Skip to main content

Inflammation and Cancer: Lipid Autacoid and Cytokine Biomarkers of the Tumor Microenvironment

  • Chapter
  • First Online:
  • 1432 Accesses

Abstract

The role of inflammation in cancer has a long and controversial history. Currently, there are two lenses through which inflammation in cancer can be viewed. Substantial evidence suggests that inflammation can not only propagate, but even initiate cancer pathogenesis, and an inflammatory microenvironment is widely acknowledged as a prerequisite for carcinogenesis. However, emerging studies indicate that inflammation may alternatively enhance host containment and destruction of tumorigenic cells. Herein, we explore how our understanding of inflammation in cancer has evolved, from the first identification of excessive inflammation in tumors two millennia ago to the complex association between inflammation and cancer pathogenesis with the recent emergence of immune-harnessing cancer therapies. Moreover, the emergence of the field of the resolution of inflammation and the discovery of specialized pro-resolving lipid autacoid mediators (SPMs) presents new opportunities for targeting cancer. Here we discuss the dynamic roles and potential clinical applications of various immune cells, cytokines, and specific lipid autacoid signaling in cancer, focusing on fatty acid-derived lipid mediators such as prostaglandins, leukotrienes, and the newly characterized specialized pro-resolving mediators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Trinchieri G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol. 2012;30:677–706. https://doi.org/10.1146/annurev-immunol-020711-075008.

    Article  CAS  PubMed  Google Scholar 

  2. Reedy J. Galen on cancer and related diseases. Clio Med. 1975;10:227–38.

    CAS  PubMed  Google Scholar 

  3. Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51:27–41. https://doi.org/10.1016/j.immuni.2019.06.025.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99. https://doi.org/10.1016/j.cell.2010.01.025. S0092-8674(10)00060-7 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Virchow R. Cellular pathology as based upon physiological and pathological histology: twenty lectures delivered in the pathological institute of berlin during the months of February, March, and April. New York: Robert M. De Witt; 1860. Print 1858.

    Google Scholar 

  6. Coley WB II. Contribution to the knowledge of sarcoma. Ann Surg. 1891;14:199–220.

    Article  CAS  PubMed  Google Scholar 

  7. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315:1650–9. https://doi.org/10.1056/NEJM198612253152606.

    Article  CAS  PubMed  Google Scholar 

  8. Coussens LM, et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 1999;13:1382–97.

    Article  CAS  PubMed  Google Scholar 

  9. Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000;103:481–90. S0092-8674(00)00139-2 [pii].

    Article  CAS  PubMed  Google Scholar 

  10. Di Carlo E, et al. The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood. 2001;97:339–45.

    Article  PubMed  Google Scholar 

  11. Kitamura T, Qian BZ, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15:73–86. https://doi.org/10.1038/nri3789.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Greene ER, Huang S, Serhan CN, Panigrahy D. Regulation of inflammation in cancer by eicosanoids. Prostaglandins Other Lipid Mediat. 2011;96:27–36. https://doi.org/10.1016/j.prostaglandins.2011.08.004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fishbein A, Hammock BD, Serhan CN, Panigrahy D. Carcinogenesis: failure of resolution of inflammation? Pharmacol Ther. 2020;107670. https://doi.org/10.1016/j.pharmthera.2020.107670.

  14. Wang D, Dubois RN. Eicosanoids and cancer. Nat Rev Cancer. 2010;10:181–93. https://doi.org/10.1038/nrc2809. nrc2809 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013. S0092-8674(11)00127-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  CAS  PubMed  Google Scholar 

  17. Pikarsky E, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431:461–6.

    Article  CAS  PubMed  Google Scholar 

  18. Guerra C, et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell. 2007;11:291–302. https://doi.org/10.1016/j.ccr.2007.01.012.

    Article  CAS  PubMed  Google Scholar 

  19. Turner MC, Chen Y, Krewski D, Ghadirian P. An overview of the association between allergy and cancer. Int J Cancer. 2006;118:3124–32. https://doi.org/10.1002/ijc.21752.

    Article  CAS  PubMed  Google Scholar 

  20. Ritter B, Greten FR. Modulating inflammation for cancer therapy. J Exp Med. 2019;216:1234–43. https://doi.org/10.1084/jem.20181739.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sulciner ML, et al. Resolvins suppress tumor growth and enhance cancer therapy. J Exp Med. 2018;215:115–40. https://doi.org/10.1084/jem.20170681.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Revesz L. Effect of tumour cells killed by x-rays upon the growth of admixed viable cells. Nature. 1956;178:1391–2.

    Article  CAS  PubMed  Google Scholar 

  23. Gartung A, et al. Suppression of chemotherapy-induced cytokine/lipid mediator surge and ovarian cancer by a dual COX-2/sEH inhibitor. Proc Natl Acad Sci U S A. 2019;116:1698–703. https://doi.org/10.1073/pnas.1803999116.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chang J, et al. Chemotherapy-generated cell debris stimulates colon carcinoma tumor growth via osteopontin. FASEB J. 2019;33:114–25. https://doi.org/10.1096/fj.201800019RR.

    Article  CAS  PubMed  Google Scholar 

  25. Revesz L. Effect of lethally damaged tumor cells upon the development of admixed viable cells. J Natl Cancer Inst. 1958;20:1157–86.

    Article  CAS  PubMed  Google Scholar 

  26. Krishnan B, Morgan GJ. Non-Hodgkin lymphoma secondary to cancer chemotherapy. Cancer Epidemiol Biomarkers Prev. 2007;16:377–80. https://doi.org/10.1158/1055-9965.EPI-06-1069.

    Article  CAS  PubMed  Google Scholar 

  27. Faguet GB. A brief history of cancer: age-old milestones underlying our current knowledge database. Int J Cancer. 2015;136:2022–36. https://doi.org/10.1002/ijc.29134.

    Article  CAS  PubMed  Google Scholar 

  28. Fishbein A, et al. Resolution of eicosanoid/cytokine storm prevents carcinogen and inflammation-initiated hepatocellular cancer progression. Proc Natl Acad Sci U S A. 2020;117:21576–87. https://doi.org/10.1073/pnas.2007412117.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44. https://doi.org/10.1038/nature07205.

    Article  CAS  PubMed  Google Scholar 

  30. Mantovani A, Caprioli V, Gritti P, Spreafico F. Human mature macrophages mediate antibody-dependent cellular cytotoxicity on tumour cells. Transplantation. 1977;24:291–3.

    Article  CAS  PubMed  Google Scholar 

  31. Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L. The origin and function of tumor-associated macrophages. Immunol Today. 1992;13:265–70. https://doi.org/10.1016/0167-5699(92)90008-U.

