Skip to main content

The Institute of Physics in the Post-war Period. Part 2: Some Highlights on Research in the Post-war Period

  • Chapter
  • First Online:
The Milan Institute of Physics

Part of the book series: History of Physics ((HIPHY))

  • 215 Accesses

Abstract

Soon after the end of WWII, the cosmic ray physics group started again their researches with cloud chambers and counters on some locations on the Alps. Their researches culminated with the construction of the huge multi-plate cloud chamber, built by Fiorini, Giacconi and Succi, and used on the Alps. Among the results obtained by them was the observational proof of the non-existence of the varytrons erroneously discovered by Alikhanian. Another group working on cosmic ray physics started with Occhialini’s arrival to Milan. He created an international group, working in strict collaboration with other other groups in Italy and abroad, with nuclear emulsions exposed to cosmic radiation on balloons. The Milan group was an important member of the G-stack collaboration, with the exposition of a giant stack of emulsions to cosmic rays for the study of mesons, strange particles and hyperons, and of the K\(^-\)-collaboration with the exposition of a stack to artificially produced particles at the Bevatron for the study of strange particles. Nuclear physics research was carried on in particular in collaboration with the CISE and the INFN. An important field of research was the theoretical study of nuclear reactors. Carlo Salvetti and Sergio Gallone developed solutions of the equations for the transient regime and the working conditions of nuclear reactors. The experimental study was based on electrostatic machines built at the CISE and INFN. Theoretical physics researches covered a wide range of topics, from the phenomenology of cosmic rays to the ergodic conditions in quantum theory. An interesting research group was that of solid state physics, one of the first in Italy, founded by Fumi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reminiscences on these researches can be found in: [1,2,3]. On the researches with cloud chambers by physicists of the Milan Institute of Physics see [4,5,6].

  2. 2.

    On the history of the Testa Grigia laboratory, see [17]. The Testa Grigia laboratory was planned by Gilberto Bernardini, with the help of Ettore Pancini and Marcello Conversi, on the Italian-Swiss border close to the Teudolo Pass. It was used by physicists from Bologna, Milan, Rome and Turin universities.

  3. 3.

    Dopolavoro, lit. “after work”, were the recreational activities a company organized and paid for its employees.

  4. 4.

    Centro APICE, Historical Archive Milan University: serie 7, busta 77, Scienze: “Relazione sull’attività dell’Istituto di Fisica dell’Università di Milano dalla sua fondazione ad oggi e sulla sua situazione attuale”, February 2, 1949: pp. 15–21.

  5. 5.

    Milan University, BICF Library, Polvani Papers, 10, 1, 2.6: Letter from Carlo Succi to Guido Tagliaferri, June 1, 1955.

  6. 6.

    Milan University, BICF Library, Polvani Papers, 10, 1: 2.6: Letter from Carlo Succi to Guido Tagliaferri. October 17, 1956.

  7. 7.

    Milan University, BICF Library, Polvani Papers, 10, 1, 2:6: Letter from Carlo Succi to Guido Tagliaferri, August 12, 1956.

  8. 8.

    On the role played by Occhialini in the development of the nuclear emulsion technique, see: [57].

  9. 9.

    On the collaborations among nuclear emulsion groups in Europe during the 1950s see: [60].

  10. 10.

    On balloon flights for cosmic ray research in the Mediterranean see: [61, 62].

  11. 11.

    Stripped emulsions were already known, but they had not been used for scientific research because it had been impossible to identify with a sufficient precision their relative position after their processing. The solution they found to face this problem was to mount the stripped emulsions on glass before their processing. The precision requested by scientific research for this new technique was eventually reached by Waller of Ilford so that they could be used for the 1952 flights [58].

  12. 12.

    Powell Papers. Bristol University Special Collections DM 1947/E.303: Letter from Cecil Powell to Giuseppe Occhialini, October 8, 1951.

  13. 13.

    The Milan physicists contributed with five talks, four of the nuclear emulsion group and one of the cloud chamber group: [65,66,67,68,69].

  14. 14.

    The aim of these researches was the production of \(^{239}\)Pu from \(^{238}\)U.

  15. 15.

    Zoé - Zéro de puissance Oxyde d’uranium Eau lourde (Zero power, Uranium oxidum, Heavy water) was planned by Frédéric Joliot-Curie and built in Paris in 1947. It was the first French nuclear reactor.

  16. 16.

    NRX - National Research Experimental. It was built in 1947.

  17. 17.

    Rainwater’s model was a mixed model, intermediate between the drop model and the shell model.

  18. 18.

    On the reception of this paper see: [182, 183].

  19. 19.

    The Pavia Cockcroft-Walton is currently on exhibition at the Museum of Electrical Technique in Pavia.

  20. 20.

    A first determination of the cross section of uranium for slow neutrons had been obtained at the CISE in 1950 [186, 187], but it did not cover the whole range of energy.

  21. 21.

    On the Italian researches on matter in the solid state before the Second World War, see: [193]; after the Second World War, see: [194].

References

  1. Tagliaferri G (1989) Post war restarting of cosmic ray research at Milan University. In: De Maria M, Grilli M, Sebastiani F (eds) The restructuring of physical sciences in Europe and the United States 1945–1960. World Scientific, Singapore, pp 150–160

    Google Scholar 

  2. Bonolis L (2003) Giorgio Salvini. In: Bonolis L, Melchionni MG (eds) Fisici italiani del tempo presente: Storie di vita e di pensiero. Venezia, Marsilio Editori, pp 365–447

    Google Scholar 

  3. Bonolis L (2008) Giorgio Salvini. In: Bonolis L (ed) Maestri e allievi nella fisica italiana del Novecento. Pavia, La Goliardica Pavese, pp 95–142

    Google Scholar 

  4. Beretta V (2004) Lo studio dei raggi cosmici a Milano con la camera a nebbia tra il 1945 e il 1960. Graduation thesis in Physics, Milan University, 2004-05 academic year, tutors: P. Tucci, G. Vegni, L. Gariboldi

    Google Scholar 

  5. Gariboldi L (2006) Studying cosmic ray physics in Milan: the four cloud chambers (1938-1960). In: Wyka E, Kluza M, Zawada AK (eds) East and west. The common European heritage. Jagiellonian University Museum, Cracow, pp 167–170

    Google Scholar 

  6. Beretta V, Gariboldi L (2008) The post-war reconstruction of physics in Milan: cloud chambers and cosmic rays (1945-1960). In: SISFA: Atti del 25 congresso nazionale di storia della fisica e dell’astronomia, C02.1-C02.4. Milano, SISFA

    Google Scholar 

  7. Auger P, Daudin J, Ehrenfest P, Fréon RA, Maze R (1939) Extensive cosmic-ray showers. Rev Mod Phys 11:288–291

    Article  ADS  Google Scholar 

  8. Mura A, Salvini G, Tagliaferri G (1947) Osservazioni in camera di Wilson sullo sparpagliamento laterale delle particelle negli sciami estesi. Il Nuovo Cimento 4:102–111

    Article  ADS  Google Scholar 

  9. Mura A, Salvini G, Tagliaferri G (1947) Sulla presenza di una componente penetrante negli sciami estesi dell’aria. Il Nuovo Cimento 4:10–23

    Article  ADS  Google Scholar 

  10. Tagliaferri G, Salvini G (1947) Sulla componente penetrante degli sciami dell’aria. Il Nuovo Cimento 4:279–282

    Article  ADS  Google Scholar 

  11. Tagliaferri G, Salvini G (1949) La produzione delle particelle penetranti negli sciami estesi dell’aria. Il Nuovo Cimento 6:108–124

    Article  ADS  Google Scholar 

  12. Tagliaferri G, Salvini G (1949) Local production of the penetrating particles in extensive showers. Phys Rev 75:1112

    ADS  Google Scholar 

  13. Salvini G (1946) Sull’assorbimento della radiazione cosmica a 2100 m. Il Nuovo Cimento 3:283–284

    Article  ADS  Google Scholar 

  14. Salvini G (1948) La distinzione delle componenti della radiazione cosmica nella bassa atmosfera e la frequenza relativa dei mesoni lenti. Il Nuovo Cimento 5:231–234

    Google Scholar 

  15. Salvini G (1948) Sull’ipotesi di un nuovo tipo di particella negli sciami estesi. Il Nuovo Cimento 5:104–106

    Article  ADS  Google Scholar 

  16. Salvini G (1949) Sulla struttura degli sciami estesi dell’aria. Il Nuovo Cimento 6:300–302

    Article  ADS  Google Scholar 

  17. Castagnoli C (1998) I 50 anni del laboratorio della Testa Grigia (a 3500 m s.l.m.). Quaderni di Storia della Fisica 3:53–56

    Google Scholar 

  18. Bernardini G, Longo C, Pancini E (1948) Relazione sulla costruzione del Laboratorio della Testa Grigia. La Ricerca Scientifica 18:91–92

    Google Scholar 

  19. Mura A (1948) La nuova Camera di Wilson dell’Istituto di Fisica dell’Università di Milano. La Ricerca Scientifica 18:1613–1616

    Google Scholar 

  20. Lovati A, Mura A, Salvini G, Tagliaferri G (1949) Alcune proprietà delle esplosioni nucleari nella radiazione cosmica. Il Nuovo Cimento 6:207

    Article  ADS  Google Scholar 

  21. Lovati A, Mura A, Tagliaferri G (1950) Proprietà delle particelle emesse nelle esplosioni nucleari e confronto tra le esplosioni in C e in Pb. Il Nuovo Cimento 7:36–37

    Article  ADS  Google Scholar 

  22. Lovati A, Mura A, Salvini G, Tagliaferri G (1949) Esplosioni nucleari in piombo e in carbonio, osservate in camera di Wilson. Supplemento al Nuovo Cimento 6:486–487

    Article  ADS  Google Scholar 

  23. Lovati A, Mura A, Salvini G, Tagliaferri G (1949) Nuclear interactions of the particles produced in cosmic ray bursts. Nature 163:1004–1006

    Article  ADS  Google Scholar 

  24. Lovati A, Mura A, Salvini G, Tagliaferri G (1949) Sulla natura e sul numero delle particelle penetranti nelle esplosioni nucleari prodotte nel piombo dalla radiazione cosmica. Il Nuovo Cimento 6:291–293

    Article  ADS  Google Scholar 

  25. Lovati A, Mura A, Salvini G, Tagliaferri G (1950) Mean free path of the particles produced in nuclear explosions and comparison between explosions in C and Pb. Phys Rev 77:284–285

    Article  ADS  Google Scholar 

  26. Heitler W, Jánossy L (1949) The multiplicities of Meson-showers and the absorption of meson-producing nucleon. Supplemento al Nuovo Cimento 6:499–503

    Article  ADS  MATH  Google Scholar 

  27. Lovati A, Mura A, Salvini G, Tagliaferri G (1950) Cloud chamber observation on the electromagnetic component from nuclear explosions and the development of the nuclear cascade. Il Nuovo Cimento 7:943–953

    Article  ADS  Google Scholar 

  28. Lovati A, Mura A, Succi C, Tagliaferri G (1951) Interaction mean free path of the particles emitted in cosmic ray nuclear explosions. Il Nuovo Cimento 8

    Google Scholar 

  29. Lovati A, Mura A, Tagliaferri G, Terra L (1951) Una camera di Wilson di grandi dimensioni per ricerche sulla radiazione cosmica. Il Nuovo Cimento 8:713–724

    Article  ADS  Google Scholar 

  30. Lovati A, Mura A, Tagliaferri G, Terrani S (1952) A cloud chamber analysis of cosmic rays at 3500 metres. Part A: the electronic component from nuclear disintegration in lead. Il Nuovo Cimento 9:946–958

    Google Scholar 

  31. Lovati A, Mura A, Tagliaferri G (1952) Neutral meson production in energetic nuclear encounters. Il Nuovo Cimento 9:205–209

    Article  ADS  Google Scholar 

  32. Lovati A, Mura A, Succi C, Tagliaferri G (1954) A cloud chamber analysis of cosmic radiation at 3500 metres. Part B: results on the hard and soft components. Il Nuovo Cimento 11:526–538

    Google Scholar 

  33. Giacconi R, Lovati A, Mura A, Succi C (1956) Osservazioni preliminari sullo sviluppo della cascata nucleare in piombo prodotta dalla radiazione cosmica a 3500 metri. Pubblicazione della sezione di Milano dell’Istituto Nazionale di Fisica Nucleare 108:1–4

    Google Scholar 

  34. Giacconi R, Lovati A, Mura A, Succi C (1956) High energy nuclear interactions in lead by cosmic ray protons at 3500 m. Il Nuovo Cimento 4:826–833

    Article  ADS  Google Scholar 

  35. Lovati A, Mura A, Succi C, Tagliaferri G (1953) A search for the production of the penetrating secondaries by \(\mu \)-mesons underground. Il Nuovo Cimento 10:105–107

