Skip to main content

Initial Value Problem Should Not Be Associated to a Fractional Model Description Whatever the Derivative Definition Used

  • Conference paper
  • First Online:
Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA’21) (ICFDA 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 452))

  • 261 Accesses

Abstract

The paper shows that the Caputo definition of fractional differentiation is problematic if it is used in the definition of a fractional model and if initial conditions are taken into account. The demonstration is done using simple examples (or counterexamples). The analysis is extended to the Riemann-Liouville and Grünwald-Letnikov definitions. These results thus question the validity of results produced in the field of fractional model analysis in which initial conditions are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lorenzo, C.F., Hartley, T.T.: Initialized fractional calculus. Int. J. Appl. Math. 3, 249–265 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Lorenzo, C.F., Hartley, T.T.: Initialization in fractional order systems. In: Proceedings of the European Conference on Control ECC, Porto, Portugal, pp. 1471–1476 (2001)

    Google Scholar 

  3. Ortigueira, M.D.: On the initial conditions in continuous-time fractional linear systems. Signal Process. 83, 2301–2309 (2003)

    Article  Google Scholar 

  4. Fukunaga, M., Shimizu, N.: Role of prehistories in the initial value problems of fractional viscoelastic equations. Nonlinear Dyn. 38, 207–220 (2004)

    Article  MathSciNet  Google Scholar 

  5. Sabatier, J., Merveillaut, M., Malti, R., Oustaloup, A.: On a representation of fractional order systems: interests for the initial condition problem. In: IFAC Workshop, 3rd edn., Ankara, Turkey (2008)

    Google Scholar 

  6. Sabatier, J., Merveillaut, M., Malti, R., Oustaloup, A.: How to impose physically coherent initial conditions to a fractional system? Commun. Nonlinear Sci. Numer. Simul. 15, 1318–1326 (2010). https://doi.org/10.1016/j.cnsns.2009.05.070

    Article  MathSciNet  MATH  Google Scholar 

  7. Ortigueira, M.D., Coito, F.: System initial conditions vs derivative initial conditions. Comput. Math. Appl. 59, 1782–1789 (2010). https://doi.org/10.1016/j.camwa.2009.08.036

    Article  MathSciNet  MATH  Google Scholar 

  8. Sabatier, J., Farges, C.: Comments on the description and initialization of fractional partial differential equations using Riemann–Liouville’s and Caputo’s definitions J. Comput. Appl. Math. 339, 30–39 (2018). https://doi.org/10.1016/j.cam.2018.02.030

    Article  MathSciNet  MATH  Google Scholar 

  9. Balint, A.M., Balint, S.: Mathematical description of the groundwater flow and that of the impurity spread, which use temporal Caputo or Riemann–Liouville fractional partial derivatives, is non-objective. Fractal Fract. 4, 36 (2020). https://doi.org/10.3390/fractalfract4030036

    Article  Google Scholar 

  10. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, London (1993)

    MATH  Google Scholar 

  11. Li, C., Qian, D., Chen, Y.Q.: On Riemann-Liouville and Caputo derivatives. Discret. Dyn. Nat. Soc. 2011, 1–15 (2011). Article ID 562494

    Google Scholar 

  12. Abramowitz, M., Stegun I.: Handbook of Mathematical Functions. Dover Publications, New York (1964)

    Google Scholar 

  13. Bai, Z., Zhang, S., Sun, S., Yin, C.: Monotone iterative method for fractional differential equations. Electron. J. Differ. Eqn. 2016(06), 1–8 (2016)

    MATH  Google Scholar 

  14. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)

    Article  MathSciNet  Google Scholar 

  15. Chena, H., Holland, F., Stynes, M.: An analysis of the Grünwald-Letnikov scheme for initial-value problems with weakly singular solutions. Appl. Numer. Math. 139, 52–61 (2019)

    Article  MathSciNet  Google Scholar 

  16. Garrappa, R.: Numerical solution of fractional differential equations: a survey and a software tutorial. Mathematics 6(16) (2018)

    Google Scholar 

  17. Oliveira, E.C.D., Machado, J.A.T.: A review of definitions for fractional derivatives and integral. Math. Phys. Eng. 2014, 1–6 (2014). Article ID 238459

    Google Scholar 

  18. Sabatier, J., Farges, C., Tartaglione, V.: Some alternative solutions to fractional models for modelling long memory behaviors. Mathematics 8, 196 (2020)

    Article  Google Scholar 

  19. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  20. Sabatier, J.: Non-singular kernels for modelling power law type long memory behaviours and beyond. Cybern. Syst. 51, 383–401 (2020)

    Article  Google Scholar 

  21. Stynes, M.: Fractional-order derivatives defined by continuous kernels are too restrictive. Appl. Math. Lett. 85, 22–26 (2018)

    Article  MathSciNet  Google Scholar 

  22. Sabatier, J.: Fractional-order derivatives defined by continuous kernels: are they really too restrictive? Fractal Fract. 4, 40 (2020)

    Article  Google Scholar 

  23. Sabatier, J.: Power law type long memory behaviors modeled with distributed time delay systems. Fractal Fract. 4, 1 (2019)

    Article  Google Scholar 

  24. Tartaglione, V., Farges, C., Sabatier, J.: Nonlinear dynamical modeling of adsorption and desorption processes with power-law kinetics: application to CO2 capture. Phys. Rev. E 102, 052102 (2020)

    Google Scholar 

  25. Sabatier, J.: Beyond the particular case of circuits with geometrically distributed components for approximation of fractional order models: application to a new class of model for power law type long memory behaviour modelling. J. Adv. Res. 25, 243–255 (2020)

    Article  Google Scholar 

  26. Hinrichsen, D. Pritchard, A.: Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness. Texts in Applied Mathematics, vol. 48. Springer, Heidelberg (2005). 10.1007/b137541

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jocelyn Sabatier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sabatier, J., Farges, C. (2022). Initial Value Problem Should Not Be Associated to a Fractional Model Description Whatever the Derivative Definition Used. In: Dzielinski, A., Sierociuk, D., Ostalczyk, P. (eds) Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA’21). ICFDA 2021. Lecture Notes in Networks and Systems, vol 452. Springer, Cham. https://doi.org/10.1007/978-3-031-04383-3_2

Download citation

Publish with us

Policies and ethics