Skip to main content

Complications in Robot-Assisted Renal Surgery

  • Chapter
  • First Online:
Robotic Urologic Surgery

Abstract

Introduction: During the last decade, the progressive introduction of robotic assistance for renal surgery has led to a general improvement of postoperative outcomes. However, despite its advantages, robotic surgery is not devoid of complications. In this chapter we describe the identification, prevention, and management of the most common complications associated with the robotic approach to renal surgery.

Main body of the chapter: Proper patient positioning is the first step to avoid complications in robotic renal surgery. Indeed, skin lesions and nerve injury can be easily prevented through correct patient positioning. During trocar placement, an adverse and unrecognized bowel or vascular injury can cause serious impacts on the patient’s health during or after the surgery. In this scenario, it is crucial to inspect the whole abdominal with the robotic or laparoscopic scope. Intraoperatively, a careful dissection and isolation of the kidney is crucial to avoid accidental injury of the liver, spleen, or pancreas. Similarly, detailed preoperative planning and imaging revision is fundamental to avoid accidental vascular injury during the hilum isolation. When they occur, it is necessary to have a properly trained OR team to manage it. Patient selection and preoperative counselling and prophylaxis are of critical importance to reduce the risk of some postoperative complications, such as acute kidney injury, thromboembolism, or ocular complications.

Conclusion: Patient’s selection, adequate positioning, mentorship training during the learning curve, and avoiding last-longing procedures are key steps to prevent robot-assisted-related complications. Indeed, since most of the complications may happen at the beginning of a surgeon learning curve, console and team training outside the operatory room represents a crucial step to reduce the risk of experiencing complications related to robotic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seetharam Bhat KR, Moschovas MC, Onol FF, et al. Robotic renal and adrenal oncologic surgery: a contemporary review. Asian J Urol. 2021;8(1):89–99. https://doi.org/10.1016/j.ajur.2020.05.010.

    Article  PubMed  Google Scholar 

  2. Van Poppel H, Da Pozzo L, Albrecht W, Matveev V, Bono A, Borkowski A. A prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol. 2011;59:543–52.

    Article  PubMed  Google Scholar 

  3. Scosyrev E, Messing EM, Sylvester R, Campbell S, Van Poppel H. Renal function after nephron-sparing surgery versus radical nephrectomy: results from EORTC randomized trial 30904. Eur Urol. 2014;65:372–7.

    Article  PubMed  Google Scholar 

  4. Sampat A, Parakati I, Kunnavakkam R, Glick DB, Lee NK, Tenney M, et al. Corneal abrasion in hysterectomy and prostatectomy: role of laparoscopic and robotic assistance. Anesthesiology. 2015;122:994–1001.

    Article  PubMed  Google Scholar 

  5. Sundi D, Reese AC, Mettee LZ, Trock BJ, Pavlovich CP. Laparoscopic and robotic radical prostatectomy outcomes in obese and extremely obese men. Urology. 2013;82(3):600–5. https://doi.org/10.1016/j.urology.2013.05.013.

    Article  PubMed  Google Scholar 

  6. Potretzke AM, Kim EH, Knight BA, Anderson BG, Park AM, Sherburne Figenshau R, Bhayani SB. Patient comorbidity predicts hospital length of stay after robot-assisted prostatectomy. J Robot Surg. 2016;10(2):151–6. https://doi.org/10.1007/s11701-016-0588-6.

    Article  PubMed  Google Scholar 

  7. Chitlik A. Safe positioning for robotic-assisted laparoscopic prostatectomy. AORN J. 2011 Jul;94(1):37–45. https://doi.org/10.1016/j.aorn.2011.02.012.

    Article  PubMed  Google Scholar 

  8. Barnett JC, Hurd WW, Rogers RM Jr, Williams NL, Shapiro SA. Laparoscopic positioning and nerve injuries. J Minim Invasive Gynecol. 2007 Sep–Oct;14(5):664–72. https://doi.org/10.1016/j.jmig.2007.04.008.

    Article  PubMed  Google Scholar 

  9. Shveiky D, Aseff JN, Iglesia CB. Brachial plexus injury after laparoscopic and robotic surgery. J Minim Invasive Gynecol. 2010;17(4):414–20. https://doi.org/10.1016/j.jmig.2010.02.010.

    Article  PubMed  Google Scholar 

  10. Sotelo RJ, Haese A, Machuca V, Medina L, Nunez L, Santinelli F, et al. Safer surgery by learning from complications: a focus on robotic prostate surgery. Eur Urol. 2016;69:334–44.