    Article  ADS  Google Scholar 

  36. Amaldi E, Castagnoli C, Gigli A, Sciuti S (1952) On the interaction of cosmic rays with the matter under 50 metres water equivalent. Il Nuovo Cimento 9:969–1007

    Article  ADS  Google Scholar 

  37. Lovati A, Mura A, Succi C (1954) On the production of electronic component by fast \(\mu \)-mesons. Il Nuovo Cimento 11:92–95

    Article  ADS  Google Scholar 

  38. Lovati A, Mura A, Succi C, Tagliaferri G (1953) Further results on the interaction of cosmic rays underground. Il Nuovo Cimento 8:1201–1204

    Article  ADS  Google Scholar 

  39. Lovati A, Succi C (1954) Una camera di diffusione con campo magnetico per fisica nucleare. Il Nuovo Cimento 11:163–171

    Article  ADS  Google Scholar 

  40. Succi C, Tagliaferri G (1952) On the operation of the diffusion cloud chamber. Il Nuovo Cimento 9:1092–1102

    Article  ADS  Google Scholar 

  41. Giori C, Succi C (1957) Urto nucleare elastico di positroni da 2 MeV in argon. Il Nuovo Cimento 9:937–945

    Article  ADS  Google Scholar 

  42. Fiorini E, Giacconi R, Sichirollo AE, Succi C (1957) Osservazioni sul funzionamento di una camera di Wilson con surcompressione. Il Nuovo Cimento 6:355–363

    Article  ADS  Google Scholar 

  43. Fiorini E, Giacconi R, Succi C (1957) Una nuova camera di Wilson di grandi dimensioni. Il Nuovo Cimento 6:963–973

    Article  ADS  Google Scholar 

  44. Succi C (1957) Perché così grandi le camere di Wilson? Giornale di Fisica 2:39–41

    Google Scholar 

  45. Fiorini E, Giori C, Succi C, Moriggia C (1958) Il laboratorio dei raggi cosmici del “Sabbione.” Pubblicazione della sezione di Milano dell’Istituto Nazionale di Fisica Nucleare 119:1–10

    Google Scholar 

  46. Fiorini E, Giori C, Succi C, Moriggia C (1957) Il laboratorio per raggi cosmici del “Sabbione”. Supplemento Nuovo Cimento 6:129–138

    Google Scholar 

  47. Mondini R (2011) I varitroni di Alikhanian: la mancata conferma di nuove particelle nella radiazione cosmica. Graduation thesis in Physics, Milan University, 2011-12 academic year, tutor: L. Gariboldi

    Google Scholar 

  48. Burla F (2011) La mancata conferma di nuove particelle nella radiazione cosmica durante il secondo periodo particellare. Graduation thesis in Physics, Milan University, 2011-12 academic year, tutor: L. Gariboldi

    Google Scholar 

  49. Gariboldi L (2010) The failed acceptance of new particles in cosmic radiation. In: Hunger H, Seebacher F, Holzer G (eds) Styles of thinking in science and technology. Österreichische Akademie der Wissenschaften, Vienna, pp 985–990

    Google Scholar 

  50. Conversi M, De Munari GM, Egidi A, Fiorini E, Ratti S, Rubbia C, Succi C, Torelli G (1959) Dispositivo atto a selezionare nella radiazione cosmica eventuali particelle di massa intorno a 550 m\(_e\). Il Nuovo Cimento 12:130–137

    Article  ADS  Google Scholar 

  51. Conversi M, Fiorini E, Giori C, Rubbia C, Succi C, Torelli G (1957) Progetto di una esperienza per la ricerca di particelle di massa 550. In: International Conference on Mesons and Recently Discovered Particles, XIII. Padova, Ciclografia Borghero, pp 47–51

    Google Scholar 

  52. Conversi M, Fiorini E, Ratti S, Rubbia C, Succi C, Torelli G (1958) A search for particles of 550 m\(_e\). Il Nuovo Cimento 9:740–744

    Article  ADS  Google Scholar 

  53. Conversi M, De Munari GM, Egidi A, Fiorini E, Ratti S, Rubbia C, Succi C, Torelli G (1959) Ricerca sulla presenza di particelle di massa intorno a 550 m\(_e\) nella radiazione cosmica. Supplemento al Nuovo Cimento 11:457–458

    Google Scholar 

  54. Conversi M, De Munari GM, Egidi A, Fiorini E, Ratti S, Rubbia C, Succi C, Torelli G (1959) Ricerca sulla esistenza di particelle di massa intorno a 550 m\(_e\) nella radiazione cosmica. Il Nuovo Cimento 12:148–155

    Article  ADS  Google Scholar 

  55. Conversi M, De Munari GM, Egidi A, Fiorini E, Ratti S, Rubbia C, Succi C, Torelli G (1959) Mass-550 particle. Phys Rev 114:1150–1151

    Article  ADS  Google Scholar 

  56. Alikhanian AI, Shostakovich NV, Dadaian AT, Fedorov VN, Deriagin BN (1957) On the mass spectrum of charged cosmic ray particles. Sov J JETP 4:817–830

    Google Scholar 

  57. Gariboldi L (2007) Developing a technique for researches in cosmic-ray physics: nuclear emulsions from Bristol to Europe. In: Kokowski M (ed) The global and the local: the history of science and the cultural integration of Europe. The Press of the Polish Academy of Arts and Sciences, Cracow, pp 480–486

    Google Scholar 

  58. Belloni L, Dilworth CC (1989) From little to big. a story of a European postwar collaboration with nuclear emulsions. In: De Maria M, Grilli M, Sebastiani F (eds) The restructuring of physical sciences in Europe and the United States 1945–1960. World Scientific, Singapore, pp 732–744

    Google Scholar 

  59. Casteret N (1952) Loubens, Marcel (1923–1952). Bulletin du Comité National de Spéléologie 3:26–27

    Google Scholar 

  60. Grilli M, Sebastiani F (1996) Collaborations among nuclear emulsion groups in Europe during the 1950s. Rivista di Storia della Scienza 4:181–206

    Google Scholar 

  61. Olivotto C (2009) The G-stack collaboration (1954): an experiment of transition. Hist Stud Nat Sci 39:63–103

    Article  Google Scholar 

  62. Olivotto C (2007) The mediterranean flights and the G-stack collaboration (1952–1955): a first example of European collaboration in particle physics. In: Kokowski M (ed) The global and the local: the history of science and the cultural integration of Europe. The Press of the Polish Academy of Arts and Sciences, Cracow, pp 490–496

    Google Scholar 

  63. Dallaporta N (1989) Researches on high energy physics in Padova in the period 1945–1960. In: De Maria M, Grilli M, Sebastiani F (eds) The restructuring of physical sciences in Europe and the United States 1945–1960. World Scientific, Singapore, pp 532–547

    Google Scholar 

  64. Lock O (1990) Origins and early days of the bristol school of cosmic-ray physics. Eur J Phys 11:193–202

    Article  Google Scholar 

  65. Bonetti A, Levi-Setti R, Panetti M, Tomasini G (1953) Mass and decay of K-particles. Congrès international sur le rayonnement cosmique, pp 132–134

    Google Scholar 

  66. Bonetti A, Levi-Setti R, Locatelli B (1953) A possible case of V\(^0_1\) decay in photographic emulsion. Congrès international sur le rayonnement cosmique, pp 171–172

    Google Scholar 

  67. Bonetti A, Levi-Setti R, Panetti M, Tomasini G (1953) Observations on the decay of trans-protonic mass particles in photographic emulsion. Congrès international sur le rayonnement cosmique, pp 182–183

    Google Scholar 

  68. Dilworth C, Goldsack S, Scarsi L, Hoang TF (1953) Analysis of “jets”. Congrès international sur le rayonnement cosmique, pp 192–196

    Google Scholar 

  69. Lovati A, Mura A, Succi C, Tagliaferri G (1953) Production of penetrating particles by cosmic ray underground. Congrès international sur le rayonnement cosmique, pp 215–218

    Google Scholar 

  70. Leprince-Ringuet L (1982) Les Rayons Cosmiques et la Physique des Particules à l’École Polytechnique. Colloque International sur l’Histoire de la Physique des Particules/International Colloquium on the History of Particle Physics, Paris, France, 21-23 julliet 1982. Journal de Physique, Colloque C-8, supplément au n\(^{\circ }\) 12, Tome 43: C8-165–C8-168

    Google Scholar 

  71. Dalitz RH (1982) Strange particle theory in the cosmic ray period. Colloque International sur l’Histoire de la Physique des Particules/International Colloquium on the History of Particle Physics, Paris, France, 21-23 juillet 1982. Journal de Physique, Colloque C-8, supplément au né 12, Tome 43, C8-195–C8-205

    Google Scholar 

  72. Gell-Mann M (1989) Progress in elementary particle theory 1950–1964. In: Brown LM, Dresden M, Hoddeson L (eds) Pions to quarks: particle physics in the 1950s. Cambridge University Press, Cambridge, pp 694–711

    Chapter  Google Scholar 

  73. Dalitz RH (1957) K mesons and hyperons. Their strong and weak interactions. Rep Prog Phys 20:163–303

    Google Scholar 

  74. Bonetti A, Dilworth CC, Ladu M, Occhialini GPS (1954) Misure in lastre nucleari. Rendiconti dell’Accademia Nazionale dei Lincei 17:311–314

    Google Scholar 

  75. Dilworth CC, Occhialini GPS, Vermaesen L (1950) On processing nuclear emulsions. Part 1. Concerning temperature development. Bulletin du Centre de Physique Nucléaire de l’Université Libre de Bruxelles 13a

    Google Scholar 

  76. Bonetti A, Dilworth CC, Occhialini GPS (1951) On processing nuclear emulsions. Part II. After development techniques. Bulletin du Centre de Physique Nucléaire de l’Université Libre de Bruxelles 133b

    Google Scholar 

  77. Igiuni A, Occhialini GPS (1958) Operational methods for the processing of K.5 emulsions with the semi-automatic apparatus of brussels. Colloque de Photographie corpusculaire, Montréal

    Google Scholar 

  78. Dilworth CC, Occhialini GPS, Payne RM (1948) Processing thick emulsions for nuclear research. Nature 162:102–103

    Article  ADS  Google Scholar 

  79. Mortier M, Vermaesen L (1948) Discrimination de Particules Chargées dans les Plaques Photographiques Nucléaires. Bulletin du Centre de Physique Nucléaire de l’Université Libre de Bruxelles 5

    Google Scholar 

  80. Bates WJ, Occhialini GPS (1948) Applications of the reflecting microscope to the nuclear plates technique. Nature 161:473

    Article  ADS  Google Scholar 

  81. Scarsi L (1997) Giuseppe Occhialini: Il secondo periodo italiano (1950–1993). Il Nuovo Cimento 20C(5x):613–618

    ADS  Google Scholar 

  82. Alvial Cáceres G, Bonetti A, Dilworth CC, Ladu M, Morgan J, Occhialini GPS (1956) Measurements of ionization. Supplementi al Nuovo Cimento 2:244–254

    Google Scholar 

  83. Di Corato M, Locatelli B, Mignone G, Tomasini G (1954) Two examples of nuclear interactions of K-particles at rest. Supplementi al Nuovo cimento 12:270–272

    Article  Google Scholar 

  84. Davies JH, Evans D, Francois PE, Friedlander MW, Hillier R, Iredale P, Keefe D, Menon MGJ, Perkins DH, Powell CF, Bøggild J, Brene N, Fowler PH, Hooper HE, Ortel WCG, Scharff M, Crane L, Johnston RHW, O’Ceallaigh C, Anderson F, Lawlor G, Nevin TE, Alvial Cáceres G, Bonetti A, Di Corato M, Dilworth CC, Levi Setti R, Milone A, Occhialini GPS, Scarsi L, Tomasini G, Ceccarelli M, Grilli M, Merlin M, Salandin GA, Sechi B (1955) On the masses and modes of decay of heavy mesons produced by cosmic radiation. Il Nuovo Cimento 2,5:1063–1102

    Google Scholar 

  85. Brown RH, Camerini U, Fowler PH, Muirhead H, Powell CF, Ritson DM (1949) Observations with electron sensitive plates exposed to cosmic radiation. II. Further evidence for the existence of unstable charged particles of mass \(\sim \) 1000 m\(_e\) and observations on their mode of decay. Nature 163:82

    Google Scholar 

  86. Dalitz RH (1953) The decay of the \(\tau \)-meson. Proc Phys Soc A66:710–713

    Article  ADS  Google Scholar 

  87. Pais A (1952) Some remarks on the V-particles. Phys Rev 86:663–672

    Article  ADS  MATH  Google Scholar 

  88. Crussard J, Kaplon MF, Klarmann J, Noon JH (1954) Observation of a new decay mode of a heavy meson. Phys Rev 93:253

    Article  ADS  Google Scholar 

  89. Grégory BP, Lagarrigue A, Leprince-Ringuet L, Muller F, Peyrou C (1954) Étude des Mesons K Chargés, au Moyen de Deux Chambres de Wilson Superposées. Il Nuovo Cimento 11:292–309

    Article  ADS  Google Scholar 

  90. Armenteros R, Grégory BP, Hendel A, Lagarrigue A, Leprince-Ringuet L, Muller F, Peyrou C (1955) Further discussion of the \(K_{\mu }\) decay mode. Il Nuovo Cimento 1:915–941

    Article  Google Scholar 

  91. Bridge HS, De Staebler HC, Rossi BB, Sreekantan BV (1955) Evidence for heavy mesons with the decay processes \(K_{\pi 2} \rightarrow \pi + \pi ^0\) and \(K_{\mu 2} \rightarrow \mu + \nu \) from observations with a multiplate cloud chamber. Il Nuovo Cimento 1:874–887

    Article  Google Scholar 

  92. Hodson AL, Ballam J, Arnold WH, Harris DR, Rau RR, Reynolds GT, Treiman SB (1954) Cloud-chamber evidence for a charged counterpart of the theta\(^0\) particle. Phys Rev 96:1089–1095

    Article  ADS  Google Scholar 

  93. Baldo-Ceolin M, Belliboni G, Ceccarelli M, Grilli M, Sechi B, Vitale B, Zorn GT (1955) Particelle pesanti instabili in emulsioni nucleari. Il Nuovo Cimento 1:1180–1210

    Article  Google Scholar 

  94. O’Ceallaigh C (1951) Masses and modes of decay of heavy mesons. I. K-particles. Philos Mag 42:1032–1039

    Article  Google Scholar 

  95. Menon MGK, O’Ceallaigh C (1954) Observations on the decay of heavy mesons in photographic emulsions. Proc R Soc Lond A 221:292–318

    Article  ADS  Google Scholar 

  96. Dilworth CC, Manfredini A, Rochester GD, Waddington J, Zorn GT (1954) Report of the Commission on K-particles. Supplementi al Nuovo Cimento 12(2):433–447

    Article  ADS  Google Scholar 

  97. Dahanayake C, Francois PE, Fujimoto Y, Iredale P, Waddington CG, Yasin M (1954) Further evidence for the \(\beta \)-decay of \(K\)-mesons. Philos Mag 45:1219–1121

    Google Scholar 

  98. Friedlander MW, Keefe D, Menon MGK, Van Rossum L (1954) Evidence for the \(\beta \)-decay of a \(K\)-meson. Philos Mag 45:1043–1049

    Article  Google Scholar 

  99. Johnston RHW, O’Ceallaigh C (1955) Further evidence for the electron-decay of K-mesons. Philos Mag 46:393–400

    Article  Google Scholar 

  100. \(K^-\)-Collaboration (1959) The interaction and decay of \(K^-\)-mesons in photographic emulsion. Part I. General characteristics of \(K^-\)-interactions and analysis of eventsin which a charged \(\pi \)-meson is emitted. Il Nuovo Cimento 13:690–729

    Google Scholar 

  101. \(K^-\)-Collaboration (1959) The interaction of \(K^-\)-mesons with photographic emulsion nuclei. Part II. The emission of hyperons from \(K^-\)-interactions at rest. Il Nuovo Cimento 14,2:315–364

    Google Scholar 

  102. \(K^-\)-Collaboration (1960) The interaction and decay of \(K^-\)-mesons in photographic emulsion. Part III. Il Nuovo Cimento 15,6:873–898

    Google Scholar 

  103. Gilbert FC, Violet CE, White RS (1956) Negative \(K\)-particle elastic scattering from hydrogen. Phys Rev 103:1825–1827

    Article  ADS  Google Scholar 

  104. Alvarez LW, Bradner H, Falk-Vairant P, Gow JD, Rosenfeld AH, Solmitz FT, Tripp RD (1957) \(K^-\) interactions in hydrogen. Il Nuovo Cimento 5:1026–1046

    Article  ADS  Google Scholar 

  105. Garuccio A, Leone M (2002) La fisica teorica tra Milano e Pavia: 1945–1965. In: Giuliani G (ed) Per una storia della fisica italiana 1945–1965. La Goliardica Pavese, Pavia, pp 35–80

    Google Scholar 

  106. Salvetti C (1950) Criteri di calcolo di un reattore nucleare. Rendiconti del Seminario Matematico e Fisico di Milano 21:59–81

    Article  MATH  Google Scholar 

  107. Salvetti C (1949) Il regime transitorio dei reattori nucleari. Parte 1. Il Nuovo Cimento 6:303–326

    Google Scholar 

  108. Salvetti C (1949) Il regime transitorio dei reattori nucleari. Parte 2. Il Nuovo Cimento 6:413–434

    Google Scholar 

  109. Fermi E, Amaldi E (1936) On the absorption and the diffusion of slow neutrons. Phys Rev 50:899–928

    Article  ADS  Google Scholar 

  110. Hughes DJ, Dabbs J, Cahn A, Hall D (1948) Delayed neutrons from fission of U\(^{235}\). Phys Rev 73:111–124

    Article  ADS  Google Scholar 

  111. Gallone S, Salvetti C (1950) Metodi simbolici di calcolo relativi alla moltiplicazione dei neutroni. Il Nuovo Cimento 7:482–500

    Article  ADS  MathSciNet  Google Scholar 

  112. Gallone S, Salvetti C (1950) Influenza della funzione di sorgente sulla distribuzione dei neutroni termici in un mezzo moltiplicante. Il Nuovo Cimento 7:626–637

    Article  ADS  Google Scholar 

  113. Gallone S, Salvetti C (1950) Influenza del cammino libero medio dei neutroni veloci sulla distribuzione dei neutroni termici nei mezzi moltiplicanti. Il Nuovo Cimento 7:901–902

    Article  ADS  Google Scholar 

  114. Gallone S, Orsoni L, Salvetti C (1951) Sorgenti di neutroni variabili nel tempo in mezzi moltiplicanti. Il Nuovo Cimento 8:960–969

    Article  ADS  Google Scholar 

  115. Gallone S, Orsoni L (1952) Sul regime transitorio dei reattori nucleari con diffusione. Il Nuovo Cimento 9:269–273

    Article  ADS  Google Scholar 

  116. Gallone S (1953) Sul fattore di utilizzazione termica ed il tratto di diffusione termico in una pila eterogenea. Il Nuovo Cimento 10:1495–1497

    Google Scholar 

  117. Gallone S, Salvetti C (1951) Energy level perturbation of a particle in a spheroidal potential well. Phys Rev 82:551

    Article  ADS  MATH  Google Scholar 

  118. Feenberg E, Hammack KC (1951) A note on Rainwater’s spheroidal nuclear model. Phys Rev 81:285

    Google Scholar 

  119. Gallone S, Salvetti C (1951) A proposito dei momenti magnetici dei nuclei speculari. Il Nuovo Cimento 8:502–503

    Article  ADS  Google Scholar 

  120. Rainwater J (1950) Nuclear energy level argument for a spheroidal nuclear model. Phys Rev 79:432–434

    Article  ADS  MATH  Google Scholar 

  121. Gallone S, Salvetti C (1951) Un modello nucleare asimmetrico. Il Nuovo Cimento 8:970–976

    Article  ADS  Google Scholar 

  122. Gallone S, Salvetti C (1951) An asymmetric nuclear model. Phys Rev 84:1064

    Article  ADS  MATH  Google Scholar 

  123. Gallone S, Salvetti C (1953) Liquid drop behaviour of an independent particle nuclear model. Il Nuovo Cimento 10:145–150

    Article  ADS  Google Scholar 

  124. Caldirola P (1953) Theoretical consideration of isotope separation by gaseous diffusion through a porous barrier. Rapporto CISE R-34

    Google Scholar 

  125. Caldirola P (1953) Considerazioni teoriche sulla separazione di isotopi per diffusione gassosa attraverso una parete porosa. Relazione CISE 34

    Google Scholar 

  126. Caldirola P, Selmi L (1954) Considerazioni teoriche sulla separazione di isotopi per diffusione gassosa attraverso una parete porosa: II, effetti della parete. Relazione CISE 41

    Google Scholar 

  127. Caldirola P (1956) Separazione dell’U\(^{235}\). Supplemento Nuovo Cimento 3:74

    MathSciNet  Google Scholar 

  128. Caldirola P, Fiocchi R (1959) Separazione degli isotopi dell’uranio. Rendiconti Centro di Studi Nucleari di Ispra 24

    Google Scholar 

  129. Caldirola P, Rossi G (1957) Effetti isotopici nell’assorbimento di gas su solidi. Il Nuovo Cimento 5:1316–1332

    Article  ADS  Google Scholar 

  130. Caldirola P, Rossi G (1957) Influenza dell’adsorbimento e della migrazione superficiale sulla separazione isotopica nella diffusione di un gas attraverso una parete porosa. Il Nuovo Cimento 5:1374–1376

    Article  ADS  Google Scholar 

  131. Caldirola P (1959) Influenza dello strato limite sulla separazione isotopica nella diffusione di un gas attraverso una parete porosa. Studia Ghisleriana 2:93

    Google Scholar 

  132. Ferretti B (1948) Sull’assorbimento dei mesoni prodotti artificialmente. Il Nuovo Cimento 5:209–211

    Article  ADS  Google Scholar 

  133. Ferretti B (1948) Sulla cattura atomica dei mesoni lenti. Il Nuovo Cimento 5:325–356

    Article  ADS  Google Scholar 

  134. Caldirola P (1949) Considerazioni teoriche sulla generazione e sull’eccesso positivo della componente mesonica nella radiazione cosmica. Il Nuovo Cimento 6:565–584

    Article  ADS  Google Scholar 

  135. Caldirola P, Loinger A (1950) Eccesso positivo e molteplicità di produzione dei mesoni. Il Nuovo Cimento 7:161–165

    Article  ADS  Google Scholar 

  136. Caldirola P, Zin G (1950) Effetto di latitudine sulla componente nucleonica della radiazione cosmica. Il Nuovo Cimento 7:575–588

    Article  ADS  Google Scholar 

  137. Caldirola P, Gulmanelli P (1951) Distribuzione nell’atmosfera delle componenti mesonica ed elettronica della radiazione cosmica. Il Nuovo Cimento 8:229–242

    Google Scholar 

  138. Caldirola P, Fieschi R, Gulmanelli P (1951) Effetto di latitudine sulla distribuzione dei mesoni nell’atmosfera. Il Nuovo Cimento 8:508–511

    Article  ADS  Google Scholar 

  139. Caldirola P, Fieschi R, Gulmanelli P (1953) A phenomenological theory of cosmic radiation in the atmosphere. Il Nuovo Cimento 9:5–35

    Article  ADS  MATH  Google Scholar 

  140. Caldirola P, Fieschi R, Gulmanelli P (1952) Teoria fenomenologica del comportamento della radiazione cosmica nell’atmosfera. Studia Ghisleriana 1:105

    Google Scholar 

  141. Duimio F (1955) Sull’energia di legame dell’H\(_3\). Il Nuovo Cimento 1:688–693

    Google Scholar 

  142. Duimio F (1956) On the binding energies of very light hyperfragments. Supplemento Nuovo Cimento 4:637–638

    Article  ADS  Google Scholar 

  143. Duimio F (1955) Considerazioni sui decadimenti dei mesoni \(\pi \) e \(K\) in fermioni leggeri. Il Nuovo Cimento 2:1308–1316

    Article  ADS  Google Scholar 

  144. Caldirola P (1946) Relativistic correction in calculating the magnetic moment of deuteron. Phys Rev 69:608–610

    Article  ADS  Google Scholar 

  145. Caldirola P (1947) Relativistic correction in the evaluation of the deuteron magnetic moment. Il Nuovo Cimento 4:89–101

    Article  ADS  Google Scholar 

  146. Corben HC (1952) A reformulation of field theory. Il Nuovo Cimento 9:580–596

    Article  ADS  MathSciNet  MATH  Google Scholar 

  147. Caldirola P, Gulmanelli P (1952) Su una nuova equazione ondulatoria per una particella a spin 1/2. Il Nuovo Cimento 9:835–845

    ADS  MathSciNet  MATH  Google Scholar 

  148. Caldirola P (1954) Spiegazione classica del momento magnetico anomalo dell’elettrone. Il Nuovo Cimento 11:108–110

    Article  ADS  MATH  Google Scholar 

  149. Caldirola P (1953) Sull’equazione del moto dell’elettrone nell’elettrodinamica classica. Il Nuovo Cimento 10:1747–1752

    Article  ADS  MathSciNet  MATH  Google Scholar 

  150. Caldirola P, Duimio F (1954) Introduzione di una lunghezza fondamentale nella teoria classica dell’elettrone. Il Nuovo Cimento 12:699–732

    Article  ADS  MathSciNet  Google Scholar 

  151. Bohm D, Weinstein M (1948) The self-oscillations of a charged particle. Phys Rev 74:1789–1798

    Article  ADS  MATH  Google Scholar 

  152. Caldirola P (1955) Sull’irraggiamento dell’elettrone nell’elettrodinamica classica. Il Nuovo Cimento 1:269–271

    Article  Google Scholar 

  153. Caldirola P (1955) Sull’equazione del positone nell’elettrodinamica classica. Il Nuovo Cimento 1:347–350

    Article  Google Scholar 

  154. Caldirola P (1955) Sull’introduzione di un intervallo di tempo fondamentale nella teoria dell’elettrone. Il Nuovo Cimento 1:742–743

    Article  Google Scholar 

  155. Caldirola P (1976) On the introduction of a fundamental interval of time in quantum mechanics. Lettere al Nuovo Cimento 16:151–155

    Article  Google Scholar 

  156. Caldirola P (1977) The chronon and uncertainty relations in the theory of the excited-mass states of the electron. Lettere al Nuovo Cimento 20:632–634

    Article  Google Scholar 

  157. Caldirola P (1977) Chronon in quantum theory. Lettere al Nuovo Cimento 18:465–468

    Article  Google Scholar 

  158. Caldirola P (1978) The chronon in the quantum theory of the electron and the existence of the heavy leptons. Il Nuovo Cimento A 45:549–579

    Article  ADS  MathSciNet  Google Scholar 

  159. Caldirola P (1980) The introduction of the Chronon in the electron theory and a charged-lepton mass formula. Lettere al Nuovo Cimento 27:225–228

    Article  Google Scholar 

  160. Caldirola P (1956) A new model of classical electron. Supplemento al Nuovo Cimento 3:297–343

    Article  ADS  MathSciNet  MATH  Google Scholar 

  161. Prosperi GM, Tosi C (1955) Sulle connessioni matematiche fra le teorie classiche dell’elettrone di Feynman e di Rzewuski. Il Nuovo Cimento 2:1342–1344

    Article  ADS  Google Scholar 

  162. Cirelli R (1955) Sul moto di un elettrone investito da un impulso elettromagnetico istantaneo. Il Nuovo Cimento 1:260–262

    Article  Google Scholar 

  163. Albertoni S, Cugiani M (1951) Sul problema del cambiamento di variabili nella teoria delle distribuzioni. Il Nuovo Cimento 8:874–888

    Article  ADS  MathSciNet  MATH  Google Scholar 

  164. Albertoni S, Cugiani M (1953) Sul problema del cambiamento di variabili nella teoria delle distribuzioni (II). Il Nuovo Cimento 10:157–173

    Article  ADS  MathSciNet  MATH  Google Scholar 

  165. Albertoni S, Duimio F (1957) Hilbert spaces in quantum field theories. Il Nuovo Cimento 6:1193–1205

    Article  ADS  MathSciNet  MATH  Google Scholar 

  166. Bocchieri P, Montaldi E (1957) Sull’operatore hamiltoniano delle teorie beta. Il Nuovo Cimento 6:710–718

    Article  ADS  MathSciNet  MATH  Google Scholar 

  167. Schwinger J (1948) Quantum electrodynamics. I. A covariant formulation. Phys Rev 74:1439–1461

    Article  ADS  MathSciNet  MATH  Google Scholar 

  168. Tomonaga S (1946) On a relativistically invariant formulation of the quantum theory of wave fields. Prog Theor Phys 1:27–42

    Article  ADS  MathSciNet  MATH  Google Scholar 

  169. Bocchieri P, Loinger A (1955) Sulla relazione fra la teoria di Tomonaga-Schwinger e quella di Dirac-Fock-Podolsky. Il Nuovo Cimento 11:314–319

    Article  ADS  MathSciNet  MATH  Google Scholar 

  170. Bocchieri P, Loinger A, Prosperi GM (1956) Campi fermionici e metodo di quantizzazione di Feynman. Il Nuovo Cimento 3:832–834

    Article  ADS  Google Scholar 

  171. Cirelli R, Esteve Pastor A (1958) Il metodo funzionale di Feynman in un semplice modello di teoria dei campi. Il Nuovo Cimento 9:560–563

    Article  ADS  MATH  Google Scholar 

  172. Gulmanelli P, Dell’Antonio G (1959) Asymptotic conditions in quantum field theories. Il Nuovo Cimento 12:38–53

    Article  ADS  MathSciNet  MATH  Google Scholar 

  173. Gulmanelli P (1953) On a theorem in non-local field theories. Il Nuovo Cimento 10:1582–1589

    Article  ADS  MathSciNet  MATH  Google Scholar 

  174. Gulmanelli P, Dell’Antonio G (1958) On the locality of \(\beta \) interaction. Il Nuovo Cimento 7:266–268

    Article  ADS  MATH  Google Scholar 

  175. Bocchieri P, Loinger A (1958) Ergodic theorem in quantum mechanics. Phys Rev 111:668–670

    Article  ADS  MathSciNet  MATH  Google Scholar 

  176. Caldirola P (1959) On the ergodic methods in statistical mechanics. Il Nuovo Cimento 14:260–264

    Article  ADS  MATH  Google Scholar 

  177. Prosperi GM, Scotti A (1959) Ergodic theorem in quantum mechanics: evaluation of the probability of an exceptional initial condition. Il Nuovo Cimento 13:1007–1012

    Article  ADS  Google Scholar 

  178. Prosperi GM, Scotti A (1960) An improved version of an ergodic theorem in quantum mechanics. Il Nuovo Cimento 17:267–268

    Article  ADS  MATH  Google Scholar 

  179. Caldirola P (1960) Recenti sviluppi dei metodi ergodici nella meccanica statistica. Supplemento al Nuovo Cimento 16:50–60

    Article  ADS  MathSciNet  MATH  Google Scholar 

  180. Prosperi GM, Scotti A (1960) Ergodicity conditions in quantum mechanics. J Math Phys 1:218–221

    Article  ADS  MathSciNet  MATH  Google Scholar 

  181. Daneri A, Loinger A, Prosperi GM (1962) Quantum theory of measurement and ergodicity conditions. Nucl Phys 33:297–319

    Article  MathSciNet  MATH  Google Scholar 

  182. Pessoa O, Freire O, De Greiff A (2008) The Tausk controversy on the foundations of quantum mechanics: physics, philosophy, and politics. Phys Perspect 10:138–162

    Article  ADS  MathSciNet  Google Scholar 

  183. Freire O (2015) The quantum dissidents. rebuilding the foundations of quantum mechanics (1950-1990). Springer, Berlin-Heidelberg

    Google Scholar 

  184. Gatti E, Perona G, Persano A (1953) Generatore impulsabile di Neutroni. Il Nuovo Cimento 10:80–86

    Article  ADS  Google Scholar 

  185. Bracci A, Facchini U, Gatti E, Germagnoli E, Perona G (1953) Neutron capture \(\gamma \) rays from deuterium. Il Nuovo Cimento 10:949–957

    Article  ADS  Google Scholar 

  186. Facchini U, Gatti E (1950) Misura della sezione d’urto di fissione dell’Uranio per neutroni termici. Il Nuovo Cimento 7:589–605

    Article  ADS  Google Scholar 

  187. Facchini U, Gatti E (1950) Uranium fission cross section measurement for thermal neutrons. Helvetica Physica Acta 23:556–560

    Google Scholar 

  188. Gatti E, Germagnoli E, Perona G (1954) Misure di sezioni d’urto totali per neutroni lenti. Il Nuovo Cimento 11:262–273

    Article  ADS  Google Scholar 

  189. Iori I, Principi P, Rossini T (1961) L’acceleratore elettrostatico da 3.5 MeV del CISE. Energia Nucleare 8:770–778

    Google Scholar 

  190. Colli L, Micheletti S, Salvetti C (1958) L’acceleratore per deutoni da 160 keV dell’I.N.F.N., Sezione di Milano. Il Nuovo Cimento 9:538–544

    Google Scholar 

  191. Bracco A, Pignanelli M (2010) The early activity of ileana on nuclear physics: reactions induced by nucleons. Proc Sci 103:1–11

    Google Scholar 

  192. Bonizzoni I, Giuliani G (2002) La nascita della Fisica della materia: 1945–1965. In: Giuliani G (ed) Per una storia della fisica italiana 1945–1965. La Goliardica Pavese, Pavia, pp 1–34

    Google Scholar 

  193. Giuliani G (1989) Physical research on solids in Italy between 1900 and 1940: a survey. In: De Maria M, Grilli M, Sebastiani F (eds) The restructuring of physical sciences in Europe and the United States 1945–1960. World Scientific, Singapore, pp 339–347

    Google Scholar 

  194. Giuliani G (ed) (1988) The origins of solid-state physics in Italy: 1945–1960. Editrice Compositori, Bologna

    Google Scholar 

  195. Chiarotti G (1989) The development of Italian solid state physics after the war. In: De Maria M, Grilli M, Sebastiani F (eds) The restructuring of physical sciences in Europe and the United States 1945–1960. World Scientific, Singapore, pp 348–347

    Google Scholar 

  196. Lazarus D (1993) Fausto Fumi and the emergence of solid-state physics in Italy. Il Nuovo Cimento 15D:139–142

    Google Scholar 

  197. Fieschi R (1988) Experiments on ionic solids in Milano. In: Giuliani G (ed) The origins of solid-state physics in Italy: 1945-1960, Pavia 21-24 September 1987. Bologna, Società Italiana di Fisica, pp 207–213

    Google Scholar 

  198. Fumi FG (1951) Third-order elastic coefficients of crystals. Phys Rev 83:1274–1275

    Article  ADS  Google Scholar 

  199. Fumi FG (1952) Third-order elastic coefficients in trigonal and hexagonal crystals. Phys Rev 86:561

    Article  ADS  Google Scholar 

  200. Fumi FG (1952) Photoelasticity in crystals. Nuovo Cimento 9:184–185

    Article  MathSciNet  Google Scholar 

  201. Fieschi R, Fumi FG (1953) High-order matter tensors in symmetrical systems. Nuovo Cimento 10:865–882

    Article  MathSciNet  MATH  Google Scholar 

  202. Bassani F, Fumi FG (1953) The Interaction between equilibrium defects in the alkali halides: the “Ground State” binding energies between divalent impurities and vacancies. Il Nuovo Cimento 11:274–284

    Google Scholar 

  203. Fumi FG (1954) Difetti reticolari nei solidi ionici. Supplemento Nuovo Cimento 12:67–76

    Article  ADS  Google Scholar 

  204. Bassani F, Fumi FG (1955) Calculations on the interactions between equilibrium defects in the alkali halides. Supplemento Nuovo Cimento 1:114–117

    Article  ADS  Google Scholar 

  205. Bassani F, Montaldi E, Fumi FG (1956) Electronic states of diatonic molecules: the O\(_2^+\) molecular ion. Il Nuovo Cimento 3:893–901

    Article  ADS  Google Scholar 

  206. Fieschi R (1957) Electronic states of diatomic molecules: the lithium molecule. Il Nuovo Cimento 6:197–203

    Article  ADS  Google Scholar 

  207. Fieschi R (1957) On the thermodynamical theory of thermal conduction of dielectrics under electric fields. Il Nuovo Cimento 6:1225

    Article  ADS  MATH  Google Scholar 

  208. Casanova C, Fieschi R, Terzi N (1960) Calculation of the vapour pressure ratio of Ne, A, Kr, and Xe isotopes in the solid state. Il Nuovo Cimento 18:837–848

    Article  ADS  Google Scholar 

  209. Ascoli A, Asdente M (1988) Solid state physics at CISE under Elio Germagnoli. In: Giuliani G (ed) The origins of solid-state physics in Italy: 1945–1960. Editrice Compositori, Bologna, pp 169–182

    Google Scholar 

  210. Airoldi G, Bacchella GL, Germagnoli E (1959) Quenched-in lattice vacancies in copper. Phys Rev Lett 2:145

    Article  ADS  Google Scholar 

  211. Bacchella GL, Germagnoli E, Granata S (1959) On the kinetics of quenched-in lattice vacancies in platinum. J Appl Phys 30:748–752

    Article  ADS  Google Scholar 

  212. Albertoni S (1951) Osservazioni sull’equazione fondamentale dell’elettrodinamica di Tomonaga-Schwinger. Supplemento al Nuovo Cimento 8:168–179

    Article  ADS  MathSciNet  Google Scholar 

  213. Bocchieri P, Loinger A (1959) Ergodic foundation of quantum statistical mechanics. Phys Rev 114:948–951

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Gariboldi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gariboldi, L. (2022). The Institute of Physics in the Post-war Period. Part 2: Some Highlights on Research in the Post-war Period. In: The Milan Institute of Physics. History of Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-99516-4_7

Download citation

Publish with us

Policies and ethics