    Article  CAS  PubMed  Google Scholar 

  32. Balkwill FR, Ward BG, Moodie E, Fiers W. Therapeutic potential of tumor necrosis factor-alpha and gamma-interferon in experimental human ovarian cancer. Cancer Res. 1987;47:4755–8.

    CAS  PubMed  Google Scholar 

  33. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–45. https://doi.org/10.1016/S0140-6736(00)04046-0. S0140-6736(00)04046-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  34. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20:651–68. https://doi.org/10.1038/s41577-020-0306-5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Halliday GM, Patel A, Hunt MJ, Tefany FJ, Barnetson RS. Spontaneous regression of human melanoma/nonmelanoma skin cancer: association with infiltrating CD4+ T cells. World J Surg. 1995;19:352–8. https://doi.org/10.1007/BF00299157.

    Article  CAS  PubMed  Google Scholar 

  36. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56–61. https://doi.org/10.1126/science.aaa8172.

    Article  CAS  PubMed  Google Scholar 

  37. Shimabukuro-Vornhagen A, et al. Cytokine release syndrome. J Immunother Cancer. 2018;6:56. https://doi.org/10.1186/s40425-018-0343-9.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Panigrahy D, et al. Inflammation resolution: a dual-pronged approach to averting cytokine storms in COVID-19? Cancer Metastasis Rev. 2020;39:337–40. https://doi.org/10.1007/s10555-020-09889-4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Hammock BD, Wang W, Gilligan MM, Panigrahy D. Eicosanoids: the overlooked storm in coronavirus disease 2019 (COVID-19)? Am J Pathol. 2020;190:1782–8. https://doi.org/10.1016/j.ajpath.2020.06.010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Gilligan MM, et al. Aspirin-triggered proresolving mediators stimulate resolution in cancer. Proc Natl Acad Sci U S A. 2019;116:6292–7. https://doi.org/10.1073/pnas.1804000116.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Sulciner ML, Gartung A, Gilligan MM, Serhan CN, Panigrahy D. Targeting lipid mediators in cancer biology. Cancer Metastasis Rev. 2018;37:557–72. https://doi.org/10.1007/s10555-018-9754-9.

    Article  CAS  PubMed  Google Scholar 

  42. Panigrahy D, Kaipainen A, Greene ER, Huang S. Cytochrome P450-derived eicosanoids: the neglected pathway in cancer. Cancer Metastasis Rev. 2010;29:723–35. https://doi.org/10.1007/s10555-010-9264-x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Panigrahy D, Greene ER, Pozzi A, Wang DW, Zeldin DC. EET signaling in cancer. Cancer Metastasis Rev. 2011;30:525–40. https://doi.org/10.1007/s10555-011-9315-y.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Panigrahy D, et al. Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. J Clin Invest. 2019;129:2964–79. https://doi.org/10.1172/JCI127282.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Panigrahy D, et al. Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice. J Clin Invest. 2012;122:178–91. https://doi.org/10.1172/JCI58128. 58128 [pii]

    Article  CAS  PubMed  Google Scholar 

  46. Panigrahy D, et al. PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J Clin Invest. 2002;110:923–32. https://doi.org/10.1172/JCI15634.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510:92–101. https://doi.org/10.1038/nature13479.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51. https://doi.org/10.1016/j.cell.2010.03.014. S0092-8674(10)00287-4 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Qian BZ, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222–5. https://doi.org/10.1038/nature10138.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Heuff G, et al. Enhanced tumour growth in the rat liver after selective elimination of Kupffer cells. Cancer Immunol Immunother. 1993;37:125–30.

    Article  CAS  PubMed  Google Scholar 

  51. Oosterling SJ, et al. Macrophages direct tumour histology and clinical outcome in a colon cancer model. J Pathol. 2005;207:147–55. https://doi.org/10.1002/path.1830.

    Article  PubMed  Google Scholar 

  52. Weber C, et al. Macrophage infiltration and alternative activation during wound healing promote MEK1-induced skin carcinogenesis. Cancer Res. 2016;76:805–17. https://doi.org/10.1158/0008-5472.CAN-14-3676.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Zeisberger SM, et al. Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer. 2006;95:272–81. https://doi.org/10.1038/sj.bjc.6603240. 6603240 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Jaiswal S, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009;138:271–85. https://doi.org/10.1016/j.cell.2009.05.046.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Gabrusiewicz K, et al. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight. 2016;1. https://doi.org/10.1172/jci.insight.85841.

  56. Chow A, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-kappaB. Sci Rep. 2014;4:5750. https://doi.org/10.1038/srep05750.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Yeo EJ, et al. Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res. 2014;74:2962–73. https://doi.org/10.1158/0008-5472.CAN-13-2421.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Chavez-Galan L, Olleros ML, Vesin D, Garcia I. Much more than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages. Front Immunol. 2015;6:263. https://doi.org/10.3389/fimmu.2015.00263.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Van Overmeire E, Laoui D, Keirsse J, Van Ginderachter JA, Sarukhan A. Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues. Front Immunol. 2014;5:127. https://doi.org/10.3389/fimmu.2014.00127.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Dalli J, Serhan CN. Pro-resolving mediators in regulating and conferring macrophage function. Front Immunol. 2017;8:1400. https://doi.org/10.3389/fimmu.2017.01400.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Dey A, Allen J, Hankey-Giblin PA. Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophages. Front Immunol. 2014;5:683. https://doi.org/10.3389/fimmu.2014.00683.

    Article  CAS  PubMed  Google Scholar 

  62. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41:49–61. https://doi.org/10.1016/j.immuni.2014.06.010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Fullerton JN, Gilroy DW. Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov. 2016;15:551–67. https://doi.org/10.1038/nrd.2016.39.

    Article  CAS  PubMed  Google Scholar 

  64. Zaynagetdinov R, et al. Chronic NF-kappaB activation links COPD and lung cancer through generation of an immunosuppressive microenvironment in the lungs. Oncotarget. 2016;7:5470–82. https://doi.org/10.18632/oncotarget.6562.

    Article  PubMed  Google Scholar 

  65. Zonari E, et al. A role for miR-155 in enabling tumor-infiltrating innate immune cells to mount effective antitumor responses in mice. Blood. 2013;122:243–52. https://doi.org/10.1182/blood-2012-08-449306.

    Article  CAS  PubMed  Google Scholar 

  66. Bellora F, et al. TLR activation of tumor-associated macrophages from ovarian cancer patients triggers cytolytic activity of NK cells. Eur J Immunol. 2014;44:1814–22. https://doi.org/10.1002/eji.201344130.

    Article  CAS  PubMed  Google Scholar 

  67. Peng J, et al. Inhibition of TGF-beta signaling in combination with TLR7 ligation re-programs a tumoricidal phenotype in tumor-associated macrophages. Cancer Lett. 2013;331:239–49. https://doi.org/10.1016/j.canlet.2013.01.001.

    Article  CAS  PubMed  Google Scholar 

  68. Bernhard CA, Ried C, Kochanek S, Brocker T. CD169+ macrophages are sufficient for priming of CTLs with specificities left out by cross-priming dendritic cells. Proc Natl Acad Sci U S A. 2015;112:5461–6. https://doi.org/10.1073/pnas.1423356112.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Ohnishi K, et al. Prognostic significance of CD169-positive lymph node sinus macrophages in patients with endometrial carcinoma. Cancer Sci. 2016;107:846–52. https://doi.org/10.1111/cas.12929.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Saito Y, et al. Prognostic significance of CD169+ lymph node sinus macrophages in patients with malignant melanoma. Cancer Immunol Res. 2015;3:1356–63. https://doi.org/10.1158/2326-6066.CIR-14-0180.

    Article  CAS  PubMed  Google Scholar 

  71. Pucci F, et al. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science. 2016;352:242–6. https://doi.org/10.1126/science.aaf1328.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Palucka K, Coussens LM, O’Shaughnessy J. Dendritic cells, inflammation, and breast cancer. Cancer J. 2013;19:511–6. https://doi.org/10.1097/PPO.0000000000000007.

    Article  CAS  PubMed  Google Scholar 

  73. Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL. Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol. 2015;194:2985–91. https://doi.org/10.4049/jimmunol.1403134.

    Article  CAS  PubMed  Google Scholar 

  74. Martelli C, et al. In vivo imaging of lymph node migration of MNP- and (111)In-labeled dendritic cells in a transgenic mouse model of breast cancer (MMTV-Ras). Mol Imaging Biol. 2012;14:183–96. https://doi.org/10.1007/s11307-011-0496-0.

    Article  PubMed  Google Scholar 

  75. Lohela M, et al. Intravital imaging reveals distinct responses of depleting dynamic tumor-associated macrophage and dendritic cell subpopulations. Proc Natl Acad Sci U S A. 2014;111:E5086–95. https://doi.org/10.1073/pnas.1419899111.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Scarlett UK, et al. Ovarian cancer progression is controlled by phenotypic changes in dendritic cells. J Exp Med. 2012;209:495–506. https://doi.org/10.1084/jem.20111413.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Prue RL, et al. A phase I clinical trial of CD1c (BDCA-1)+ dendritic cells pulsed with HLA-A*0201 peptides for immunotherapy of metastatic hormone refractory prostate cancer. J Immunother. 2015;38:71–6. https://doi.org/10.1097/CJI.0000000000000063.

    Article  CAS  PubMed  Google Scholar 

  78. Kranz LM, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534:396–401. https://doi.org/10.1038/nature18300.

    Article  CAS  PubMed  Google Scholar 

  79. Cornelissen R, et al. Extended tumor control after dendritic cell vaccination with low-dose cyclophosphamide as adjuvant treatment in patients with malignant pleural mesothelioma. Am J Respir Crit Care Med. 2016;193:1023–31. https://doi.org/10.1164/rccm.201508-1573OC.

    Article  CAS  PubMed  Google Scholar 

  80. Phuphanich S, et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother. 2013;62:125–35. https://doi.org/10.1007/s00262-012-1319-0.

    Article  CAS  PubMed  Google Scholar 

  81. Geiger TL, Sun JC. Development and maturation of natural killer cells. Curr Opin Immunol. 2016;39:82–9. https://doi.org/10.1016/j.coi.2016.01.007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Wolf MJ, et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell. 2014;26:549–64. https://doi.org/10.1016/j.ccell.2014.09.003.

    Article  CAS  PubMed  Google Scholar 

  83. Ostapchuk YO, et al. Peripheral blood NK cells expressing HLA-G, IL-10 and TGF-beta in healthy donors and breast cancer patients. Cell Immunol. 2015;298:37–46. https://doi.org/10.1016/j.cellimm.2015.09.002.

    Article  CAS  PubMed  Google Scholar 

  84. Pasero C, et al. Highly effective NK cells are associated with good prognosis in patients with metastatic prostate cancer. Oncotarget. 2015;6:14360–73. https://doi.org/10.18632/oncotarget.3965.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Yin T, et al. Human cancer cells with stem cell-like phenotype exhibit enhanced sensitivity to the cytotoxicity of IL-2 and IL-15 activated natural killer cells. Cell Immunol. 2016;300:41–5. https://doi.org/10.1016/j.cellimm.2015.11.009.

    Article  CAS  PubMed  Google Scholar 

  86. Masopust D, Schenkel JM. The integration of T cell migration, differentiation and function. Nat Rev Immunol. 2013;13:309–20. https://doi.org/10.1038/nri3442.

    Article  CAS  PubMed  Google Scholar 

  87. Daniel D, et al. Immune enhancement of skin carcinogenesis by CD4+ T cells. J Exp Med. 2003;197:1017–28. https://doi.org/10.1084/jem.20021047.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Ma C, et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature. 2016;531:253–7. https://doi.org/10.1038/nature16969.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Dadi S, et al. Cancer immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. Cell. 2016;164:365–77. https://doi.org/10.1016/j.cell.2016.01.002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Ganesan AP, et al. Tumor-infiltrating regulatory T cells inhibit endogenous cytotoxic T cell responses to lung adenocarcinoma. J Immunol. 2013;191:2009–17. https://doi.org/10.4049/jimmunol.1301317.

    Article  CAS  PubMed  Google Scholar 

  91. Ino Y, et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer. 2013;108:914–23. https://doi.org/10.1038/bjc.2013.32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Mlecnik B, et al. The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Sci Transl Med. 2016;8:327ra326. https://doi.org/10.1126/scitranslmed.aad6352.

    Article  CAS  Google Scholar 

  93. Gunderson AJ, et al. Bruton tyrosine kinase-dependent immune cell cross-talk drives pancreas cancer. Cancer Discov. 2016;6:270–85. https://doi.org/10.1158/2159-8290.CD-15-0827.

    Article  CAS  PubMed  Google Scholar 

  94. Pylayeva-Gupta Y, et al. IL35-producing B cells promote the development of pancreatic neoplasia. Cancer Discov. 2016;6:247–55. https://doi.org/10.1158/2159-8290.CD-15-0843.

    Article  CAS  PubMed  Google Scholar 

  95. Lundgren S, Berntsson J, Nodin B, Micke P, Jirstrom K. Prognostic impact of tumour-associated B cells and plasma cells in epithelial ovarian cancer. J Ovarian Res. 2016;9:21. https://doi.org/10.1186/s13048-016-0232-0.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Iglesia MD, et al. Prognostic B-cell signatures using mRNA-seq in patients with subtype-specific breast and ovarian cancer. Clin Cancer Res. 2014;20:3818–29. https://doi.org/10.1158/1078-0432.CCR-13-3368.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Balkwill F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev. 2002;13:135–41.