    Article  PubMed  Google Scholar 

  11. Ahmad G, Gent D, Henderson D, O’Flynn H, Phillips K, Watson A. Laparoscopic entry techniques. Cochrane Database Syst Rev. 2015;2:CD006583. https://doi.org/10.1002/14651858.CD006583.

    Article  Google Scholar 

  12. Horovitz D, Feng C, Messing EM, Joseph JV. Extraperitoneal vs transperitoneal robot-assisted radical prostatectomy in the setting of prior abdominal or pelvic surgery. J Endourol. 2017;31:366–73.

    Article  PubMed  Google Scholar 

  13. Tourinho-Barbosa RR, Tobias-Machado M, Castro-Alfaro A, Ogaya-Pinies G, Cathelineau X, Sanchez-Salas R. Complications in robotic urological surgeries and how to avoid them: a systematic review. Arab J Urol. 2018;16(3):285–92. https://doi.org/10.1016/j.aju.2017.11.005.

    Article  PubMed  Google Scholar 

  14. Sutton PA, Awad S, Perkins AC, Lobo DN. Comparison of lateral thermal spread using monopolar and bipolar diathermy, the harmonic scalpel and the Ligasure. Br J Surg. 2010 Mar;97(3):428–33. https://doi.org/10.1002/bjs.6901.

    Article  CAS  PubMed  Google Scholar 

  15. Canes D, Aron M, Nguyen MM, Winans C, Chand B, Gill IS. Common bile duct injury during urologic laparoscopy. J Endourol. 2008;22(7):1483–4. https://doi.org/10.1089/end.2007.0351.

    Article  PubMed  Google Scholar 

  16. Dal Moro F, Crestani A, Valotto C, Guttilla A, Soncin R, Mangano A, Zattoni F. Anesthesiologic effects of transperitoneal versus extraperitoneal approach during robot-assisted radical prostatectomy: results of a prospective randomized study. Int Braz J Urol. 2015;41(3):466–72. https://doi.org/10.1590/S1677-5538.IBJU.2014.0199.

    Article  PubMed  Google Scholar 

  17. Hong JY, Kim JY, Choi YD, Rha KH, Yoon SJ, Kil HK. Incidence of venous gas embolism during robotic-assisted laparoscopic radical prostatectomy is lower than that during radical retropubic prostatectomy. Br J Anaesth. 2010;105(6):777–81. https://doi.org/10.1093/bja/aeq247.

    Article  CAS  PubMed  Google Scholar 

  18. Lebowitz P, Yedlin A, Hakimi AA, Bryan-Brown C, Richards M, Ghavamian R. Respiratory gas exchange during robotic-assisted laparoscopic radical prostatectomy. J Clin Anesth. 2015;27(6):470–5. https://doi.org/10.1016/j.jclinane.2015.06.001.

    Article  PubMed  Google Scholar 

  19. Putman SS, Bishoff JT. Visceral and gastrointestinal complications of laparoscopic and robotic urologic surgery. In: Ghavamian R, editor. Complications of laparoscopic and robotic urologic surgery. New York: Springer; 2010. p. 73–90.

    Chapter  Google Scholar 

  20. Bertolo R, Autorino R, Fiori C, Amparore D, Checcucci E, Mottrie A, Porter J, Haber GP, Derweesh I, Porpiglia F. Expanding the indications of robotic partial nephrectomy for highly complex renal tumors: urologists’ perception of the impact of hyperaccuracy three-dimensional reconstruction. J Laparoendosc Adv Surg Tech A. 2019;29(2):233–9. https://doi.org/10.1089/lap.2018.0486.

    Article  PubMed  Google Scholar 

  21. Dionigi G, Boni L, Rovera F, Dionigi R. Dissection and hemostasis with hydroxylated polyvinyl acetal tampons in open thyroid surgery. Ann Surg Innov Res. 2007;1(3):2007. https://doi.org/10.1186/1750-1164-1-3.

    Article  Google Scholar 

  22. Richter F, Schnorr D, Deger S, Trk I, Roigas J, Wille A, Loening SA. Improvement of hemostasis in open and laparoscopically performed partial nephrectomy using a gelatin matrix-thrombin tissue sealant (FloSeal). Urology. 2003;61(1):73–7.

    Article  PubMed  Google Scholar 

  23. Rouach Y, Delongchamps NB, Patey N, Fontaine E, Timsit MO, Thiounn N, Mejean A. Suture or hemostatic agent during laparoscopic partial nephrectomy? A randomized study using a hypertensive porcine model. Urology. 2009;73(1):172–7. https://doi.org/10.1016/j.urology.2008.08.477.

    Article  PubMed  Google Scholar 

  24. Gill IS, Ramani AP, Spaliviero M, Xu M, Finelli A, Kaouk JH, Desai MM. Improved hemostasis during laparoscopic partial nephrectomy using gelatin matrix thrombin sealant. Urology. 2005;65(3):463–6. https://doi.org/10.1016/j.urology.2004.10.030.

    Article  PubMed  Google Scholar 

  25. Lavery HJ, Thaly R, Albala D, Ahlering T, Shalhav A, Lee D, Fagin R, Wiklund P, Dasgupta P, Costello AJ, Tewari A, Coughlin G, Patel VR. Robotic equipment malfunction during robotic prostatectomy: a multi-institutional study. J Endourol. 2008;22(9):2165–8. https://doi.org/10.1089/end.2007.0407.

    Article  PubMed  Google Scholar 

  26. Borden LS Jr, Kozlowski PM, Porter CR, Corman JM. Mechanical failure rate of da Vinci robotic system. Can J Urol. 2007;14(2):3499–501.

    PubMed  Google Scholar 

  27. Alemzadeh H, Raman J, Leveson N, Kalbarczyk Z, Iyer RK. Adverse events in robotic surgery: a retrospective study of 14 years of FDA data. PLoS One. 2016;11(4):e0151470. https://doi.org/10.1371/journal.pone.0151470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee HJ, Box GN, Abraham JB, Elchico ER, Panah RA, Taylor MB, Moskowitz R, Deane LA, McDougall EM, Clayman RV. Laboratory evaluation of laparoscopic vascular clamps using a load-cell device: are all clamps the same? J Urol. 2008;180(4):1267–72. https://doi.org/10.1016/j.juro.2008.06.018.

    Article  PubMed  Google Scholar 

  29. Tachibana H, Kondo T, Yoshida K, Takagi T, Tanabe K. Lower incidence of postoperative acute kidney injury in robot-assisted partial nephrectomy than in open partial nephrectomy: a propensity score-matched study. J Endourol. 2020;34(7):754–62. https://doi.org/10.1089/end.2019.0622.

    Article  PubMed  Google Scholar 

  30. Schuler TD, Perks AE, Fazio LM, et al. Impact of arterial and arteriovenous renal clamping with and without intrarenal cooling on renal oxygenation and temperature in a porcine model. J Endourol. 2008;22:2367–72.

    Article  PubMed  Google Scholar 

  31. Martini A, Sfakianos JP, Paulucci DJ, et al. Predicting acute kidney injury after robot- assisted partial nephrectomy: implications for patient selection and postoperative management. Urol Oncol. 2019;37:445–51.

    Article  PubMed  Google Scholar 

  32. Jordan BJ, Matulewicz RS, Trihn B, Kundu S. Venous thromboembolism after nephrectomy: incidence, timing and associated risk factors from a national multi-institutional database. World J Urol. 2017;35:1713–9.

    Article  PubMed  Google Scholar 

  33. Abel EJ, Wong K, Sado M, Leverson GE, Patel SR, Downs TM, et al. Surgical operative time increases the risk of deep venous thrombosis and pulmonary embolism in robotic prostatectomy. JSLS. 2014;18:282–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tyritzis SI, Wallerstedt A, Steineck G, Nyberg T, Hugosson J, Bjartell A, et al. Thromboembolic complications in 3,544 patients undergoing radical prostatectomy with or without lymph node dissection. J Urol. 2015;193:117–25.

    Article  PubMed  Google Scholar 

  35. Rasmussen MS, Jorgensen LN, Wille-Jorgensen P, Nielsen JD, Horn A, Mohn AC, et al. Prolonged prophylaxis with dalteparin to prevent late thromboembolic complications in patients under-going major abdominal surgery: a multicenter randomized open- label study. J Thromb Haemost. 2006;4:2384–90.

    Article  CAS  PubMed  Google Scholar 

  36. Selby LV, Sovel M, Sjoberg DD, McSweeney M, Douglas D, Jones DR, et al. Preoperative chemoprophylaxis is safe in major oncology operations and effective at preventing venous thromboembolism. J Am Coll Surg. 2016;222:129–37.

    Article  PubMed  Google Scholar 

  37. Mattei A, Di Pierro GB, Rafeld V, Konrad C, Beutler J, Danuser H. Positioning injury, rhabdomyolysis, and serum creatine kinase-concentration course in patients undergoing robot-assisted radical prostatectomy and extended pelvic lymph node dissection. J Endourol. 2013;27:45–51.

    Article  PubMed  Google Scholar 

  38. Karaoren G, Bakan N, Kucuk EV, Gumus E. Is rhabdomyolysis an anaesthetic complication in patients undergoing robot-assisted radical prostatectomy? J Minim Access Surg. 2017;13:29–36.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gezginci E, Ozkaptan O, Yalcin S, Akin Y, Rassweiler J, Gozen AS. Postoperative pain and neuromuscular complications associated with patient positioning after robotic assisted laparoscopic radical prostatectomy: a retrospective non-placebo and non-randomized study. Int Urol Nephrol. 2015;47:1635–41.

    Article  PubMed  Google Scholar 

  40. Gkegkes ID, Karydis A, Tyritzis SI, Iavazzo C. Ocular complications in robotic surgery. Int J Med Robot Comput. 2015;11:269–74.

    Article  Google Scholar 

  41. Kan KM, Brown SE, Gainsburg DM. Ocular complications in robotic-assisted prostatectomy: a review of pathophysiology and prevention. Minerva Anestesiol. 2015;81:557–66.

    CAS  PubMed  Google Scholar 

  42. Il KD, Woo SH, Lee DH, Kim IY. Incidence of port-site hernias after robot-assisted radical prostatectomy with the fascial closure of only the midline 12-mm port site. J Endourol. 2012;26:848–51.

    Article  Google Scholar 

  43. Chitlik A. Safe positioning for robotic-assisted laparoscopic prostatectomy. AORN J. 2011;94:37–48.

    Article  PubMed  Google Scholar 

  44. Dindo D, Clavien PA. Quality assessment of partial nephrectomy complications reporting: time to get the head out of the sand. Eur Urol. 2014;66:527–8.

    Article  PubMed  Google Scholar 

  45. Martin RC 2nd, Brennan MF, Jaques DP. Quality of complication reporting in the surgical literature. Ann Surg. 2002;235:803–13.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–13.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tobias-Machado M, Moschovas MC. Inguinal lymphadenectomy. In: Sotelo R, Arriaga J, Aron M, editors. Complications in robotic urologic surgery. Cham: Springer; 2018. https://doi.org/10.1007/978-3-319-62277-4_32.

    Chapter  Google Scholar 

  48. Mitropoulos D, Artibani W, Biyani CS, et al. Quality assessment of partial nephrectomy complications reporting using EAU standardised quality criteria. Eur Urol. 2014;66:522–6.

    Article  PubMed  Google Scholar 

  49. Mitropoulos D, Artibani W, Graefen M, et al. Reporting and grading of complications after urologic surgical procedures: an ad hoc EAU guidelines panel assessment and recommendations. Eur Urol. 2012;61:341–9.

    Article  PubMed  Google Scholar 

  50. Cacciamani GE, Medina LG, Tafuri A, Gill T, Baccaglini W, Blasic V, Glina FPA, De Castro Abreu AL, Sotelo R, Gill IS, Artibani W. Impact of implementation of standardized criteria in the assessment of complication reporting after robotic partial nephrectomy: a systematic review. Eur Urol Focus. 2020;6(3):513–7. https://doi.org/10.1016/j.euf.2018.12.004.

    Article  PubMed  Google Scholar 

  51. Vanlander AE, Mazzone E, Collins JW, Mottrie AM, Rogiers XM, van der Poel HG, Van Herzeele I, Satava RM, Gallagher AG. Orsi consensus meeting on European robotic training (OCERT): results from the first multispecialty consensus meeting on training in robot-assisted surgery. Eur Urol. 2020;78(5):713–6. https://doi.org/10.1016/j.eururo.2020.02.003.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moschovas, M.C., Mazzone, E., Mottrie, A. (2022). Complications in Robot-Assisted Renal Surgery. In: Wiklund, P., Mottrie, A., Gundeti, M.S., Patel, V. (eds) Robotic Urologic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-00363-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00363-9_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00362-2

  • Online ISBN: 978-3-031-00363-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics