar 

  • Duckworth WC, Gennett RG, Hamel FG. Insulin degradation: progress and potential. Endocr Rev. 1998;19:608–24.

    CAS  PubMed  Google Scholar 

  • Elbrond B, Jakobsen G, Larsen S, Agerso H, Jensen LB, Rolan P, Sturis J, Hatorp V, Zdravkovic M. Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects. Diabetes Care. 2002;25:1398–404.

    Article  CAS  PubMed  Google Scholar 

  • Elfgen A, Bochinsky K, Tusche M, Gering I, Hartmann R, Kutzsche J, Willbold D, Hupert M, de Gonzalez SRME, Huesgen PF, Santiago-Schubel B, Kutzsche J, Sacchi S, Pollegioni L, Sacchi S, Pollegioni L, Willbold D. Metabolic resistance of the D-peptide RD2 developed for direct elimination of amyloid-β oligomers. Sci Rep. 2019;9:5715.

    Article  PubMed  PubMed Central  Google Scholar 

  • Esposito S, Deventer K, Geldof L, Van Eenoo P. In vitro models for metabolic studies of small peptide hormones in sport drug testing. J Pept Sci. 2015;21:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Evans BJ, King AT, Katsifis A, Matesic L, Jamie JF. Methods to enhance the metabolic stability of peptide-based PET radiopharmaceuticals. Molecules. 2020;25:2314.

    Article  CAS  PubMed Central  Google Scholar 

  • Ferdinandi ES, Brazeau P, High K, Procter B, Fennell S, Dubreuil P. Non-clinical pharmacology and safety evaluation of TH9507, a human growth hormone-releasing factor analogue. Basic Clin Pharmacol Toxicol. 2007;100:49–58.

    Article  CAS  PubMed  Google Scholar 

  • Gentilucci L, De Marco R, Cerisoli L. Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr Pharm Des. 2010;16:3185–203.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg M, Gomez-Orellana I. Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov. 2003;2:289–95.

    Article  CAS  PubMed  Google Scholar 

  • Goodwin D, Simerska P, Toth I. Peptides as therapeutics with enhanced bioactivity. Curr Med Chem. 2012;19:4451–61.

    Article  CAS  PubMed  Google Scholar 

  • Green BD, Mooney MH, Gault VA, Irwin N, Bailey CJ, Harriott P, Greer B, O’Harte FPM, Flatt PR. N-terminal His7-modification of glucagon-like peptide-1(7-36) amide generates dipeptidyl peptidase IV-stable analogues with potent antihyperglycaemic activity. J Endocrinol. 2004;180:379–88.

    Article  CAS  PubMed  Google Scholar 

  • Harris AG. Somatostatin and somatostatin analogues: pharmacokinetics and pharmacodynamic effects. Gut. 1994;35:S1–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho M-CD, Ring N, Amaral K, Doshi U, Albert PL. Human enterocytes as an in vitro model for the evaluation of intestinal drug metabolism: characterization of drug-metabolizing enzyme activities of cryopreserved human enterocytes from twenty-four donors. Drug Metab. Dispos. 2017;45:686–91.

    Article  CAS  PubMed  Google Scholar 

  • https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021567s026lbl.pdf

  • https://www.fda.gov/media/135421/download

  • https://www.researchandmarkets.com/reports/5265155/peptide-therapeutics-market-growth-trends?utm_source=BW&utm_medium=PressRelease&utm_code=nbjsvs&utm_campaign=1507648 PLUS_SPI - PLUS_SPI Global PLUS_SPI Peptide PLUS_SPI Therapeutics PLUS_SPI Market PLUS_SPI (2021 PLUS_SPI to PLUS_SPI 2026) PLUS_SPI - PLUS_SPI Growth%2c PLUS_SPI Trends%2c PLUS_SPI COVID-19 PLUS_SPI Impact%2c PLUS_SPI and PLUS_SPI Forecasts&utm_exec=jamu273prd

  • Irwin N, Green BD, Gault VA, Greer B, Harriott P, Bailey CJ, Flatt PR, O’Harte FPM. Degradation, insulin secretion, and antihyperglycemic actions of two palmitate-derivitized N-terminal pyroglutamyl analogues of glucose-dependent insulinotropic polypeptide. J Med Chem. 2005;48:1244–50.

    Article  CAS  PubMed  Google Scholar 

  • Jing X, Jin K. A gold mine for drug discovery: strategies to develop cyclic peptides into therapies. Med Res Rev. 2020;40:753–810.

    Article  CAS  PubMed  Google Scholar 

  • John H, Maronde E, Forssmann W-G, Meyer M, Adermann K. N-terminal acetylation protects glucagon-like peptide GLP-1-(7-34)-amide from DPP-IV-mediated degradation retaining cAMP-and insulin releasing capacity. Eur J Med Res. 2008;13:73–8.

    CAS  PubMed  Google Scholar 

  • Jyrkas J, Tolonen A. Hepatic in vitro metabolism of peptides; Comparison of human liver S9, hepatocytes and Upcyte hepatocytes with cyclosporine A, leuprorelin, desmopressin and cetrorelix as model compounds. J Pharm Biomed Anal. 2021;196:113921.

    Article  CAS  PubMed  Google Scholar 

  • Kapitza C, Nosek L, Jensen L, Hartvig H, Jensen CB, Flint A. Semaglutide, a once-weekly human GLP-1 analog, does not reduce the bioavailability of the combined oral contraceptive, ethinylestradiol/levonorgestrel. J Clin Pharmacol. 2015;55:497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keefer C, Chang G, Carlo A, Novak JJ, Banker M, Carey J, Cianfrogna J, Eng H, Jagla C, Johnson N, Jones R, Jordan S, Lazzaro S, JianHua Liu R, Obach S, Riccardi K, Tess D, Umland J, Racich J, Varma M, Visswanathan R, Di L. Mechanistic insights on clearance and inhibition discordance between liver microsomes and hepatocytes when clearance in liver microsomes is higher than in hepatocytes. Eur J Pharm Sci. 2020;155:105541.

    Article  CAS  PubMed  Google Scholar 

  • Knudsen LB, Lau J. The discovery and development of liraglutide and semaglutide. Front Endocrinol (Lausanne). 2019;10:155.

    Article  Google Scholar 

  • Kyriakakis N, Chau V, Lynch J, Orme SM, Murray RD. Lanreotide autogel in acromegaly – a decade on. Expert Opin. Pharmacother. 2014;15:2681–92.

    Article  CAS  PubMed  Google Scholar 

  • Lau J, Bloch P, Schaffer L, Pettersson I, Spetzler J, Kofoed J, Madsen K, Knudsen LB, McGuire J, Steensgaard DB, Strauss HM, Gram DX, Knudsen SM, Nielsen FS, Thygesen P, Reedtz-Runge S, Kruse T. Discovery of the once-weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. J Med Chem. 2015;58:7370–80.

    Article  CAS  PubMed  Google Scholar 

  • Lee AC-L, Harris JL, Khanna KK, Hong J-H. A comprehensive review on current advances in peptide drug development and design. Int J Mol Sci. 2019;20:2383/1-83/21.

    Google Scholar 

  • Li H, Kem DC, Zhang L, Huang B, Liles C, Benbrook A, Gali H, Veitla V, Scherlag BJ, Cunningham MW, Xichun Y. Novel retro-inverso peptide inhibitor reverses angiotensin receptor autoantibody-induced hypertension in the rabbit. Hypertension. 2015;65:793–9.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang S, Zhu X, Zhangsun D, Yong W, Luo S. Effects of cyclization on activity and stability of α-conotoxin TxIB. Mar Drugs. 2020;18:180.

    Article  CAS  PubMed Central  Google Scholar 

  • Liao S, Liang Y, Zhang Z, Li J, Wang J, Wang X, Dou G, Zhang Z, Liu K. In vitro metabolic stability of exendin-4: pharmacokinetics and identification of cleavage products. PLoS One. 2015;10:e0116805/1–e05/18.

    CAS  Google Scholar 

  • Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev. 2016;106:277–319.

    Article  CAS  PubMed  Google Scholar 

  • Makurvet FD. Biologics vs. small molecules: drug costs and patient access. Med Drug Discovery. 2021;9:100075.

    Article  CAS  Google Scholar 

  • Marastoni M, Salvadori S, Scaranari V, Spisani S, Reali E, Traniello S, Tomatis A. Synthesis and activity of new linear and cyclic peptide T derivatives. Arzneim-Forsch. 1994;44:1073–6.

    CAS  Google Scholar 

  • Mathur D, Singh S, Mehta A, Agrawal P, Raghava GPS. In silico approaches for predicting the half-life of natural and modified peptides in blood. PLoS One. 2018;13:e0196829/1-e29/10.

    Article  Google Scholar 

  • Mocsai A, Kovacs L, Gergely P. What is the future of targeted therapy in rheumatology: biologics or small molecules? BMC Med. 2014;12:43/1-43/9, 9.

    Article  Google Scholar 

  • Muttenthaler M, King GF, Adams DJ, Alewood PF. Trends in peptide drug discovery. Nat Rev Drug Discov. 2021;20:309–25.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen DS, Shepherd NE, Xu W, Lucke AJ, Stoermer MJ, Fairlie DP. Orally absorbed cyclic peptides. Chem Rev. 2017;117:8094–128.

    Article  CAS  PubMed  Google Scholar 

  • Pollaro L, Heinis C. Strategies to prolong the plasma residence time of peptide drugs. Med Chem Commun. 2010;1:319–24.

    Article  CAS  Google Scholar 

  • Rafferty B, Coy DH, Poole S. Pharmacokinetic evaluation of superactive analogs of growth hormone-releasing factor (1-29)-amide. Peptides (Fayetteville, N Y). 1988;9:207–9.

    Article  CAS  Google Scholar 

  • Ramon J, Saez V, Baez R, Aldana R, Hardy E. PEGylated interferon-α2b: a branched 40K polyethylene glycol derivative. Pharm Res. 2005;22:1374–86.

    Article  CAS  PubMed  Google Scholar 

  • Salhanick AI, Clairmont KB, Buckholz TM, Pellegrino CM, Ha S, Lumb KJ. Contribution of site-specific PEGylation to the dipeptidyl peptidase IV stability of glucose-dependent insulinotropic polypeptide. Bioorg Med Chem Lett. 2005;15:4114–7.

    Article  CAS  PubMed  Google Scholar 

  • Schaffner P, Dard MM. Structure and function of RGD peptides involved in bone biology. Cell Mol Life Sci. 2003;60:119–32.

    Article  CAS  PubMed  Google Scholar 

  • Schiller PW, Weltrowska G, Berezowska I, Nguyen TMD, Wilkes BC, Lemieux C, Chung NN. The TIPP opioid peptide family: development of δ antagonists, δ agonists, and mixed μ agonist/δ antagonists. Biopolymers. 2000;51:411–25.

    Article  Google Scholar 

  • Sharma A, Singla D, Rashid M, Raghava GPS. Designing of peptides with desired half-life in intestine-like environment. BMC Bioinf. 2014;15:282/1–8.

    Article  Google Scholar 

  • Sharma R, McDonald TS, Eng H, Limberakis C, Stevens BD, Patel S, Kalgutkar AS. In vitro metabolism of the glucagon-like peptide-1 (GLP-1)-derived metabolites GLP-1(9-36)amide and GLP-1(28-36)amide in mouse and human hepatocytes. Drug Metab Dispos. 2013;41:2148–57.

    Article  CAS  PubMed  Google Scholar 

  • Steinberg M. Degarelix: a gonadotropin-releasing hormone antagonist for the management of prostate cancer. Clin Ther. 2009;31:2312–31.

    Article  CAS  PubMed  Google Scholar 

  • Stroemstedt AA, Pasupuleti M, Schmidtchen A, Malmsten M. Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob Agents Chemother. 2009;53:593–602.

    Article  CAS  Google Scholar 

  • Sylvestre M, Lv S, Yang LF, Luera N, Peeler DJ, Chen B-M, Roffler SR, Pun SH. Replacement of L-amino acid peptides with D-amino acid peptides mitigates anti-PEG antibody generation against polymer-peptide conjugates in mice. J Control Release. 2021;331:142–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tugyi R, Mezo G, Fellinger E, Andreu D, Hudecz F. The effect of cyclization on the enzymatic degradation of herpes simplex virus glycoprotein D derived epitope peptide. J Pept Sci. 2005;11:642–9.

    Article  CAS  PubMed  Google Scholar 

  • Veine DM, Yao H, Stafford DR, Fay KS, Livant DL. A d-amino acid containing peptide as a potent, noncovalent inhibitor of α5β1 integrin in human prostate cancer invasion and lung colonization. Clin Exp Metastasis. 2014;31:379–93.

    Article  CAS  PubMed  Google Scholar 

  • von Hentig N. Atazanavir/ritonavir: a review of its use in HIV therapy. Drugs Today. 2008;44:103–32.

    Article  Google Scholar 

  • Wakankar AA, Borchardt RT. Formulation considerations for proteins susceptible to asparagine deamidation and aspartate isomerization. J Pharm Sci. 2006;95:2321–36.

    Article  CAS  PubMed  Google Scholar 

  • Werle M, Bernkop-Schnuerch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids. 2006;30:351–67.

    Article  CAS  PubMed  Google Scholar 

  • Wu C-Y, Benet LZ, Hebert MF, Gupta SK, Rowland M, Gomez DY, Wacher VJ. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther (St Louis). 1995;58:492–7.

    Article  CAS  Google Scholar 

  • Wu H, Huang J. Optimization of protein and peptide drugs based on the mechanisms of kidney clearance. Protein Pept Lett. 2018;25:514–21.

    Article  CAS  PubMed  Google Scholar 

  • Yang JZ, Chen W, Borchardt RT. In vitro stability and in vivo pharmacokinetic studies of a model opioid peptide, H-Tyr-D-Ala-Gly-Phe-D-Leu-OH (DADLE), and its cyclic prodrugs. J Pharmacol Exp Ther. 2002;303:840–8.

    Article  CAS  PubMed  Google Scholar 

  • Yao J-F, Yang H, Zhao Y-Z, Xue M. Metabolism of peptide drugs and strategies to improve their metabolic stability. Curr Drug Metab. 2018;19:892–901.

    Article  CAS  PubMed  Google Scholar 

  • Zaman R, Islam RA, Ibnat N, Othman I, Zaini A, Lee CY, Chowdhury EH. Current strategies in extending half-lives of therapeutic proteins. J Control Release. 2019;301:176–89.

    Article  CAS  PubMed  Google Scholar 

  • Zvereva I, Dudko G, Dikunets M. ’Determination of GnRH and its synthetic analogues’ abuse in doping control: small bioactive peptide UPLC-MS/MS method extension by addition of in vitro and in vivo metabolism data; evaluation of LH and steroid profile parameter fluctuations as suitable biomarkers. Drug Test Anal. 2018;10:711–22.

    Article  CAS  PubMed  Google Scholar 

  • Zvereva I, Semenistaya E, Krotov G, Rodchenkov G. Comparison of various in vitro model systems of the metabolism of synthetic doping peptides: proteolytic enzymes, human blood serum, liver and kidney microsomes and liver S9 fraction. J Proteome. 2016;149:85–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Di .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shi, S.M., Di, L. (2022). Strategies to Optimize Peptide Stability and Prolong Half-Life. In: Jois, S.D. (eds) Peptide Therapeutics. AAPS Advances in the Pharmaceutical Sciences Series, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-04544-8_4

Download citation

Publish with us

Policies and ethics