    Article  CAS  PubMed  Google Scholar 

  98. Schioppa T, et al. B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proc Natl Acad Sci U S A. 2011;108:10662–7. https://doi.org/10.1073/pnas.1100994108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Kusne Y, et al. Targeting aPKC disables oncogenic signaling by both the EGFR and the proinflammatory cytokine TNFalpha in glioblastoma. Sci Signal. 2014;7:ra75. https://doi.org/10.1126/scisignal.2005196.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Gupta M, Babic A, Beck AH, Terry K. TNF-alpha expression, risk factors, and inflammatory exposures in ovarian cancer: evidence for an inflammatory pathway of ovarian carcinogenesis? Hum Pathol. 2016;54:82–91. https://doi.org/10.1016/j.humpath.2016.03.006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Liao C, et al. Association between Th17-related cytokines and risk of non-small cell lung cancer among patients with or without chronic obstructive pulmonary disease. Cancer. 2015;121(Suppl 17):3122–9. https://doi.org/10.1002/cncr.29369.

    Article  CAS  PubMed  Google Scholar 

  102. Blogowski W, et al. Selected cytokines in patients with pancreatic cancer: a preliminary report. PLoS One. 2014;9:e97613. https://doi.org/10.1371/journal.pone.0097613.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Roberts NJ, Zhou S, Diaz LA Jr, Holdhoff M. Systemic use of tumor necrosis factor alpha as an anticancer agent. Oncotarget. 2011;2:739–51. https://doi.org/10.18632/oncotarget.344.

    Article  PubMed Central  PubMed  Google Scholar 

  104. Dondossola E, et al. Self-targeting of TNF-releasing cancer cells in preclinical models of primary and metastatic tumors. Proc Natl Acad Sci U S A. 2016;113:2223–8. https://doi.org/10.1073/pnas.1525697113.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Nagura M, et al. Invasion of uterine cervical squamous cell carcinoma cells is facilitated by locoregional interaction with cancer-associated fibroblasts via activating transforming growth factor-beta. Gynecol Oncol. 2015;136:104–11. https://doi.org/10.1016/j.ygyno.2014.11.075.

    Article  CAS  PubMed  Google Scholar 

  106. Principe DR, et al. TGFbeta signaling in the pancreatic tumor microenvironment promotes fibrosis and immune evasion to facilitate tumorigenesis. Cancer Res. 2016;76:2525–39. https://doi.org/10.1158/0008-5472.CAN-15-1293.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Morris JC, et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFbeta) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One. 2014;9:e90353. https://doi.org/10.1371/journal.pone.0090353.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Zhao Z, Xi H, Xu D, Li C. Transforming growth factor beta receptor signaling restrains growth of pancreatic carcinoma cells. Tumour Biol. 2015;36:7711–6. https://doi.org/10.1007/s13277-015-3466-3.

    Article  CAS  PubMed  Google Scholar 

  109. Haabeth OA, Lorvik KB, Yagita H, Bogen B, Corthay A. Interleukin-1 is required for cancer eradication mediated by tumor-specific Th1 cells. Oncoimmunology. 2016;5:e1039763. https://doi.org/10.1080/2162402X.2015.1039763.

    Article  CAS  PubMed  Google Scholar 

  110. Dinarello CA, van der Meer JW. Treating inflammation by blocking interleukin-1 in humans. Semin Immunol. 2013;25:469–84. https://doi.org/10.1016/j.smim.2013.10.008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Rodriguez-Berriguete G, et al. Clinical significance of both tumor and stromal expression of components of the IL-1 and TNF-alpha signaling pathways in prostate cancer. Cytokine. 2013;64:555–63. https://doi.org/10.1016/j.cyto.2013.09.003.

    Article  CAS  PubMed  Google Scholar 

  112. Wang Y, et al. Neutrophil infiltration favors colitis-associated tumorigenesis by activating the interleukin-1 (IL-1)/IL-6 axis. Mucosal Immunol. 2014;7:1106–15. https://doi.org/10.1038/mi.2013.126.

    Article  CAS  PubMed  Google Scholar 

  113. Palomo J, Dietrich D, Martin P, Palmer G, Gabay C. The interleukin (IL)-1 cytokine family—balance between agonists and antagonists in inflammatory diseases. Cytokine. 2015;76:25–37. https://doi.org/10.1016/j.cyto.2015.06.017.

    Article  CAS  PubMed  Google Scholar 

  114. Gupta M, et al. Comprehensive serum cytokine analysis identifies IL-1RA and soluble IL-2Ralpha as predictors of event-free survival in T-cell lymphoma. Ann Oncol. 2016;27:165–72. https://doi.org/10.1093/annonc/mdv486.

    Article  CAS  PubMed  Google Scholar 

  115. Patel SK, et al. Inflammatory biomarkers, comorbidity, and neurocognition in women with newly diagnosed breast cancer. J Natl Cancer Inst. 2015;107. https://doi.org/10.1093/jnci/djv131.

  116. Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol. 2014;26:54–74. https://doi.org/10.1016/j.smim.2014.01.001.

    Article  CAS  PubMed  Google Scholar 

  117. Zhang Y, et al. Interleukin-6 is required for pancreatic cancer progression by promoting MAPK signaling activation and oxidative stress resistance. Cancer Res. 2013;73:6359–74. https://doi.org/10.1158/0008-5472.CAN-13-1558-T.

    Article  CAS  PubMed  Google Scholar 

  118. Nagasaki T, et al. Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma interaction. Br J Cancer. 2014;110:469–78. https://doi.org/10.1038/bjc.2013.748.

    Article  CAS  PubMed  Google Scholar 

  119. Geng Y, et al. Phenotypic switch in blood: effects of pro-inflammatory cytokines on breast cancer cell aggregation and adhesion. PLoS One. 2013;8:e54959. https://doi.org/10.1371/journal.pone.0054959.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Yang C, et al. Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway. Med Oncol. 2015;32:352. https://doi.org/10.1007/s12032-014-0352-6.

    Article  CAS  PubMed  Google Scholar 

  121. Kitamura T, et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med. 2015;212:1043–59. https://doi.org/10.1084/jem.20141836.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Nywening TM, et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 2016;17:651–62. https://doi.org/10.1016/S1470-2045(16)00078-4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Imig JD, Hammock BD. Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discov. 2009;8:794–805. https://doi.org/10.1038/nrd2875. nrd2875 [pii].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Montrose DC, et al. The role of PGE2 in intestinal inflammation and tumorigenesis. Prostaglandins Other Lipid Mediat. 2015;116–117:26–36. https://doi.org/10.1016/j.prostaglandins.2014.10.002.

    Article  CAS  PubMed  Google Scholar 

  125. Wang D, Fu L, Sun H, Guo L, DuBois RN. Prostaglandin E2 promotes colorectal cancer stem cell expansion and metastasis in mice. Gastroenterology. 2015;149:1884–1895 e1884. https://doi.org/10.1053/j.gastro.2015.07.064.

    Article  CAS  PubMed  Google Scholar 

  126. Xu L, et al. COX-2 inhibition potentiates antiangiogenic cancer therapy and prevents metastasis in preclinical models. Sci Transl Med. 2014;6:242ra284. https://doi.org/10.1126/scitranslmed.3008455.

    Article  CAS  Google Scholar 

  127. Wang D, DuBois RN. Role of prostanoids in gastrointestinal cancer. J Clin Invest. 2018;128:2732–42. https://doi.org/10.1172/JCI97953.

    Article  PubMed Central  PubMed  Google Scholar 

  128. Mao Y, et al. Inhibition of tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity. Clin Cancer Res. 2014;20:4096–106. https://doi.org/10.1158/1078-0432.CCR-14-0635.

    Article  CAS  PubMed  Google Scholar 

  129. Zelenay S, et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell. 2015;162:1257–70. https://doi.org/10.1016/j.cell.2015.08.015.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Zhang X, Zhu Z, Zhong S, Xu T, Shen Z. Ureteral tumours showing a worse prognosis than renal pelvis tumours may be attributed to ureteral tumours more likely to have hydronephrosis and less likely to have haematuria. World J Urol. 2013;31:155–60. https://doi.org/10.1007/s00345-012-0885-2.

    Article  PubMed  Google Scholar 

  131. Larsen BT, et al. Epoxyeicosatrienoic and dihydroxyeicosatrienoic acids dilate human coronary arterioles via BK(Ca) channels: implications for soluble epoxide hydrolase inhibition. Am J Physiol Heart Circ Physiol. 2006;290:H491–9. https://doi.org/10.1152/ajpheart.00927.2005. 00927.2005 [pii]

    Article  CAS  PubMed  Google Scholar 

  132. Panigrahy D, et al. Epoxyeicosanoids promote organ and tissue regeneration. Proc Natl Acad Sci U S A. 2013; https://doi.org/10.1073/pnas.1311565110.

  133. Sander AL, et al. Cytochrome P450-derived epoxyeicosatrienoic acids accelerate wound epithelialization and neovascularization in the hairless mouse ear wound model. Langenbecks Arch Surg. 2011;396:1245–53. https://doi.org/10.1007/s00423-011-0838-z.

    Article  PubMed  Google Scholar 

  134. Inceoglu B, et al. Epoxy fatty acids and inhibition of the soluble epoxide hydrolase selectively modulate GABA mediated neurotransmission to delay onset of seizures. PLoS One. 2013;8:e80922. https://doi.org/10.1371/journal.pone.0080922.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Zhang G, Kodani S, Hammock BD. Stabilized epoxygenated fatty acids regulate inflammation, pain, angiogenesis and cancer. Prog Lipid Res. 2014;53:108–23. https://doi.org/10.1016/j.plipres.2013.11.003.

    Article  CAS  PubMed  Google Scholar 

  136. Wang D, Dubois RN. Epoxyeicosatrienoic acids: a double-edged sword in cardiovascular diseases and cancer. J Clin Invest. 2012;122:19–22. https://doi.org/10.1172/JCI61453.

    Article  CAS  PubMed  Google Scholar 

  137. Wei X, et al. Elevated 14,15-epoxyeicosatrienoic acid by increasing of cytochrome P450 2C8, 2C9 and 2J2 and decreasing of soluble epoxide hydrolase associated with aggressiveness of human breast cancer. BMC Cancer. 2014;14:841. https://doi.org/10.1186/1471-2407-14-841.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Morisseau C, Hammock BD. Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol. 2013;53:37–58. https://doi.org/10.1146/annurev-pharmtox-011112-140244.

    Article  CAS  PubMed  Google Scholar 

  139. Zhang G, et al. Dual inhibition of cyclooxygenase-2 and soluble epoxide hydrolase synergistically suppresses primary tumor growth and metastasis. Proc Natl Acad Sci U S A. 2014;111:11127–32. https://doi.org/10.1073/pnas.1410432111.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Di Gennaro A, Haeggstrom JZ. The leukotrienes: immune-modulating lipid mediators of disease. Adv Immunol. 2012;116:51–92. https://doi.org/10.1016/B978-0-12-394300-2.00002-8.

    Article  CAS  PubMed  Google Scholar 

  141. Satpathy SR, et al. Crystalline silica-induced leukotriene B4-dependent inflammation promotes lung tumour growth. Nat Commun. 2015;6:7064. https://doi.org/10.1038/ncomms8064.

    Article  CAS  PubMed  Google Scholar 

  142. Poczobutt JM, et al. Eicosanoid profiling in an orthotopic model of lung cancer progression by mass spectrometry demonstrates selective production of leukotrienes by inflammatory cells of the microenvironment. PLoS One. 2013;8:e79633. https://doi.org/10.1371/journal.pone.0079633.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Poczobutt JM, et al. Deletion of 5-lipoxygenase in the tumor microenvironment promotes lung cancer progression and metastasis through regulating T cell recruitment. J Immunol. 2016;196:891–901. https://doi.org/10.4049/jimmunol.1501648.

    Article  CAS  PubMed  Google Scholar 

  144. Gounaris E, et al. Zileuton, 5-lipoxygenase inhibitor, acts as a chemopreventive agent in intestinal polyposis, by modulating polyp and systemic inflammation. PLoS One. 2015;10:e0121402. https://doi.org/10.1371/journal.pone.0121402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Sarveswaran S, Chakraborty D, Chitale D, Sears R, Ghosh J. Inhibition of 5-lipoxygenase selectively triggers disruption of c-Myc signaling in prostate cancer cells. J Biol Chem. 2015;290:4994–5006. https://doi.org/10.1074/jbc.M114.599035.

    Article  CAS  PubMed  Google Scholar 

  146. Knab LM, et al. Ablation of 5-lipoxygenase mitigates pancreatic lesion development. J Surg Res. 2015;194:481–7. https://doi.org/10.1016/j.jss.2014.10.021.

    Article  CAS  PubMed  Google Scholar 

  147. Weissmann G, Smolen JE, Korchak HM. Release of inflammatory mediators from stimulated neutrophils. N Engl J Med. 1980;303:27–34. https://doi.org/10.1056/NEJM198007033030109.

    Article  CAS  PubMed  Google Scholar 

  148. Houck JC. Chemical messengers of the inflammatory process. Amsterdam: Elsevier/North-Holland Biomedical Press; 1979.

    Google Scholar 

  149. Sina AAA. The canon of medicine (al-Qanun fi’l-tibb) (adapted by Bahktiar L). Great Books of the Islamic World; 1999.

    Google Scholar 

  150. Robbins SL, Cotran R. Pathologic basis of disease. 2nd ed. Philadelphia: W.B. Saunders; 1979.

    Google Scholar 

  151. Savill JS, Henson PM, Haslett C. Phagocytosis of aged human neutrophils by macrophages is mediated by a novel “charge-sensitive” recognition mechanism. J Clin Invest. 1989;84:1518–27. https://doi.org/10.1172/JCI114328.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Savill JS, et al. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest. 1989;83:865–75. https://doi.org/10.1172/JCI113970.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Serhan CN, Hamberg M, Samuelsson B. Lipoxins: novel series of biologically active compounds formed from arachidonic acid in human leukocytes. Proc Natl Acad Sci U S A. 1984;81:5335–9.

    Article  CAS  PubMed  Google Scholar 

  154. Maddox JF, Serhan CN. Lipoxin A4 and B4 are potent stimuli for human monocyte migration and adhesion: selective inactivation by dehydrogenation and reduction. J Exp Med. 1996;183:137–46. https://doi.org/10.1084/jem.183.1.137.

    Article  CAS  PubMed  Google Scholar 

  155. Bandeira-Melo C, et al. Cyclooxygenase-2-derived prostaglandin E2 and lipoxin A4 accelerate resolution of allergic edema in Angiostrongylus costaricensis-infected rats: relationship with concurrent eosinophilia. J Immunol. 2000;164:1029–36. https://doi.org/10.4049/jimmunol.164.2.1029.

    Article  CAS  PubMed  Google Scholar 

  156. Godson C, et al. Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol. 2000;164:1663–7., ji_v164n4p1663 [pii].

    Article  CAS  PubMed  Google Scholar 

  157. Serhan CN. A search for endogenous mechanisms of anti-inflammation uncovers novel chemical mediators: missing links to resolution. Histochem Cell Biol. 2004;122:305–21. https://doi.org/10.1007/s00418-004-0695-8.

    Article  CAS  PubMed  Google Scholar 

  158. Takano T, Clish CB, Gronert K, Petasis N, Serhan CN. Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues. J Clin Invest. 1998;101:819–26. https://doi.org/10.1172/JCI1578.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Takano T, et al. Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors. J Exp Med. 1997;185:1693–704. https://doi.org/10.1084/jem.185.9.1693.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  160. Serhan CN. The resolution of inflammation: the devil in the flask and in the details. FASEB J. 2011;25:1441–8. https://doi.org/10.1096/fj.11-0502ufm. 25/5/1441 [pii].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Chiang N, Serhan CN. Specialized pro-resolving mediator network: an update on production and actions. Essays Biochem. 2020;64:443–62. https://doi.org/10.1042/EBC20200018.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  162. Bell GA, et al. Intake of long-chain omega-3 fatty acids from diet and supplements in relation to mortality. Am J Epidemiol. 2014;179:710–20. https://doi.org/10.1093/aje/kwt326.

    Article  PubMed Central  PubMed  Google Scholar 

  163. Yates CM, Calder PC, Ed Rainger G. Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol Ther. 2014;141:272–82. https://doi.org/10.1016/j.pharmthera.2013.10.010.

    Article  CAS  PubMed  Google Scholar 

  164. Panigrahy D, et al. PPARalpha agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc Natl Acad Sci U S A. 2008;105:985–90. https://doi.org/10.1073/pnas.0711281105.

    Article  PubMed Central  PubMed  Google Scholar 

  165. Kaipainen A, et al. PPARalpha deficiency in inflammatory cells suppresses tumor growth. PLoS One. 2007;2:e260. https://doi.org/10.1371/journal.pone.0000260.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Song M, et al. Marine omega-3 polyunsaturated fatty acid intake and survival after colorectal cancer diagnosis. Gut. 2016; https://doi.org/10.1136/gutjnl-2016-311990.

  167. Wang D, DuBois RN. The role of anti-inflammatory drugs in colorectal cancer. Annu Rev Med. 2013;64:131–44. https://doi.org/10.1146/annurev-med-112211-154330.

    Article  CAS  PubMed  Google Scholar 

  168. Liang P, et al. Effect of dietary omega-3 fatty acids on tumor-associated macrophages and prostate cancer progression. Prostate. 2016;76:1293–302. https://doi.org/10.1002/pros.23218.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. D’Eliseo D, Velotti F. Omega-3 fatty acids and cancer cell cytotoxicity: implications for multi-targeted cancer therapy. J Clin Med. 2016;5. https://doi.org/10.3390/jcm5020015.

  170. Nabavi SF, et al. Omega-3 polyunsaturated fatty acids and cancer: lessons learned from clinical trials. Cancer Metastasis Rev. 2015;34:359–80. https://doi.org/10.1007/s10555-015-9572-2.

    Article  CAS  PubMed  Google Scholar 

  171. D’Eliseo D, et al. Epitelial-to-mesenchimal transition and invasion are upmodulated by tumor-expressed granzyme B and inhibited by docosahexaenoic acid in human colorectal cancer cells. J Exp Clin Cancer Res. 2016;35:24. https://doi.org/10.1186/s13046-016-0302-6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  172. Pan J, et al. Elevation of omega-3 polyunsaturated fatty acids attenuates PTEN-deficiency induced endometrial cancer development through regulation of COX-2 and PGE2 production. Sci Rep. 2015;5:14958. https://doi.org/10.1038/srep14958.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  173. Zhang C, Yu H, Ni X, Shen S, Das UN. Growth inhibitory effect of polyunsaturated fatty acids (PUFAs) on colon cancer cells via their growth inhibitory metabolites and fatty acid composition changes. PLoS One. 2015;10:e0123256. https://doi.org/10.1371/journal.pone.0123256.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  174. Serhan CN, Levy BD. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J Clin Invest. 2018;128:2657–69. https://doi.org/10.1172/JCI97943.

    Article  PubMed Central  PubMed  Google Scholar 

  175. Chandrasekharan JA, Huang XM, Hwang AC, Sharma-Walia N. Altering the anti-inflammatory lipoxin microenvironment: a new insight into Kaposi’s sarcoma-associated herpesvirus pathogenesis. J Virol. 2016;90:11020–31. https://doi.org/10.1128/JVI.01491-16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  176. Stenke L, Edenius C, Samuelsson J, Lindgren JA. Deficient lipoxin synthesis: a novel platelet dysfunction in myeloproliferative disorders with special reference to blastic crisis of chronic myelogenous leukemia. Blood. 1991;78:2989–95.

    Article  CAS  PubMed  Google Scholar 

  177. Liu H, et al. Colorectal cancer is associated with a deficiency of lipoxin A4, an endogenous anti-inflammatory mediator. J Cancer. 2019;10:4719–30. https://doi.org/10.7150/jca.32456.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  178. Zhuang Q, Meng Q, Xi Q, Wu G. [Association of serum inflammatory cytokines and Resolvin D1 concentration with pathological stage of colon cancer]. Zhonghua Wei Chang Wai Ke Za Zhi. 2018;21:1285–90.

    Google Scholar 

  179. Cata JP, et al. Inflammation and pro-resolution inflammation after hepatobiliary surgery. World J Surg Oncol. 2017;15:152. https://doi.org/10.1186/s12957-017-1220-6.

    Article  PubMed Central  PubMed  Google Scholar 

  180. Kuang H, Hua X, Zhou J, Yang R. Resolvin D1 and E1 alleviate the progress of hepatitis toward liver cancer in long-term concanavalin A-induced mice through inhibition of NF-kappaB activity. Oncol Rep. 2016;35:307–17. https://doi.org/10.3892/or.2015.4389.

    Article  CAS  PubMed  Google Scholar 

  181. Zong L, et al. Lipoxin A4 reverses mesenchymal phenotypes to attenuate invasion and metastasis via the inhibition of autocrine TGF-beta1 signaling in pancreatic cancer. J Exp Clin Cancer Res. 2017;36:181. https://doi.org/10.1186/s13046-017-0655-5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  182. Schnittert J, Heinrich MA, Kuninty PR, Storm G, Prakash J. Reprogramming tumor stroma using an endogenous lipid lipoxin A4 to treat pancreatic cancer. Cancer Lett. 2018;420:247–58. https://doi.org/10.1016/j.canlet.2018.01.072.

    Article  CAS  PubMed  Google Scholar 

  183. Prevete N, et al. Formyl peptide receptor 1 suppresses gastric cancer angiogenesis and growth by exploiting inflammation resolution pathways. Oncoimmunology. 2017;6:e1293213. https://doi.org/10.1080/2162402X.2017.1293213.

    Article  PubMed Central  PubMed  Google Scholar 

  184. Lu Y, Xu Q, Yin G, Xu W, Jiang H. Resolvin D1 inhibits the proliferation of lipopolysaccharide-treated HepG2 hepatoblastoma and PLC/PRF/5 hepatocellular carcinoma cells by targeting the MAPK pathway. Exp Ther Med. 2018;16:3603–10. https://doi.org/10.3892/etm.2018.6651.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  185. Zhang B, et al. Depletion of regulatory T cells facilitates growth of established tumors: a mechanism involving the regulation of myeloid-derived suppressor cells by lipoxin A4. J Immunol. 2010;185:7199–206. https://doi.org/10.4049/jimmunol.1001876. jimmunol.1001876 [pii]

    Article  CAS  PubMed  Google Scholar 

  186. Tsai WH, et al. Role of lipoxin A4 in the cell-to-cell interaction between all-trans retinoic acid-treated acute promyelocytic leukemic cells and alveolar macrophages. J Cell Physiol. 2012;227:1123–9. https://doi.org/10.1002/jcp.22832.

    Article  CAS  PubMed  Google Scholar 

  187. Hu S, et al. Lipoxins and aspirin-triggered lipoxin alleviate bone cancer pain in association with suppressing expression of spinal proinflammatory cytokines. J Neuroinflammation. 2012;9:278. https://doi.org/10.1186/1742-2094-9-278.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  188. Martinez RM, et al. The lipoxin receptor/FPR2 agonist BML-111 protects mouse skin against ultraviolet B radiation. Molecules. 2020;25. https://doi.org/10.3390/molecules25122953.

  189. Lin L, et al. BML-111, the lipoxin A4 agonist, modulates VEGF or CoCl2-induced migration, angiogenesis and permeability in tumor-derived endothelial cells. Immunol Lett. 2020;230:27–35. https://doi.org/10.1016/j.imlet.2020.12.007.

    Article  CAS  PubMed  Google Scholar 

  190. Chen Y, et al. Lipoxin A4 and its analogue suppress the tumor growth of transplanted H22 in mice: the role of antiangiogenesis. Mol Cancer Ther. 2010;9:2164–74. https://doi.org/10.1158/1535-7163.MCT-10-0173. 1535-7163.MCT-10-0173 [pii]

    Article  CAS  PubMed  Google Scholar 

  191. Hao H, et al. Lipoxin A4 and its analog suppress hepatocellular carcinoma via remodeling tumor microenvironment. Cancer Lett. 2011;309:85–94. https://doi.org/10.1016/j.canlet.2011.05.020.

    Article  CAS  PubMed  Google Scholar 

  192. Eritja N, et al. Tumour-microenvironmental blood flow determines a metabolomic signature identifying lysophospholipids and resolvin D as biomarkers in endometrial cancer patients. Oncotarget. 2017;8:109018–26. https://doi.org/10.18632/oncotarget.22558.

    Article  PubMed Central  PubMed  Google Scholar 

  193. Bai X, et al. Inhibition of lung cancer growth and metastasis by DHA and its metabolite, RvD1, through miR-138-5p/FOXC1 pathway. J Exp Clin Cancer Res. 2019;38:479. https://doi.org/10.1186/s13046-019-1478-3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  194. Yang P, et al. ResolvinD1 attenuates high-mobility group box 1-induced epithelial-to-mesenchymal transition in nasopharyngeal carcinoma cells. Exp Biol Med (Maywood). 2019;244:1608–18. https://doi.org/10.1177/1535370219885320.

    Article  CAS  Google Scholar 

  195. Ye Y, et al. Anti-cancer and analgesic effects of resolvin D2 in oral squamous cell carcinoma. Neuropharmacology. 2018;139:182–93. https://doi.org/10.1016/j.neuropharm.2018.07.016.

    Article  CAS  PubMed  Google Scholar 

  196. Halder RC, et al. Curcuminoids and omega-3 fatty acids with anti-oxidants potentiate cytotoxicity of natural killer cells against pancreatic ductal adenocarcinoma cells and inhibit interferon gamma production. Front Physiol. 2015;6:129. https://doi.org/10.3389/fphys.2015.00129.

    Article  PubMed Central  PubMed  Google Scholar 

  197. Shan K, et al. Resolvin D1 and D2 inhibit tumour growth and inflammation via modulating macrophage polarization. J Cell Mol Med. 2020; https://doi.org/10.1111/jcmm.15436.

  198. Zhong X, Lee HN, Surh YJ. RvD1 inhibits TNFalpha-induced c-Myc expression in normal intestinal epithelial cells and destabilizes hyper-expressed c-Myc in colon cancer cells. Biochem Biophys Res Commun. 2018;496:316–23. https://doi.org/10.1016/j.bbrc.2017.12.171.

    Article  CAS  PubMed  Google Scholar 

  199. Khasabova IA, Golovko MY, Golovko SA, Simone DA, Khasabov SG. Intrathecal administration of Resolvin D1 and E1 decreases hyperalgesia in mice with bone cancer pain: involvement of endocannabinoid signaling. Prostaglandins Other Lipid Mediat. 2020;151:106479. https://doi.org/10.1016/j.prostaglandins.2020.106479.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  200. Saito P, et al. The lipid mediator resolvin D1 reduces the skin inflammation and oxidative stress induced by UV irradiation in hairless mice. Front Pharmacol. 2018;9:1242. https://doi.org/10.3389/fphar.2018.01242.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  201. Zhang J, et al. Resolvin E1 protects against doxorubicin-induced cardiotoxicity by inhibiting oxidative stress, autophagy and apoptosis by targeting AKT/mTOR signaling. Biochem Pharmacol. 2020;180:114188. https://doi.org/10.1016/j.bcp.2020.114188.

    Article  CAS  PubMed  Google Scholar 

  202. Luo X, Gu Y, Tao X, Serhan CN, Ji RR. Resolvin D5 inhibits neuropathic and inflammatory pain in male but not female mice: distinct actions of D-series resolvins in chemotherapy-induced peripheral neuropathy. Front Pharmacol. 2019;10:745. https://doi.org/10.3389/fphar.2019.00745.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  203. Qiao Y, et al. Associations between aspirin use and the risk of cancers: a meta-analysis of observational studies. BMC Cancer. 2018;18:288. https://doi.org/10.1186/s12885-018-4156-5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  204. Gilroy DW, et al. Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med. 1999;5:698–701. https://doi.org/10.1038/9550.

    Article  CAS  PubMed  Google Scholar 

  205. Drew DA, Cao Y, Chan AT. Aspirin and colorectal cancer: the promise of precision chemoprevention. Nat Rev Cancer. 2016;16:173–86. https://doi.org/10.1038/nrc.2016.4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  206. Baandrup L, Kjaer SK, Olsen JH, Dehlendorff C, Friis S. Low-dose aspirin use and the risk of ovarian cancer in Denmark. Ann Oncol. 2015;26:787–92. https://doi.org/10.1093/annonc/mdu578.

    Article  CAS  PubMed  Google Scholar 

  207. Trabert B, et al. Aspirin, nonaspirin nonsteroidal anti-inflammatory drug, and acetaminophen use and risk of invasive epithelial ovarian cancer: a pooled analysis in the Ovarian Cancer Association Consortium. J Natl Cancer Inst. 2014;106:djt431. https://doi.org/10.1093/jnci/djt431.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  208. Ye X, et al. Frequency-risk and duration-risk relationships between aspirin use and gastric cancer: a systematic review and meta-analysis. PLoS One. 2013;8:e71522. https://doi.org/10.1371/journal.pone.0071522.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  209. Fraser DM, Sullivan FM, Thompson AM, McCowan C. Aspirin use and survival after the diagnosis of breast cancer: a population-based cohort study. Br J Cancer. 2014;111:623–7. https://doi.org/10.1038/bjc.2014.264.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  210. Chubak J, et al. Aspirin for the prevention of cancer incidence and mortality: systematic evidence reviews for the U.S. Preventive Services Task Force. Ann Intern Med. 2016;164:814–25. https://doi.org/10.7326/M15-2117.

    Article  PubMed  Google Scholar 

  211. Friis S, Riis AH, Erichsen R, Baron JA, Sorensen HT. Low-dose aspirin or nonsteroidal anti-inflammatory drug use and colorectal cancer risk: a population-based, case-control study. Ann Intern Med. 2015;163:347–55. https://doi.org/10.7326/M15-0039.

    Article  PubMed  Google Scholar 

  212. Nan H, et al. Association of aspirin and NSAID use with risk of colorectal cancer according to genetic variants. JAMA. 2015;313:1133–42. https://doi.org/10.1001/jama.2015.1815.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  213. Vidal AC, et al. Aspirin, NSAIDs, and risk of prostate cancer: results from the REDUCE study. Clin Cancer Res. 2015;21:756–62. https://doi.org/10.1158/1078-0432.CCR-14-2235.

    Article  CAS  PubMed  Google Scholar 

  214. Charles KA, et al. Systemic inflammation is an independent predictive marker of clinical outcomes in mucosal squamous cell carcinoma of the head and neck in oropharyngeal and non-oropharyngeal patients. BMC Cancer. 2016;16:124. https://doi.org/10.1186/s12885-016-2089-4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  215. Moreira DM, et al. Baseline prostate inflammation is associated with a reduced risk of prostate cancer in men undergoing repeat prostate biopsy: results from the REDUCE study. Cancer. 2014;120:190–6. https://doi.org/10.1002/cncr.28349.

    Article  CAS  PubMed  Google Scholar 

  216. Moreira DM, Nickel JC, Andriole GL, Castro-Santamaria R, Freedland SJ. Chronic baseline prostate inflammation is associated with lower tumor volume in men with prostate cancer on repeat biopsy: results from the REDUCE study. Prostate. 2015;75:1492–8. https://doi.org/10.1002/pros.23041.

    Article  PubMed  Google Scholar 

  217. Morrison L, et al. Inflammatory biomarker score and cancer: a population-based prospective cohort study. BMC Cancer. 2016;16:80. https://doi.org/10.1186/s12885-016-2115-6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  218. Zheng RR, et al. Cervical cancer systemic inflammation score: a novel predictor of prognosis. Oncotarget. 2016;7:15230–42. https://doi.org/10.18632/oncotarget.7378.

    Article  PubMed Central  PubMed  Google Scholar 

  219. Gu L, et al. Prognostic role of lymphocyte to monocyte ratio for patients with cancer: evidence from a systematic review and meta-analysis. Oncotarget. 2016;7:31926–42. https://doi.org/10.18632/oncotarget.7876.

    Article  PubMed Central  PubMed  Google Scholar 

  220. Hu P, et al. Prognostic significance of systemic inflammation-based lymphocyte-monocyte ratio in patients with lung cancer: based on a large cohort study. PLoS One. 2014;9:e108062. https://doi.org/10.1371/journal.pone.0108062.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Molly M. Gilligan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gilligan, M.M., Zetter, B.R., Panigrahy, D. (2022). Inflammation and Cancer: Lipid Autacoid and Cytokine Biomarkers of the Tumor Microenvironment. In: Akslen, L.A., Watnick, R.S. (eds) Biomarkers of the Tumor Microenvironment. Springer, Cham. https://doi.org/10.1007/978-3-030-98950-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98950-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98949-1

  • Online ISBN: 978-3-030-98950-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics