Skip to main content

Commercial Non-invasive Glucose Sensor Devices for Monitoring Diabetes

  • Chapter
  • First Online:
Advanced Bioscience and Biosystems for Detection and Management of Diabetes

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 13))

Abstract

Diabetes disease is one of the metabolic disorders having a great consequence on natural life quality. Over 500 million people are affected worldwide. To better manage diabetes in patients, more glucose measurements within a short period are needed. At present, the existing glucose monitoring devices available in the market are invasive and cannot be used for monitoring glucose levels continuously. Noninvasive Glucose Monitoring (NGM) can be used continuously to check glucose levels in the body without blood draws, skin puncturing, or causing any trauma or pain. The devices available are wristwatch-like and can be easily worn. It is important to develop noninvasive and easy usage as it is economical, compact, painless, and easy for frequent glucose monitoring. The glucose biosensors are either electrochemical or optical-based. The various bands available in the electromagnetic spectrum are used in glucose analysis and detection. Raman spectroscopy technologies are gaining attraction to measure glucose in interstitial fluid (ISF), allowing accuracy between 5.6 and 20.8%. In addition, optical-based techniques using infrared light beams allow sensing the presence of glucose in the skin. The glucose detection in human sweat is also becoming relevant to check its levels. The noninvasive glucose sensor devices have enormous demand in the global market. Several clinical trials of noninvasive glucose monitors are enlarged in the twenty-first century. To develop NGM sensors, an exhaustive, detailed understanding of NGM systems components is required, which includes medical applied technologies, device surface, material chemistry, electrochemistry sensing, and the systems interface. This chapter focuses on leading technologies and devices available to check noninvasive glucose monitoring in diabetic patients and assess accuracy in the market regulatory framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO Global Status Report on Noncommunicable Diseases. http://apps.who.int/iris/bitstream/10665/148114/1/9789241564854_eng.pdf (2014)

  2. Trikkalinou, A., Papazafiropoulou, A.K., Melidonis, A.: Type 2 diabetes and quality of life. World J. Diabetes 8(4), 120–129 (2017). https://doi.org/10.4239/wjd.v8.i4.120

  3. American Diabetes Association: Diagnosis and classification of diabetes mellitus. Diabetes Care 32(1), S62–S67 (2009). https://doi.org/10.2337/dc09-S062

  4. Centers for Disease Control and Prevention: National Diabetes Statistics Report. Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services, Atlanta, GA (2020)

    Google Scholar 

  5. Zimmet, P.Z., Magliano, D.J., Herman, W.H., Shaw, J.E.: Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol. 2(1), 56–64 (2014). https://doi.org/10.1016/S2213-8587(13)70112-8

  6. Gonzales, W.V., Mobashsher, A.T., Abbosh, A.: The progress of glucose monitoring—a review of invasive to minimally and noninvasive techniques, devices and sensors. Sensors (Basel) 19(4), 800 (2019). https://doi.org/10.3390/s19040800

  7. Bruen, D., Delaney, C., Florea, L., Diamond, D.: Glucose sensing for diabetes monitoring: recent developments. Sensors (Basel) 17(8), 1866 (2017). https://doi.org/10.3390/s17081866

  8. Hughes, M.D.: The business of self-monitoring of blood glucose: a market profile. J. Diabetes Sci. Technol. 3(5), 1219–1223 (2009). https://doi.org/10.1177/193229680900300530

  9. Phan, L., Vo, T., Hoang, T.X., Selvam, S.P., Pham, H.L., Kim, J.Y., Cho, S.: Trending technology of glucose monitoring during COVID-19 pandemic: challenges in personalized healthcare. Adv. Mater. Technol. (2021). https://doi.org/10.1002/admt.202100020

    Article  Google Scholar 

  10. Turner, A.P.: Biosensors—sense and sensitivity. Science 290, 1315–1317 (2000). https://doi.org/10.1126/science.290.5495.1315

    Article  Google Scholar 

  11. Clark, L.C., Lyons, C.: Electrode systems for continuous monitoring in cardiovascular surgery. Acad. Sci. 102, 29–45 (1962). https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

    Article  Google Scholar 

  12. Updike, S.J., Hicks, G.P.: The enzyme electrode. Nature 214, 986–988 (1967). https://doi.org/10.1038/214986a0

    Article  Google Scholar 

  13. Hiratsuka, A., Fujisawa, K., Muguruma, H.: Amperometric biosensor based on glucose dehydrogenase and plasma-polymerized thin films. Anal. Sci. 24, 483–486 (2008). https://doi.org/10.2116/analsci.24.483

    Article  Google Scholar 

  14. Chambers, J.P., Arulanandam, B.P., Matta, L.L., Weis, A., Valdes, J.J.: Biosensor recognition elements. Curr. Issues Mol. Biol. 10, 1–12 (2008). https://doi.org/10.21775/cimb.010.001

  15. Iqbal, S.S., Mayo, M.W., Bruno, J.G., Bronk, B.V., Batt, C.A., Chambers, J.P.: A review of molecular recognition technologies for detection of biological threat agents. Biosens. Bioelectron. 15, 549–578 (2000). https://doi.org/10.1016/s0956-5663(00)00108-1

    Article  Google Scholar 

  16. Newman, J.D., Turner, A.P.: Biosensors: Principles and Practice, vol. 27, pp. 147–159 (1992)

    Google Scholar 

  17. Habermuller, K., Mosbach, M., Schuhmann, W.: Electron-transfer mechanisms in amperometric biosensors. Fresenius J. Anal. Chem. 366, 560–568 (2000). https://doi.org/10.1007/s002160051551

    Article  Google Scholar 

  18. Pearson, J.E., Gill, A., Vadgama, P.: Analytical aspects of biosensors. Ann. Clin. Biochem. 37(2), 119–145 (2000). https://doi.org/10.1258/0004563001899131

    Article  Google Scholar 

  19. Thevenot, D.R., Toth, K., Durst, R.A., Wilson, G.S.: Electrochemical biosensors: recommended definitions and classification. Biosens. Bioelectron. 34(5), 635–659 (2001). https://doi.org/10.1081/al-100103209

    Article  Google Scholar 

  20. Liu, J., Wang, J.: Improved design for the glucose biosensor. Food Technol. Biotechnol. 39, 55–58 (2001)

    Google Scholar 

  21. Shichiri, M., Kawamori, R., Yamasaki, Y., Hakui, N., Abe, H.: Wearable artificial endocrine pancreas with needle-type glucose sensor. Lancet 320(8308), 1128–1131 (1982). https://doi.org/10.1016/s0140-6736(82)92788-x

    Article  Google Scholar 

  22. Bindra, D.S., Zhang, Y., Wilson, G.S., Sternberg, R., Thevenot, D.R., Moatti, D., Reach, G.: Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring. Anal. Chem. 63, 1692–1696 (1991). https://doi.org/10.1021/ac00017a008

    Article  Google Scholar 

  23. Rebrin, K., Steil, G.M.: Can interstitial glucose assessment replace blood glucose measurements? Diabetes Technol. Ther. 2(3), 461–472 (2000). https://doi.org/10.1089/15209150050194332

    Article  Google Scholar 

  24. Cox, M.: An overview of continuous glucose monitoring systems. J. Pediatr. Health Care 23, 344–347 (2009). https://doi.org/10.1016/j.pedhc.2009.06.002

    Article  Google Scholar 

  25. Montagnana, M., Lippi, G., Guidi, G.C.: Continuous glucose monitoring and type 1 diabetes. N. Engl. J. Med. 360, 191–192 (2009). https://doi.org/10.1056/nejmc082243

    Article  Google Scholar 

  26. Goetz, M.J., Cote, G.L., Erckens, R., March, W., Motamedi, M.: Application of a multivariate technique to Raman spectra for quantification of body chemicals. IEEE Trans. Biomed. Eng. 42, 728–731 (1995). https://doi.org/10.1109/10.391172

    Article  Google Scholar 

  27. Rabinovitch, B., March, W.F., Adams, R.L.: Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations. Diabetes Care 5(3), 254–258 (1982). https://doi.org/10.2337/diacare.5.3.254

  28. MacKenzie, H.A., Ashton, H.S., Spiers, S., Shen, Y., Freeborn, S.S., Hannigan, J., Lindberg, J., Rae, P.: Advances in photoacoustic noninvasive glucose testing. Clin. Chem. 45, 1587–1595 (1999). https://doi.org/10.1093/clinchem/45.9.1587

    Article  Google Scholar 

  29. Gabriely, I., Wozniak, R., Mevorach, M., Kaplan, J., Aharon, Y., Shamoon, H.: Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia. Diabetes Care 22, 2026–2032 (1999). https://doi.org/10.2337/diacare.22.12.2026

    Article  Google Scholar 

  30. Larin, K.V., Eledrisi, M.S., Motamedi, M., Esenaliev, R.O.: Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects. Diabetes Care 25, 2263–2267 (2002). https://doi.org/10.2337/diacare.25.12.2263

    Article  Google Scholar 

  31. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK): National Institute of Health: Continuous Glucose Monitoring. https://www.niddk.nih.gov/health-information/diabetes/overview/managing-diabetes/continuous-glucose-monitoring

  32. Gusev, M., Poposka, L., Spasevski, G., Kostoska, M., Koteska, B., Simjanoska, M., Ackovska, N., Stojmenski, A., Tasic, J.: Noninvasive glucose measurement using machine learning and neural network methods and correlation with heart rate variability. Sensor systems for personal wellbeing and healthcare. J. Sens. 9628281 (2020). https://doi.org/10.1155/2020/9628281

  33. Baghelani, M., Abbasi, Z., Daneshmand, M., Light, P.E.: Noninvasive continuous-time glucose monitoring system using a chipless printable sensor based on split ring microwave resonators. Sci. Rep. 10(1), 12980 (2020). https://doi.org/10.1038/s41598-020-69547-1

    Article  Google Scholar 

  34. Dorsaf, G., Yacine, M., Khaled, N.: Non-invasive glucose monitoring: application and technologies. Curr. Res. Diabetes Obes. J. 8(3), 1–5 (2018). https://doi.org/10.19080/crdoj.2018.08.555740

  35. Tang, L., Chang, S.J., Chen, C.J., Liu, J.T.: Non-invasive blood glucose monitoring technology: a review. Sensors (Basel) 20(23), 6925 (2020). https://doi.org/10.3390/s20236925

  36. Carlos, A., Benhard, W.: Current development in noninvasive glucose monitoring. Med. Eng. Phys. (2008). https://doi.org/10.1016/j.medengphy.2007.06.003

    Article  Google Scholar 

  37. U.S Food and Drug Administration: Medical device overview. https://www.fda.gov/industry/regulated-products/medical-device-overview

  38. Danne, T., Nimri, R., Battelino, T., Bergenstal, R.M., Close, K.L., DeVries, J.H., Garg, S., Heinemann, L., Hirsch, I., Amiel, S.A., et al.: International consensus on use of continuous glucose monitoring. Diabetes Care 40, 1631–1640 (2017). https://doi.org/10.2337/dc17-1600

    Article  Google Scholar 

  39. International Organization for Standardization (ISO). https://www.iso.org

  40. Lee, H., Hong, Y.J., Baik, S., Hyeon, T., Kim, D.H.: Enzyme-based glucose sensor: from invasive to wearable device. Adv. Healthc. Mater. 7, e1701150 (2018). https://doi.org/10.1002/adhm.201701150

    Article  Google Scholar 

  41. Oliver, N.S., Toumazou, C., Cass, A.E., Johnston, D.G.: Glucose sensors: A review of current and emerging technology. Diabet. Med. 26, 197–210 (2009). https://doi.org/10.1111/j.1464-5491.2008.02642.x

    Article  Google Scholar 

  42. Wang, J.: Electrochemical glucose biosensors. Chem. Rev. 108, 814–825 (2008). https://doi.org/10.1021/cr068123a

    Article  Google Scholar 

  43. Chen, L., Hwang, E., Zhang, J.: Fluorescent nanobiosensors for sensing glucose. Sensors 18, 1440 (2018). https://doi.org/10.3390/s18051440

    Article  Google Scholar 

  44. Klonoff, D.C.: Overview of fluorescence glucose sensing: a technology with a bright future. J. Diabetes Sci. Technol. 6, 1242–1250 (2012). https://doi.org/10.1177/193229681200600602

    Article  Google Scholar 

  45. Thatikayala, D., Ponnamma, D., Sadasivuni, K.K., Cabibihan, J.-J., Al-Ali, A.K., Malik, R.A., Min, B.: Progress of advanced nanomaterials in the non-enzymatic electrochemical sensing of glucose and H2O2. Biosensors 10(11), 151–185 (2020). https://doi.org/10.3390/bios10110151

    Article  Google Scholar 

  46. Dayakar, T., Rao, K.V., Bikshalu, K., Rajendar, V., Park, S.H.: Novel synthesis and characterization of Ag@TiO2 core shell nanostructure for non-enzymatic glucose sensor. Appl. Surf. Sci. 435, 216–224 (2018). https://doi.org/10.1016/j.apsusc.2017.11.077

  47. Dayakar, T., Kalagadda, V.R., Park, J., Sadasivuni, K.K., Ramachandra Rao, K., Jaya Rambabu, N.: Non-enzymatic biosensing of glucose based on silver nanoparticles synthesized from Ocimum tenuiflorum leaf extract and silver nitrate. Mater. Chem. Phys. 216 (2018). https://doi.org/10.1016/j.matchemphys.2018.05.046

  48. Yempally, S., Hegazy, S.M., Zly, A., Nennan, K., Sadasivani, K.K.: Noninvasive diabetic sensor based on cellulose acetate/graphene nanocomposite. Macromol. Symp. 392(1) (2020). Special issue: Advances in Materials Science -ICAMS 2020. 2000024. https://doi.org/10.1002/masy.202000024

  49. Bumbrah, G.S., Sharma, R.M.: Raman spectroscopy—basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt. J. Forens. Sci. 6, 209–215 (2016). https://doi.org/10.1016/j.ejfs.2015.06.001

    Article  Google Scholar 

  50. Pandey, R., Paidi, S.K., Valdez, T.A., Zhang, C., Spegazzini, N., Dasari, R.R., Barman, I.: Noninvasive monitoring of blood glucose with Raman spectroscopy. Acc. Chem. Res. 50, 264–272 (2017). https://doi.org/10.1021/acs.accounts.6b00472

    Article  Google Scholar 

  51. McShane, M., Stein, E.: Fluorescence-based glucose sensors. In: Cunningham, D.D., Stenken, J.A. (eds.) In Vivo Glucose Sensing, vol. 174, pp. 269–316. Wiley, New Jersey (2009). https://doi.org/10.1002/9780470567319

  52. Barone, P.W., Parker, R.S., Strano, M.S.: In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: design, fluorophore properties, advantages, and disadvantages. Anal. Chem. 77, 7556–7562 (2005). https://doi.org/10.1021/ac0511997

    Article  Google Scholar 

  53. Kottmann, J., Rey, J.M., Sigrist, M.W.: Mid-infrared photoacoustic detection of glucose in human skin: towards noninvasive diagnostics. Sensors 16, 1663 (2016). https://doi.org/10.3390/s16101663

    Article  Google Scholar 

  54. Tanaka, Y., Tajima, T., Seyama, M.: Differential photoacoustic spectroscopy with continuous wave lasers for noninvasive blood glucose monitoring. IEEE Sens. J. 20(8), 4453–4458 (2018). https://doi.org/10.1109/JSEN.2019.2962251

  55. Agelet, L.E., Hurburgh, C.R.: A tutorial on near infrared spectroscopy and its calibration. Crit. Rev. Anal. Chem. 40, 246–260 (2010). https://doi.org/10.1080/10408347.2010.515468

  56. Schaare, P.N., Fraser, D.G.: Comparison of reflectance, interactance and transmission modes of visible-near infrared spectroscopy for measuring internal properties of kiwifruit (Actinidia chinensis) Postharvest Biol. Technol. 20(2), 175–184 (2000). https://doi.org/10.1016/s0925-5214(00)00130-7

  57. Gourzi, M., Rouane, A., Guelaz, R., Alavi, M.S., McHugh, M.B., Nadi, M., Roth, P.: Noninvasive glycaemia blood measurements by electromagnetic sensor: study in static and dynamic blood circulation. J. Med. Eng. Technol. 29, 22–26 (2005). https://doi.org/10.1080/03091900410001720247

    Article  Google Scholar 

  58. Melikyan, H., Danielyan, E., Kim, S., Kim, J., Babajanyan, A., Lee, J., Friedman, B., Lee, K.: Noninvasive in vitro sensing of d-glucose in pig blood. Med. Eng. Phys. 34, 299–304 (2012). https://doi.org/10.1016/j.medengphy.2011.07.020

    Article  Google Scholar 

  59. Vashist, S.K.: Noninvasive glucose monitoring technology in diabetes management: a review. Anal. Chim. Acta 750, 16–27 (2012). https://doi.org/10.1016/j.aca.2012.03.043

    Article  Google Scholar 

  60. Tamar, L., Avner, G., Yulia, M., Keren, H., Karnit, B.: Noninvasive glucose monitoring: a review of challenges and recent advances. Curr. Trends Biomed. Eng. Biosci. 6(5), 555696 (2017). https://doi.org/10.19080/ctbeb.2017.06.555696

  61. Teymourian, H., Barfidokht, A., Wang, J.: Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem. Soc. Rev. 49(21), 7671–7709 (2020). https://doi.org/10.1039/d0cs00304b

  62. Shokrekhodaei, M., Quinones, S.: Review of noninvasive glucose sensing techniques: optical, electrical and breath acetone. Sensors 20, 1251 (2020). https://doi.org/10.3390/s20051251

    Article  Google Scholar 

  63. Bhide, A., Kumar, S.M., Saini, A., Prasad, S.: Simultaneous lancet-free monitoring of alcohol and glucose from low-volumes of perspired human sweat. Sci. Rep. 8, 6507 (2018). https://doi.org/10.1038/s41598-018-24543-4

    Article  Google Scholar 

  64. Koschinsky, T., Heinemann, L.: Sensors for glucose monitoring: technical and clinical aspects. Diabetes Metab. Res. Rev. 17(2), 113–123 (2001). https://doi.org/10.1002/dmrr.188

  65. Mandal, D., Biswas, S., Chowdhury, A., De, D., Tiwary, C.S., Gupta, A.N., Singh, T., Chandra, A.: Hierarchical cage-frame type nanostructure of CeO2 for bio sensing applications: from glucose to protein detection. Nanotechnology 32(2), 1–15 (2021). https://doi.org/10.1088/1361-6528/abb8a8

    Article  Google Scholar 

  66. Zhang, R., Liu, S., Jin, H., Luo, Y., Zheng, Z., Gao, F., Zheng, Y.: Noninvasive electromagnetic wave sensing of glucose. Sensors 19(1151), 1–20 (2019). https://doi.org/10.3390/s19051151

    Article  Google Scholar 

  67. Hanna, J., Bteich, M., Tawk, Y., Ramadan, A.H., Dia, B., Asadallah, F.A., Eid, A., Kanj, R., Costantine, J., Eid, A.A.: Noninvasive, wearable, and tunable electromagnetic multisensing system for continuous glucose monitoring, mimicking vasculature anatomy. Sci. Adv. 24(6), 1–11 (2020). https://doi.org/10.1126/sciadv.aba5320

    Article  Google Scholar 

  68. Bandodkar, A.J., Jia, W.Z., Yardimci, C., Wang, X., Ramirez, J., et al.: Tattoo based noninvasive glucose monitoring: a proof-of-concept study. Anal. Chem. 8(1), 394–398 (2015). https://doi.org/10.1021/ac504300n

    Article  Google Scholar 

  69. Sempionatto, J.R., Moon, J.-M., Wang, J.: Touch-based fingertip blood-free reliable glucose monitoring: personalized data processing for predicting blood glucose concentrations. ACS Sens. 6(5), 1875–1883 (2021). https://doi.org/10.1021/acssensors.1c00139

    Article  Google Scholar 

  70. Gao, W., Emaminejad, S., Nyein, H.Y.Y., Challa, S., Chen, K.V., Peck, A., Fahad, H.M., Ota, H., Shiraki, H., Kiriya, D., Lien, D.H., Brooks, G.A., Davis, R.W., Javey, A.: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016). https://doi.org/10.1038/nature16521

    Article  Google Scholar 

  71. Lundsgaard-Nielsen, S.M., Pors, A., Banke, S.O., Henriksen, J.E., Hepp, D.K., Weber, A.: Critical-depth Raman spectroscopy enables home-use noninvasive glucose monitoring. PLoS ONE 13(5), 1–11 (2018). https://doi.org/10.1371/journal.pone.0197134

    Article  Google Scholar 

  72. Adarsh, V., Adarsh, B., Bhagavantu, K., Nagavishnu, S., Veerabhadrappa, T.: Implementation of non-invasive blood glucose monitoring system. Int. J. Eng. Res. Technol. 07(06), 1–4 (2020)

    Google Scholar 

  73. Ali, H., Bensaali, F., Jaber, F.: Novel approach to non-invasive blood glucose monitoring based on transmittance and refraction of visible laser light. IEEE 5, 9163–9174 (2017)

    Google Scholar 

  74. Habbu, S., Dale, M., Ghongade, R.: Estimation of blood glucose by noninvasive method using photoplethysmography. Sådhanå 44(6), 135 (2019). https://doi.org/10.1007/s12046-019-1118-9

    Article  Google Scholar 

  75. Losoya-Leal, A., Camacho-León, S., Dieck-Assad, G., Martínez-Chapa, S.O.: State of the art and new perspectives in non-invasive glucose sensors. Rev. Mex. Ing. Biomed. 33(1), 41–52 (2012)

    Google Scholar 

  76. Integrity Applications. http://www.integrity-app.com/the-diabetes-market/glucose-monitoring-market/

  77. Wikipedia. https://en.wikipedia.org/wiki/Noninvasive_glucose_monitor

  78. Aihara, M., Kubota, N., Minami, T., Shirakawa, R., Sakurao, Y., Takanori, H., Masahiko, I., Iseki, T., Tetsuya, K., Ryo, S., Satoshi, U., Hideaki, J., Makota, A., Toshimasa, Y., Toshiya, S., Takashi, K.: Association between tear and blood glucose concentrations: random intercept model adjusted with confounders in tear samples negative for occult blood. J. Diabetes Investig. 12(2), 266–276 (2020). https://doi.org/10.1111/jdi.13344

    Article  Google Scholar 

  79. Prasad, S.N., Weerathunge, P., Karim, M.N., Anderson, S., Hashmi, S., Mariathomas, P.D., Bansal, V., Ramanathan, R.: Noninvasive detection of glucose in human urine using a color-generating copper NanoZyme. Anal. Bioanal. Chem. 413, 1279–1291 (2021). https://doi.org/10.1007/s00216-020-03090-w

    Article  Google Scholar 

  80. Pleus, S., Schauer, S., Jendrike, N.: Proof of concept for a new Raman-based prototype for noninvasive glucose monitoring. J. Diabetes Sci. Technol. 15(1), 11–18 (2021). https://doi.org/10.1177/1932296820947112

    Article  Google Scholar 

  81. https://www.labiotech.eu/best-biotech/blood-suger-monitor-diabetes/

  82. Zhang, B., Shankara, S.B., Ye, S., Zhang, H.: Design and analysis of high-risk medical device clinical trials for diabetes monitoring and treatment: a review. Int. J. Pancreatol. 2(4), 23–130 (2019). https://doi.org/10.1097/jp9.0000000000000030

    Article  Google Scholar 

  83. Boulton, A.J.M., Del Prato, S.: Regulation of medical devices used in diabetology in Europe: time for reform. Diabetologia 55, 2295–2297 (2012). https://doi.org/10.1007/s00125-012-2580-7

    Article  Google Scholar 

  84. Globe Newswire: The Europe CGM Market, Users, Reimbursement Policy, Continuous Glucose Monitoring Components (Glucose Sensor, Transmitter), Diabetes (Type1 & 2) Population, & Forecast (2019)

    Google Scholar 

  85. Frontino, G., Meschi, F., Bonfanti, R., Rigamonti, A., Battaglino, R., Favalli. V., Bonura, C., Ferro, G., Chiumello, G.: Future perspectives in glucose monitoring sensors. US Endocrinol. 14(9), 6–11 (2013). https://doi.org/10.17925/EE.2013.09.01.21

  86. So, C.-F., Choi, K.-S., Wong, T.K.S., Chung, J.W.Y.: Recent advances in noninvasive glucose monitoring. Med Devices (Auckland) 5, 45–52 (2012). https://doi.org/10.2147/mder.s28134

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivas Ankanagari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tamilselvi, M., Raj, P., Vidule, R.R., Ankanagari, S. (2022). Commercial Non-invasive Glucose Sensor Devices for Monitoring Diabetes. In: Sadasivuni, K.K., Cabibihan, JJ., A M Al-Ali, A.K., Malik, R.A. (eds) Advanced Bioscience and Biosystems for Detection and Management of Diabetes. Springer Series on Bio- and Neurosystems, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-99728-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99728-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99727-4

  • Online ISBN: 978-3-030-99728-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics