Skip to main content

Tumor Infiltrating Lymphocytes in Breast Cancer: Implementation of a New Histopathological Biomarker

  • Chapter
  • First Online:

Abstract

In this chapter we describe a promising new histopathological biomarker in immuno-pathology/oncology: tumor infiltrating lymphocytes (TILs). The semiquantitative assessment of TILs in breast cancer (and other tumors) is a well-defined histopathological parameter of which the assessment can easily be integrated in the standard examination of biopsies and resection specimens by the (surgical) pathologist. Focusing on breast cancer, we first summarize available evidence on the prognostic and predictive value of TILs in DCIS, ER+/HER2-, triple-negative, and Her2-positive breast cancer. We also describe the correlation between TILs and other biomarkers, the most notorious among pathologists being programmed death-ligand 1 (PD-L1).

Secondly, we describe the efforts of the International Immuno-Oncology Biomarkers Working Group (www.tilsinbreastcancer.org) to standardize TIL assessment (leading to standardized international guidelines), create awareness, and educate pathologists and oncologists. Finally, we briefly introduce new concepts and techniques that will in the coming years be introduced to further characterize the immune microenvironment in tumors and the interaction between tumor cells and inflammatory cells, such as the use of spatial single cell technologies and artificial intelligence. We believe these techniques should be integrated with the use of TILs and other biomarkers in clinical practice, for the benefit of our patients.

Key Content Graphic. Figure created with BioRender.com

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat Rev Dis Primers. 2019;5:66.

    Article  PubMed  Google Scholar 

  2. Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G. Seminar Breast cancer. Lancet. 2021;397:1750–69. https://doi.org/10.1016/S0140-6736.

    Article  CAS  PubMed  Google Scholar 

  3. Savas P, Salgado R, Denkert C, Sotiriou C, Darcy PK, Smyth MJ, et al. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat Rev Clin Oncol. 2015;13(4):228–41.

    Article  PubMed  CAS  Google Scholar 

  4. Sistrunk WE, MacCarty WCMD. Life expectancy following radical amputation for carcinoma of the breast. Ann Surg. 1922;75(1):61–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Moore OS, Foote FW. The relatively favorable prognosis of medullary carcinoma of the breast. Cancer. 1949;2(4):635–42.

    Article  PubMed  Google Scholar 

  6. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  7. Vitale I, Shema E, Loi S, Galluzzi L. Dynamic heterogeneity of cancer cells Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat Med. 2022;14(2):280. https://doi.org/10.1038/s41591-021-01233-9.

    Article  CAS  Google Scholar 

  8. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.

    Article  CAS  PubMed  Google Scholar 

  9. Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol. 2006;6:715–27.

    Article  CAS  PubMed  Google Scholar 

  10. Teng MWL, Galon J, Fridman WH, Smyth MJ. From mice to humans: developments in cancer immunoediting. J Clin Invest. 2015;125:3338–46.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schmid P, Salgado R, Park YH, Muñoz-Couselo E, Kim SB, Sohn J, et al. Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk, early-stage triple-negative breast cancer: results from the phase 1b open-label, multicohort KEYNOTE-173 study. Ann Oncol. 2020;31(5):569–81.

    Article  CAS  PubMed  Google Scholar 

  12. Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51:202–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McGrail DJ, Pilié PG, Rashid NU, Voorwerk L, Slagter M, Kok M, et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol. 2021;32(5):661–72.

    Article  CAS  PubMed  Google Scholar 

  14. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILS) in breast cancer: recommendations by an International TILS Working Group 2014. Ann Oncol. 2015;26:259–71.

    Article  CAS  PubMed  Google Scholar 

  15. Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B, et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immunooncology biomarkers working group: part 1: assessing the host immune response, TILs in invasi breast carcinoma and ductal carcinoma in situ, metastatic tumor deposits and areas for further research. Adv Anat Pathol. 2017;24:235–51.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kos Z, Roblin E, Kim RS, Michiels S, Gallas BD, Chen W, et al. Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer. npj Breast Cancer. 2020;6(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rakha EA, El-Sayed ME, Lee AHS, Elston CW, Grainge MJ, Hodi Z, et al. Prognostic significance of nottingham histologic grade in invasive breast carcinoma. J Clin Oncol. 2008;26(19):3153–8.

    Article  PubMed  Google Scholar 

  18. WHO Classification of Tumours Editorial Board. Breast Tumours WHO Classification of Tumours, 5th Edition, Volume 2. oard WC of tumours editorial, editor. International Agency for Research on Cancer; 2019.

    Google Scholar 

  19. Monard S, Gorana T, Patrizia C, Andrea B, Silvana P, Natale C, et al. Lymphoid infiltration as a prognostic variable for early-onset breast carcinomas. Clin Cancer Res. 1997;3:817–9.

    Google Scholar 

  20. Guarneri V, Dieci MV, Bisagni G, Brandes AA, Frassoldati A, Cavanna L, et al. PIK3CA mutation in the shortHER randomized adjuvant trial for patients with early HER2þ breast cancer: Association with prognosis and integration with PAM50 subtype. Clin Cancer Res. 2020;26(22):5843–51.

    Article  CAS  PubMed  Google Scholar 

  21. Sasaki R, Horimoto Y, Yanai Y, Kurisaki-Arakawa A, Arakawa A, Nakai K, et al. Molecular characteristics of lymphocyte-predominant triple-negative breast cancer. Anticancer Res. 2021;41(4):2133–40.

    Article  CAS  PubMed  Google Scholar 

  22. Craven KE, Gökmen-Polar Y, Badve SS. CIBERSORT analysis of TCGA and METABRIC identifies subgroups with better outcomes in triple negative breast cancer. Sci Rep. 2021;11(1):4691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Desmedt C, Salgado R, Fornili M, Pruneri G, van den Eynden G, Zoppoli G, et al. Immune infiltration in invasive lobular breast cancer. J Natl Cancer Inst. 2018;110(7):768–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Stanton SE, Adams S, Disis ML. Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes. JAMA Oncol. 2016;2(10):1354.

    Article  PubMed  Google Scholar 

  25. Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018;19(1):40–50.

    Article  PubMed  Google Scholar 

  26. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, van Eenoo F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol. 2013;31(7):860–7.

    Article  CAS  PubMed  Google Scholar 

  27. Denkert C, Loibl S, Noske A, Roller M, Müller BM, Komor M, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28(1):105–13.

    Article  CAS  PubMed  Google Scholar 

  28. Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B, et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immunooncology biomarkers working group: part 1: assessing the host immune response, TILs in invasive breast carcinoma and ductal carcinoma in situ, metastatic tumor deposits and areas for further research. In: Advances in anatomic pathology, vol. 24. Lippincott Williams and Wilkins; 2017. p. 235–51.

    Google Scholar 

  29. Rakha EA, Bennett RL, Coleman D, Pinder SE, Ellis IO. Review of the national external quality assessment (EQA) scheme for breast pathology in the UK. J Clin Pathol. 2017;70(1):51–7.

    Article  PubMed  Google Scholar 

  30. Morrow M, Schnitt SJ, Norton L. Current management of lesions associated with an increased risk of breast cancer. Nat Rev Clin Oncol. 2015;12(4):227–38.

    Article  PubMed  Google Scholar 

  31. Kim M, Chung YR, Kim HJ, Woo JW, Ahn S, Park SY. Immune microenvironment in ductal carcinoma in situ: a comparison with invasive carcinoma of the breast. Breast Cancer Res. 2020;22(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen X-Y, Yeong J, Thike AA, Bay BH, et al. Prognostic role of immune infiltrates in breast ductal carcinoma in situ. Breast Cancer Res Treat. 2019;177:17–27. https://doi.org/10.1007/s10549-019-05272-2.

    Article  PubMed  Google Scholar 

  33. Agahozo MC, van Bockstal MR, Groenendijk FH, van den Bosch TPP, Westenend PJ, van Deurzen CHM. Ductal carcinoma in situ of the breast: immune cell composition according to subtype. Mod Pathol. 2020;33(2):196–205.

    Article  CAS  PubMed  Google Scholar 

  34. Toss MS, Abidi A, Lesche D, Joseph C, Mahale S, Saunders H, et al. The prognostic significance of immune microenvironment in breast ductal carcinoma in situ. Br J Cancer. 2020;122(10):1496–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gil Del Alcazar CR, Huh SJ, Ekram MB, Trinh A, Liu LL, Beca F, et al. Immune escape in breast cancer during in situ to invasive carcinoma transition. Cancer Discov. 2017;7(10):1098–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hendry S, Pang JMB, Byrne DJ, Lakhani SR, Cummings MC, Campbell IG, et al. Relationship of the breast ductal carcinoma in situ immune microenvironment with clinicopathological and genetic features. Clin Cancer Res. 2017;23(17):5210–7.

    Article  CAS  PubMed  Google Scholar 

  37. Pruneri G, Lazzeroni M, Bagnardi V, Tiburzio GB, Rotmensz N, DeCensi A, et al. The prevalence and clinical relevance of tumor-infiltrating lymphocytes (TILs) in ductal carcinoma in situ of the breast. Ann Oncol. 2017;28(2):321–8.

    Article  CAS  PubMed  Google Scholar 

  38. Toss MS, Miligy I, Al-Kawaz A, Alsleem M, Khout H, Rida PC, et al. Prognostic significance of tumor-infiltrating lymphocytes in ductal carcinoma in situ of the breast. Mod Pathol. 2018;31(8):1226–36.

    Article  PubMed  Google Scholar 

  39. Dano H, Altinay S, Arnould L, Bletard N, Colpaert C, Dedeurwaerdere F, et al. Interobserver variability in upfront dichotomous histopathological assessment of ductal carcinoma in situ of the breast: the DCISion study. Mod Pathol. 2020;33(3):354–66.

    Article  CAS  PubMed  Google Scholar 

  40. Groen EJ, Hudecek J, Mulder L, van Seijen M, Almekinders MM, Alexov S, et al. Prognostic value of histopathological DCIS features in a large-scale international interrater reliability study. Breast Cancer Res Treat. 2020;183(3):759–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Cserni G, Sejben A. Grading ductal carcinoma in situ (DCIS) of the breast – what’s wrong with it? Pathol Oncol Res. 2020;26:665–71.

    Article  PubMed  Google Scholar 

  42. Van Bockstal M, Lambein K, Smeets A, Slembrouck L, Neven P, Nevelsteen I, et al. Stromal characteristics are adequate prognosticators for recurrence risk in ductal carcinoma in situ of the breast. Eur J Surg Oncol. 2019;45(4):550–9.

    Article  PubMed  Google Scholar 

  43. Darvishian F, Ozerdem U, Adams S, Chun J, Pirraglia E, Kaplowitz E, et al. Tumor-infiltrating lymphocytes in a contemporary cohort of women with ductal carcinoma in situ (DCIS). Ann Surg Oncol. 2019;26(10):3337–43.

    Article  PubMed  Google Scholar 

  44. Thike AA, Chen X, Koh VCY, Binte md Nasir ND, JPS Y, Bay BH, et al. Higher densities of tumour-infiltrating lymphocytes and CD4+ T cells predict recurrence and progression of ductal carcinoma in situ of the breast. Histopathology. 2020;76(6):852–64.

    Article  PubMed  Google Scholar 

  45. Xu FF, Zheng SF, Xu C, Cai G, Wang SB, Qi WX, et al. Prognostic and predictive significance of tumor infiltrating lymphocytes for ductal carcinoma in situ. OncoImmunology. 2021;10(1):1875637.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Farolfi A, Petracci E, Serra L, Ravaioli A, Bravaccini S, Ravaioli S, et al. Tumor-infiltrating lymphocytes (TILs) and risk of a second breast event after a ductal carcinoma in situ. Front Oncol. 2020;10:1486.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ades F, Zardavas D, Bozovic-Spasojevic I, Pugliano L, Fumagalli D, De Azambuja E, et al. Luminal B breast cancer: molecular characterization, clinical management, and future perspectives. J Clin Oncol. 2014;32:2794–803.

    Article  PubMed  Google Scholar 

  48. Pondé NF, Zardavas D, Piccart M. Progress in adjuvant systemic therapy for breast cancer. Nat Rev Clin Oncol. 2019;16:27–44.

    Article  PubMed  CAS  Google Scholar 

  49. Sparano JA, Gray RJ, Ravdin PM, Makower DF, Pritchard KI, Albain KS, et al. Clinical and genomic risk to guide the use of adjuvant therapy for breast cancer. N Engl J Med. 2019;380(25):2395–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Piccart M, van ‘t Veer LJ, Poncet C, Lopes Cardozo JMN, Delaloge S, Pierga JY, et al. 70-gene signature as an aid for treatment decisions in early breast cancer: updated results of the phase 3 randomised MINDACT trial with an exploratory analysis by age. Lancet Oncol. 2021;22(4):476–88.

    Article  CAS  PubMed  Google Scholar 

  51. Laws A, Garrido-Castro AC, Poorvu PD, Winer EP, Mittendorf EA, King TA. Utility of the 21-gene recurrence score in node-positive breast cancer. Oncology. 2021;35:77–84.

    Article  PubMed  Google Scholar 

  52. Acs G, Esposito NN, Kiluk J, Loftus L, Laronga C. A mitotically active, cellular tumor stroma and/or inflammatory cells associated with tumor cells may contribute to intermediate or high Oncotype DX Recurrence Scores in low-grade invasive breast carcinomas. Mod Pathol. 2012;25(4):556–66.

    Article  CAS  PubMed  Google Scholar 

  53. Desmedt C, Haibe-Kains B, Wirapati P, Buyse M, Larsimont D, Bontempi G, et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res. 2008;14(16):5158–65.

    Article  CAS  PubMed  Google Scholar 

  54. Krishnamurti U, Wetherilt CS, Yang J, Peng L, Li X. Tumor-infiltrating lymphocytes are significantly associated with better overall survival and disease-free survival in triple-negative but not estrogen receptor–positive breast cancers. Hum Pathol. 2017;64:7–12.

    Article  CAS  PubMed  Google Scholar 

  55. Ahn SG, Cha YJ, Bae SJ, Yoon C, Lee HW, Jeong J. Comparisons of tumor-infiltrating lymphocyte levels and the 21-gene recurrence score in ER-positive/HER2-negative breast cancer. BMC Cancer. 2018;18(1):320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kolberg-Liedtke C, Oleg G, Fred H, Friedrich F, Hans K, Michael C, et al. Association of TILs with clinical parameters, Recurrence Score® results, and prognosis in patients with early HER2-negative breast cancer (BC) - a translational analysis of the prospective WSG PlanB trial. Breast Cancer Res. 2020;22(1):47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nagalla S, Chou JW, Willingham MC, Ruiz J, Vaughn JP, Dubey P, et al. Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biol. 2013;14(4):R34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Seelige R, Searles S, Jack ·, Bui D. Mechanisms regulating immune surveillance of cellular stress in cancer. Cell Mol Life Sci. 2018;75:225–40.

    Article  CAS  PubMed  Google Scholar 

  59. López-Soto A, Gonzalez S, López-Larrea C, Kroemer G. Immunosurveillance of malignant cells with complex karyotypes. Trends Cell Biol. 2017;27:880–4.

    Article  PubMed  CAS  Google Scholar 

  60. Smid M, Rodríguez-González FG, Sieuwerts AM, Salgado R, Prager-Van Der Smissen WJC, van der Vlugt-Daane M, et al. Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration. Nat Commun. 2016;7:12910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Solinas C, Marcoux D, Garaud S, Vitória JR, van den Eynden G, de Wind A, et al. BRCA gene mutations do not shape the extent and organization of tumor infiltrating lymphocytes in triple negative breast cancer. Cancer Lett. 2019;450:88–97.

    Article  CAS  PubMed  Google Scholar 

  62. Haricharan S, Bainbridge MN, Scheet P, Brown PH. Somatic mutation load of estrogen receptor-positive breast tumors predicts overall survival: An analysis of genome sequence data. Breast Cancer Res Treat. 2014;146(1):211–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Davies H, Morganella S, Purdie CA, Jang SJ, Borgen E, Russnes H, et al. Whole-genome sequencing reveals breast cancers with mismatch repair deficiency. Cancer Res. 2017;77(18):4755–62.

    Article  CAS  PubMed  Google Scholar 

  64. Denkert C, Von Minckwitz G, Brase JC, Sinn BV, Gade S, Kronenwett R, et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol. 2015;33(9):983–91.

    Article  CAS  PubMed  Google Scholar 

  65. Heng YJ, Lester SC, Tse GMK, Factor RE, Allison KH, Collins LC, et al. The molecular basis of breast cancer pathological phenotypes. J Pathol. 2017;241(3):375–91.

    Article  CAS  PubMed  Google Scholar 

  66. Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol. 2014;25(8):1544–50.

    Article  CAS  PubMed  Google Scholar 

  67. Dieci MV, Mathieu MC, Guarneri V, Conte P, Delaloge S, Andre F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann Oncol. 2015;26(8):1698–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fujimoto Y, Watanabe T, Hida AI, Higuchi T, Miyagawa Y, Ozawa H, et al. Prognostic significance of tumor-infiltrating lymphocytes may differ depending on Ki67 expression levels in estrogen receptor-positive/HER2-negative operated breast cancers. Breast Cancer. 2019;26(6):738–47.

    Article  PubMed  Google Scholar 

  69. Criscitiello C, Vingiani A, Maisonneuve P, Viale G, Viale G, Curigliano G. Tumor-infiltrating lymphocytes (TILs) in ER+/HER2− breast cancer. Breast Cancer Res Treat. 2020;183(2):347–54.

    Article  CAS  PubMed  Google Scholar 

  70. Hua GZ, Xin LC, Liu M, Yuan JJ. Predictive and prognostic role of tumour-infiltrating lymphocytes in breast cancer patients with different molecular subtypes: a meta-analysis. BMC Cancer. 2020;20(1):1150.

    Article  CAS  Google Scholar 

  71. Deman F, Punie K, Laenen A, Neven P, Oldenburger E, Smeets A, et al. Assessment of stromal tumor infiltrating lymphocytes and immunohistochemical features in invasive micropapillary breast carcinoma with long-term outcomes. Breast Cancer Res Treat. 2020;184(3):985–98.

    Article  CAS  PubMed  Google Scholar 

  72. Richard F, Majjaj S, Venet D, Rothé F, Pingitore J, Boeckx B, et al. Characterization of stromal tumor-infiltrating lymphocytes and genomic alterations in metastatic lobular breast cancer. Clin Cancer Res. 2020;26(23):6254–65.

    Article  CAS  PubMed  Google Scholar 

  73. Guo X, Chen L, Lang R, Fan Y, Zhang X, Fu L. Invasive micropapillary carcinoma of the breast: association of pathologic features with lymph node metastasis. Am J Clin Pathol. 2006;126(5):740–6.

    Article  PubMed  Google Scholar 

  74. Gucalp A, Traina TA, Eisner JR, Parker JS, Selitsky SR, Park BH, et al. Male breast cancer: a disease distinct from female breast cancer. Breast Cancer Res Treat. 2019;173:37–48.

    Article  PubMed  Google Scholar 

  75. Vermeulen MA, Slaets L, Cardoso F, Giordano SH, Tryfonidis K, van Diest PJ, et al. Pathological characterisation of male breast cancer: results of the EORTC 10085/TBCRC/BIG/NABCG International Male Breast Cancer Program. Eur J Cancer. 2017;82:219–27.

    Article  PubMed  Google Scholar 

  76. Ali HR, Provenzano E, Dawson S-J, Blows FM, Liu B, Shah M, et al. Association between CD8+ T-cell infiltration and breast cancer survival in 12 439 patients. Ann Oncol. 2014;25:1536–43.

    Article  CAS  PubMed  Google Scholar 

  77. Mahmoud SMA, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AHS, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29(15):1949–55.

    Article  PubMed  Google Scholar 

  78. Dieci MV, Miglietta F, Guarneri V. Immune infiltrates in breast cancer: recent updates and clinical implications. Cells. 2021;10:223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Scheel AH, Penault-Llorca F, Hanna W, Baretton G, Middel P, Burchhardt J, et al. Physical basis of the “magnification rule” for standardized Immunohistochemical scoring of HER2 in breast and gastric cancer. Diagn Pathol. 2018;13(1)

    Google Scholar 

  80. Wolff AC, McShane LM, Hammond MEH, Allison KH, Fitzgibbons P, Press MF, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. Arch Pathol Lab Med. 2018;142:1364–82.

    Article  PubMed  Google Scholar 

  81. Goutsouliak K, Veeraraghavan J, Sethunath V, Angelis C, Kent Osborne C, Rimawi MF, et al. Towards personalized treatment for early stage HER2-positive breast cancer. Nat Rev Clin Oncol. 2020;17(4):233–50.

    Article  PubMed  Google Scholar 

  82. Rimawi MF, Schiff R, Osborne CK. Targeting HER2 for the treatment of breast cancer. Annu Rev Med. 2015;66:111–28.

    Article  CAS  PubMed  Google Scholar 

  83. Brandão M, Caparica R, Malorni L, Prat A, Carey LA, Piccart M. What is the real impact of estrogen receptor status on the prognosis and treatment of HER2-positive early breast cancer? Clin Cancer Res. 2020;26:2783–8.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Marchiò C, Annaratone L, Marques A, Casorzo L, Berrino E, Sapino A. Evolving concepts in HER2 evaluation in breast cancer: heterogeneity, HER2-low carcinomas and beyond. Semin Cancer Biol. 2021;72:123–35.

    Article  PubMed  CAS  Google Scholar 

  85. Schettini F, Chic N, Brasó-Maristany F, Paré L, Pascual T, Conte B, et al. Clinical, pathological, and PAM50 gene expression features of HER2-low breast cancer. NPJ Breast Cancer. 2021;7(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Salgado R, Denkert C, Campbell C, Savas P, Nuciforo P, Aura C, et al. Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: A secondary analysis of the NeoALTTO trial. JAMA Oncol. 2015;1(4):448–55.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rody A, Holtrich U, Pusztai L, Liedtke C, Gaetje R, Ruckhaeberle E, et al. T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res. 2009;11(2):R15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Perez EA, Ballman KV, Tenner KS, Thompson EA, Badve SS, Bailey H, et al. Association of stromal tumor-infiltrating lymphocytes with recurrence-free survival in the n9831 adjuvant trial in patients with early-stage HER2-positive breast cancer. JAMA Oncol. 2016;2(1):56–64.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kim RS, Song N, Gavin PG, Salgado R, Bandos H, Kos Z, et al. Stromal tumor-infiltrating lymphocytes in NRG oncology/NSABP B-31 adjuvant trial for early-stage HER2-positive breast cancer. J Natl Cancer Inst. 2019;111(8):867–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Pogue-Geile KL, Song N, Serie DJ, Wang Y, Gavin PG, Kim RS, et al. Validation of the NSABP/NRG Oncology 8-gene trastuzumab-benefit signature in alliance/NCCTG N9831. JNCI Cancer Spectr. 2020;4(5):pkaa058.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Dieci MV, Conte P, Bisagni G, Brandes AA, Frassoldati A, Cavanna L, et al. Association of tumor-infiltrating lymphocytes with distant disease-free survival in the ShortHER randomized adjuvant trial for patients with early HER2+ breast cancer. Ann Oncol. 2019;30(3):418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Prat A, Guarneri V, Paré L, Griguolo G, Pascual T, Dieci MV, et al. A multivariable prognostic score to guide systemic therapy in early-stage HER2-positive breast cancer: a retrospective study with an external evaluation. Lancet Oncol. 2020;21(11):1455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. He L, Wang Y, Wu Q, Song Y, Ma X, Zhang B, et al. Association between levels of tumor-infiltrating lymphocytes in different subtypes of primary breast tumors and prognostic outcomes: a meta-analysis. BMC Women’s Health. 2020;20(1):194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Desmedt C, Zoppoli G, Sotiriou C, Salgado R. Transcriptomic and genomic features of invasive lobular breast cancer. Semin Cancer Biol. 2017;44:98–105.

    Article  CAS  PubMed  Google Scholar 

  95. Jongen L, Floris G, Boeckx B, Smeets D, Lambrechts D, van der Borght S, et al. Identification, clinical-pathological characteristics and treatment outcomes of patients with metastatic breast cancer and somatic human epidermal growth factor receptor 2 (ERBB2) mutations. Breast Cancer Res Treat. 2019;174(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  96. Geyer FC, Pareja F, Weigelt B, Rakha E, Ellis IO, Schnitt SJ, et al. The spectrum of triple-negative breast disease: high- and low-grade lesions. Am J Pathol. 2017;187:2139–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig. 2011;121(7):2750–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SAW, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21(7):1688–98.

    Article  CAS  PubMed  Google Scholar 

  99. Turner NC, Reis-Filho JS. Tackling the diversity of Triple-negative breast cancer. Clin Cancer Res. 2013;19(23):6380–8.

    Article  CAS  PubMed  Google Scholar 

  100. Bertucci F, Finetti P, Cervera N, Charafe-Jauffret E, Mamessier E, Adélaïdev JA, et al. Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancers. Cancer Res. 2006;66(9):4636–80.

    Article  CAS  PubMed  Google Scholar 

  101. Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. 2016. Available from: http://cancer

    Google Scholar 

  102. Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 2014;32:2959–66.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Pruneri G, Gray KP, Vingiani A, Viale G, Curigliano G, Criscitiello C, et al. Tumor-infiltrating lymphocytes (TILs) are a powerful prognostic marker in patients with triple-negative breast cancer enrolled in the IBCSG phase III randomized clinical trial 22-00. Breast Cancer Res Treat. 2016;158:323–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Loi S, Drubay D, Adams S, Pruneri G, Francis PA, Lacroix-Triki M, et al. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol. 2019;37:559–69.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. The Lancet. 2014;384(9938):164–72.

    Article  Google Scholar 

  106. Provenzano E, Bossuyt V, Viale G, Cameron D, Badve S, Denkert C, et al. Standardization of pathologic evaluation and reporting of postneoadjuvant specimens in clinical trials of breast cancer: recommendations from an international working group. 2015. Available from: www.modernpathology.org

  107. Symmans WF, Peintinger F, Hatzis C, Rajan R, Kuerer H, Valero V, et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol. 2007;25(28):4414–22.

    Article  PubMed  Google Scholar 

  108. Ogston KN, Miller ID, Payne S, Hutcheon AW, Sarkar TK, Smith I, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast. 2003;12(5):320–7.

    Article  PubMed  Google Scholar 

  109. Wein L, Luen SJ, Savas P, Salgado R, Loi S. Checkpoint blockade in the treatment of breast cancer: current status and future directions. 2018. https://doi.org/10.1038/s41416-018-0126-6.

  110. von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol. 2012;30(15):1796–804.

    Article  Google Scholar 

  111. Schneeweiss A, Möbus V, Tesch H, Hanusch C, Denkert C, Lübbe K, et al. Intense dose-dense epirubicin, paclitaxel, cyclophosphamide versus weekly paclitaxel, liposomal doxorubicin (plus carboplatin in triple-negative breast cancer) for neoadjuvant treatment of high-risk early breast cancer (GeparOcto—GBG 84): a randomised phase III trial. Eur J Cancer. 2019;106:181–92.

    Article  CAS  PubMed  Google Scholar 

  112. Issa-Nummer Y, Darb-Esfahani S, Loibl S, Kunz G, Nekljudova V, Schrader I, et al. Prospective validation of immunological infiltrate for prediction of response to neoadjuvant chemotherapy in HER2-negative breast cancer – a substudy of the neoadjuvant GeparQuinto trial. PLoS One. 2013;8(12):e79775. https://doi.org/10.1371/journal.pone.0079775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. O’Loughlin M, Andreu X, Bianchi S, Chemielik E, Cordoba A, Cserni G, et al. Reproducibility and predictive value of scoring stromal tumour infiltrating lymphocytes in triple-negative breast cancer: a multi-institutional study. Breast Cancer Res Treat. 2021;171(1):1–9.

    Article  Google Scholar 

  114. Denkert C, Wienert S, Poterie A, Loibl S, Budczies J, Badve S, et al. Standardized evaluation of tumor-infiltrating lymphocytes in breast cancer: results of the ring studies of the international immuno-oncology biomarker working group. Mod Pathol. 2016;29(10):1155–64.

    Article  CAS  PubMed  Google Scholar 

  115. Asano Y, Kashiwagi S, Goto W, Takada K, Takahashi K, Hatano T, et al. Prediction of treatment response to neoadjuvant chemotherapy in breast cancer by subtype using tumor-infiltrating lymphocytes. Anticancer Res. 2018;38(4):2311–21.

    PubMed  Google Scholar 

  116. Jongen L, Floris G, Wildiers H, Claessens F, Richard F, Laenen A, et al. Tumor characteristics and outcome by androgen receptor expression in triple-negative breast cancer patients treated with neo-adjuvant chemotherapy. Br Cancer Res Treat. 2019;176:699–708. https://doi.org/10.1007/s10549-019-05252-6.

    Article  CAS  Google Scholar 

  117. Hamy AS, Bonsang-Kitzis H, de Croze D, Laas E, Darrigues L, Topciu L, et al. Interaction between molecular subtypes and stromal immune infiltration before and after treatment in breast cancer patients treated with neoadjuvant chemotherapy. Clin Cancer Res. 2019;25(22):6731–41.

    Article  CAS  PubMed  Google Scholar 

  118. Gao G, Wang Z, Qu X, Zhang Z. Prognostic value of tumor-infiltrating lymphocytes in patients with triple-negative breast cancer: a systematic review and meta-analysis. BMC Cancer. 2020;20(1):179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Luen SJ, Salgado R, Loi S. Residual disease and immune infiltration as a new surrogate endpoint for TNBC post neoadjuvant chemotherapy. Oncotarget. 2019;10:4612–4.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Demaria S, Volm MD, Shapiro RL, Yee HY, Oratz R, Formenti SC, et al. Development of tumor-infiltrating lymphocytes in breast cancer after neoadjuvant paclitaxel chemotherapy. Clin Cancer Res. 2001;7(10):3025–30.

    CAS  PubMed  Google Scholar 

  121. Dieci MV, Criscitiello C, Goubar A, Viale G, Conte P, Guarneri V, et al. Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: a retrospective multicenter study. Ann Oncol. 2014;25(3):611–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Loi S, Dushyanthen S, Beavis PA, Salgado R, Denkert C, Savas P, et al. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: Therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res. 2016;22(6):1499–509.

    Article  CAS  PubMed  Google Scholar 

  123. Luen SJ, Salgado R, Dieci MV, Vingiani A, Curigliano G, Gould RE, et al. Prognostic implications of residual disease tumor-infiltrating lymphocytes and residual cancer burden in triple-negative breast cancer patients after neoadjuvant chemotherapy. Ann Oncol. 2019;30(2):236–42.

    Article  CAS  PubMed  Google Scholar 

  124. Ali HR, Dariush A, Thomas J, Provenzano E, Dunn J, Hiller L, et al. Lymphocyte density determined by computational pathology validated as a predictor of response to neoadjuvant chemotherapy in breast cancer: secondary analysis of the ARTemis trial. Ann Oncol. 2017;28(8):1832–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ali HR, Dariush A, Provenzano E, Bardwell H, Abraham JE, Iddawela M, et al. Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res. 2016;18(1):21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Dieci MV, Frassoldati A, Generali D, Bisagni G, Piacentini F, Cavanna L, et al. Tumor-infiltrating lymphocytes and molecular response after neoadjuvant therapy for HR+/HER2− breast cancer: results from two prospective trials. Br Cancer Res Treat. 2017;163(2):295–302.

    Article  CAS  Google Scholar 

  127. Griguolo G, Dieci MV, Paré L, Miglietta F, Generali DG, Frassoldati A, et al. Immune microenvironment and intrinsic subtyping in hormone receptor-positive/HER2-negative breast cancer. NPJ Br Cancer. 2021;7(1):1–5. https://doi.org/10.1038/s41523-021-00223-x.

    Article  CAS  Google Scholar 

  128. Badr NM, Spooner D, Steven J, Stevens A, Shaaban AM. Morphological and molecular changes following neoadjuvant endocrine therapy of ER positive breast cancer: implications for clinical practice. Histopathology. 2021;79(1):47–56.

    Article  PubMed  Google Scholar 

  129. Skriver SK, Jensen MB, Knoop AS, Ejlertsen B, Laenkholm AV. Tumour-infiltrating lymphocytes and response to neoadjuvant letrozole in patients with early oestrogen receptor-positive breast cancer: analysis from a nationwide phase II DBCG trial. Breast Cancer Res. 2020;22(1):46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dunbier AK, Ghazoui Z, Anderson H, Salter J, Nerurkar A, Osin P, et al. Molecular profiling of aromatase inhibitor-treated postmenopausal breast tumors identifies immune-related correlates of resistance. Clin Cancer Res. 2013;19(10):2775–86.

    Article  CAS  PubMed  Google Scholar 

  131. Liang X, Briaux A, Becette V, Benoist C, Boulai A, Chemlali W, et al. Molecular profiling of hormone receptor-positive, HER2-negative breast cancers from patients treated with neoadjuvant endocrine therapy in the CARMINA 02 trial (UCBG-0609). J Hematol Oncol. 2018;11(1):124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chan MSM, Wang L, Felizola SJA, Ueno T, Toi M, Loo W, et al. Changes of tumor infiltrating lymphocyte subtypes before and after neoadjuvant endocrine therapy in estrogen receptor-positive breast cancer patients - an immunohistochemical study of cd8+ and foxp3+ using double immunostaining with correlation to the pathobiological response of the patients. Int J Biol Markers. 2012;27(4):e295–304.

    Article  CAS  PubMed  Google Scholar 

  133. Llombart-Cussac A, Cortés J, Paré L, Galván P, Bermejo B, Martínez N, et al. HER2-enriched subtype as a predictor of pathological complete response following trastuzumab and lapatinib without chemotherapy in early-stage HER2-positive breast cancer (PAMELA): an open-label, single-group, multicentre, phase 2 trial. Lancet Oncol. 2017;18(4):545–54.

    Article  CAS  PubMed  Google Scholar 

  134. Nuciforo P, Pascual T, Cortés J, Llombart-Cussac A, Fasani R, Paré L, et al. A predictive model of pathologic response based on tumor cellularity and tumor-infiltrating lymphocytes (CelTIL) in HER2-positive breast cancer treated with chemo-free dual HER2 blockade. Ann Oncol. 2018;29(1):170–7.

    Article  CAS  PubMed  Google Scholar 

  135. Chic N, Luen SJ, Nuciforo P, Salgado R, Fumagalli D, Hilbers F, et al. Tumor cellularity and infiltrating lymphocytes (CelTIL) as a survival surrogate in HER2-positive breast cancer. J Natl Cancer Inst. 2022;114(3):467–70.

    Article  PubMed  Google Scholar 

  136. Desmedt C, Fornili M, Clatot F, Demicheli R, de Bortoli D, di Leo A, et al. Differential benefit of adjuvant docetaxel-based chemotherapy in patients with early breast cancer according to baseline body mass index. J Clin Oncol. 2020;38(25):2883–91.

    Article  CAS  PubMed  Google Scholar 

  137. Floris G, Richard F, Hamy A-S, Jongen L, Wildiers H, Ardui J, et al. Body mass index and tumor-infiltrating lymphocytes in triple-negative breast cancer. J Natl Cancer Inst. 2021;113(2):146–53.

    Article  PubMed  CAS  Google Scholar 

  138. Murphy WJ, Longo DL. The surprisingly positive association between obesity and cancer immunotherapy efficacy. J Am Med Assoc. 2019;321:1247–8.

    Article  Google Scholar 

  139. Cardoso F, Paluch-Shimon S, Senkus E, Curigliano G, Aapro MS, André F, et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). Ann Oncol. 2020;31(12):1623–49.

    Article  CAS  PubMed  Google Scholar 

  140. Wein L, Savas P, Luen SJ, Virassamy B, Salgado R, Loi S. Clinical validity and utility of tumor-infiltrating lymphocytes in routine clinical practice for breast cancer patients: current and future directions. Front Oncol. 2017;7:156.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, Caramia F, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med. 2018;24(7):986–93.

    Article  CAS  PubMed  Google Scholar 

  142. Loi S, Giobbie-Hurder A, Gombos A, Bachelot T, Hui R, Curigliano G, et al. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): a single-arm, multicentre, phase 1b–2 trial. Lancet Oncol. 2019;20(3):371–82.

    Article  CAS  PubMed  Google Scholar 

  143. Adams S, Schmid P, Rugo HS, Winer EP, Loirat D, Awada A, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study. Ann Oncol. 2019;30(3):397–404.

    Article  CAS  PubMed  Google Scholar 

  144. Ogiya R, Niikura N, Kumaki N, Bianchini G, Kitano S, Iwamoto T, et al. Comparison of tumor-infiltrating lymphocytes between primary and metastatic tumors in breast cancer patients. Cancer Sci. 2016;107(12):1730–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cimino-Mathews A, Ye X, Meeker A, Argani P, Emens LA. Metastatic triple-negative breast cancers at first relapse have fewer tumor-infiltrating lymphocytes than their matched primary breast tumors: a pilot study. Hum Pathol. 2013;44(10):2055–63.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ogiya R, Niikura N, Kumaki N, Yasojima H, Iwasa T, Kanbayashi C, et al. Comparison of immune microenvironments between primary tumors and brain metastases in patients with breast cancer. Oncotarget. 2017;8(61):103671–81.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Vermeulen PB, Bohlok A, Leduc S, Richard F, Botzenhart L, Ignatiadis M, et al. Abstract P3-01-13: Association between the histopathological growth patterns (HGP) of liver metastases (LM) and survival after hepatic surgery in patients with oligometastatic breast cancer (BC). In: Cancer Research. American Association for Cancer Research (AACR); 2020. p. P3-01-13-P3-01–13. Available from: https://cancerres.aacrjournals.org/content/80/4_Supplement/P3-01-13

  148. van Dam PJ, van der Stok EP, Teuwen LA, van den Eynden GG, Illemann M, Frentzas S, et al. International consensus guidelines for scoring the histopathological growth patterns of liver metastasis. Br J Cancer. 2017;117:1427–41.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Sambade MJ, Prince G, Deal AM, Trembath D, McKee M, Garrett A, et al. Examination and prognostic implications of the unique microenvironment of breast cancer brain metastases. Brest Cancer Res Treat. 2019;176(2):321–8.

    Article  Google Scholar 

  150. Szekely B, Bossuyt V, Li X, Wali VB, Patwardhan GA, Frederick C, et al. Immunological differences between primary and metastatic breast cancer. Ann Oncol. 2018;29(11):2232–9.

    Article  CAS  PubMed  Google Scholar 

  151. Dieci MV, Tsvetkova V, Orvieto E, Piacentini F, Ficarra G, Griguolo G, et al. Immune characterization of breast cancer metastases: Prognostic implications. Breast Cancer Res. 2018;20(1):62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Luen SJ, Salgado R, Fox S, Savas P, Eng-Wong J, Clark E, et al. Tumour-infiltrating lymphocytes in advanced HER2-positive breast cancer treated with pertuzumab or placebo in addition to trastuzumab and docetaxel: a retrospective analysis of the CLEOPATRA study. Lancet Oncol. 2017;18(1):52–62.

    Article  CAS  PubMed  Google Scholar 

  153. Iacobuzio-Donahue CA, Michael C, Baez P, Kappagantula R, Hooper JE, Hollman TJ. Cancer biology as revealed by the research autopsy. Nat Rev Cancer. 2019;19(12):686–97.

    Article  CAS  PubMed  Google Scholar 

  154. Dankner M, Issa-Chergui B, Bouganim N. Post-mortem tissue donation programs as platforms to accelerate cancer research. J Pathol Clin Res. 2020;6(3):163–70.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Doroshow DB, Bhalla S, Beasley MB, Sholl LM, Kerr KM, Gnjatic S, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2021;18(6):345–62.

    Article  CAS  PubMed  Google Scholar 

  156. Paver EC, Cooper WA, Colebatch AJ, Ferguson PM, Hill SK, Lum T, et al. Programmed death ligand-1 (PD-L1) as a predictive marker for immunotherapy in solid tumours: a guide to immunohistochemistry implementation and interpretation. Pathology. 2021;53:141–56.

    Article  CAS  PubMed  Google Scholar 

  157. Schmid P, Rugo HS, Adams S, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21(1):44–59.

    Article  CAS  PubMed  Google Scholar 

  158. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–21.

    Article  CAS  PubMed  Google Scholar 

  159. Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. The Lancet. 2020;396(10265):1817–28.

    Article  Google Scholar 

  160. Miles DW, Gligorov J, André F, Cameron D, Schneeweiss A, Barrios CH, et al. LBA15 Primary results from IMpassion131, a double-blind placebo-controlled randomised phase III trial of first-line paclitaxel (PAC) ± atezolizumab (atezo) for unresectable locally advanced/metastatic triple-negative breast cancer (mTNBC). Ann Oncol. 2020;31:S1147–8.

    Article  Google Scholar 

  161. Lu S, Stein JE, Rimm DL, Wang DW, Bell JM, Johnson DB, et al. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol. 2019;5:1195–204.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Schmid P, Cortes J, Pusztai L, McArthur H, Kümmel S, Bergh J, et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020;382(9):810–21.

    Article  CAS  PubMed  Google Scholar 

  163. Mittendorf EA, Zhang H, Barrios CH, Saji S, Jung KH, Hegg R, et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial. Lancet. 2020;396(10257):1090–100.

    Article  CAS  PubMed  Google Scholar 

  164. Rugo H, Loi S, Adams S, Schmid P, Schneeweiss A, Barrios CH, et al. PD1-07. Exploratory analytical harmonization of PD-L1 immunohistochemistry assays in advanced triple-negative breast cancer: a retrospective substudy of IMpassion130. 42nd Annual CTRC-AACR San Antonio Breast Cancer Symposium, San Antonio, TX, December 10–14, 2019.

    Google Scholar 

  165. Gonzalez-Ericsson PI, Stovgaard ES, Sua LF, Reisenbichler E, Kos Z, Carter JM, et al. The path to a better biomarker: application of a risk management framework for the implementation of PD-L1 and TILs as immuno-oncology biomarkers in breast cancer clinical trials and daily practice. J Pathol. 2020;250:667–84.

    Article  CAS  PubMed  Google Scholar 

  166. Roche H-L (2015) A study of atezolizumab in combination with nab-paclitaxel compared with placebo with nab-paclitaxel for participants with previously untreated metastatic triple-negative breast cancer (IMpassion130), https://ClinicalTrials.gov/show/NCT02425891

  167. Schmid P, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21(1):44–59.

    Article  CAS  PubMed  Google Scholar 

  168. Rugo HS, Loi S, Adams S, Schmid P, Schneeweiss A, Barrios CH, et al. LBA20: performance of PD-L1 immunohistochemistry (IHC) assays in unresectable locally advanced or metastatic triple-negative breastcancer (mTNBC): post-hoc analysis of IMpassion130. Ann Oncol. 2019;30(S5):v858–9.

    Article  Google Scholar 

  169. A study of atezolizumab and paclitaxel versus placebo and paclitaxel in participants with previously untreated locally advanced or metastatic triple negative breast cancer (TNBC), https://ClinicalTrials.gov/show/NCT03125902

  170. Miles DW, Gligorov J, André F, Cameron D, Schneeweiss A, Barrios CH, et al. LBA15 - primary results from IMpassion131, a double-blind placebo-controlled randomised phase III trial of first-line paclitaxel (PAC) ± atezolizumab (atezo) for unresectable locally advanced/metastatic triple-negative breast cancer (mTNBC). Ann Oncol. 2020;31(suppl_4):S1142–215. https://doi.org/10.1016/annonc/annonc325.

    Article  Google Scholar 

  171. A study to investigate atezolizumab and chemotherapy compared with placebo and chemotherapy in the neoadjuvant setting in participants with early stage triple negative breast cancer, https://ClinicalTrials.gov/show/NCT03197935

  172. Study of single agent pembrolizumab (MK-3475) versus single agent chemotherapy for metastatic triple negative breast cancer (MK-3475-119/KEYNOTE-119), https://ClinicalTrials.gov/show/NCT02555657

  173. Winer EP, Lipatov O, Im S-A, Goncalves A, Muñoz-Couselo E, Lee KS, et al. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): a randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22(4):499–511.

    Article  CAS  PubMed  Google Scholar 

  174. Study of pembrolizumab (MK-3475) plus chemotherapy vs. placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple negative breast cancer (MK-3475-355/KEYNOTE-355), https://ClinicalTrials.gov/show/NCT02819518

  175. Study of pembrolizumab (MK-3475) plus chemotherapy vs placebo plus chemotherapy as neoadjuvant therapy and pembrolizumab vs placebo as adjuvant therapy in participants with triple negative breast cancer (TNBC) (MK-3475-522/KEYNOTE-522), https://ClinicalTrials.gov/show/NCT03036488

  176. Roche H-L (2019) A study of atezolizumab plus nab-paclitaxel in the treatment of unresectable locally advanced or metastatic PD-L1-positive triple-negative breast cancer, https://ClinicalTrials.gov/show/NCT04148911.

  177. Inc NF et al. (2017) Clinical trial of neoadjuvant chemotherapy with atezolizumab or placebo in patients with triple-negative breast cancer followed after surgery by atezolizumab or placebo, https://ClinicalTrials.gov/show/NCT03281954.

  178. Sharp M, Corp D (2019) Study of olaparib plus pembrolizumab versus chemotherapy plus pembrolizumab after induction with first-line chemotherapy plus pembrolizumab in triple negative breast cancer (TNBC) (MK-7339-009/KEYLYNK-009), https://ClinicalTrials.gov/show/NCT04191135

  179. Roche H-L (2018) A study of the efficacy and safety of atezolizumab plus chemotherapy for patients with early relapsing recurrent triple-negative breast cancer, https://ClinicalTrials.gov/show/NCT03371017

  180. Roche H-L, et al (2018) A study comparing atezolizumab (anti PD-L1 antibody) in combination with adjuvant anthracycline/taxane-based chemotherapy versus chemotherapy alone in patients with operable triple-negative breast cancer, https://ClinicalTrials.gov/show/NCT03498716

  181. Michelangelo F (2016) Neoadjuvant therapy in TRIPle negative breast cancer with antiPDL1, https://ClinicalTrials.gov/show/NCT02620280

  182. Jiangsu HengRui Medicine Co., L. (2020) A phase 3 study comparing carelizumab plus nab-paclitaxel and apatinib, carelizumab plus nab-paclitaxel, and nab-paclitaxel in patients with advanced triple negative breast cancer, https://ClinicalTrials.gov/show/NCT04335006

  183. Jiangsu HengRui Medicine Co., L. (2020) A study of camrelizumab plus chemotherapy vs placebo plus chemotherapy as neoadjuvant therapy in participants with triple negative breast cancer (TNBC), https://ClinicalTrials.gov/show/NCT04613674

  184. Shanghai Junshi Bioscience Co., L. (2018). Toripalimab in combination with nab-paclitaxel for patients with metastatic or recurrent triple-negative breast cancer (TNBC) with or without systemic treatment, https://ClinicalTrials.gov/show/NCT04085276

  185. Roche H-L, Chugai Pharmaceutical (2019) A study to evaluate the efficacy and safety of atezolizumab or placebo in combination with neoadjuvant doxorubicin + cyclophosphamide followed by paclitaxel + trastuzumab + pertuzumab in early her2-positive breast cancer, https://ClinicalTrials.gov/show/NCT03726879

  186. Roche H-L (2021) A study of trastuzumab emtansine in combination with atezolizumab or placebo as a treatment for participants with human epidermal growth factor 2 (HER2)-positive and programmed death-ligand 1 (PD-L1)-positive locally advanced (LABC) or metastatic breast cancer (MBC), https://ClinicalTrials.gov/show/NCT04740918

  187. Japanese Foundation for Cancer Research and Chugai Pharmaceutical (2021) A phase III study of bevacizumab and paclitaxel in combination with atezolizumab as a treatment for locally advanced unresectable or metastatic hormone receptor-positive HER2 negative breast cancer, https://ClinicalTrials.gov/show/NCT04732598

  188. Sharp M, Dohme Corp (2018). Study of pembrolizumab (MK-3475) versus placebo in combination with neoadjuvant chemotherapy & adjuvant endocrine therapy in the treatment of early-stage estrogen receptor-positive, human epidermal growth factor receptor 2-negative (ER+/HER2-) breast cancer (MK-3475-756/KEYNOTE-756), https://ClinicalTrials.gov/show/NCT03725059

  189. Tannock IF. Have investigators forgotten how to write? Ann Oncol. 2021 Apr;32(4):437–8. https://doi.org/10.1016/j.annonc.2020.12.017.

    Article  CAS  PubMed  Google Scholar 

  190. Fundytus A, Booth CM, Tannock IF. How low can you go? PD-L1 expression as a biomarker in trials of cancer immunotherapy. Ann Oncol. 2021;S0923-7534(21):01118–2. https://doi.org/10.1016/j.annonc.2021.03.208.

    Article  CAS  Google Scholar 

  191. Salgado R, Bellizzi AM, Rimm D, Bartlett JM, Nielsen T, Holger M, et al. How current assay approval policies are leading to unintended imprecision medicine. Ann Oncol. 2021 Apr;32(4):437–8. https://doi.org/10.1016/j.annonc.2020.12.017.

    Article  Google Scholar 

  192. Ahmed FS, Gaule P, McGuire J, Patel K, Blenman K, Pusztai L, et al. PD-L1 Protein expression on both tumor cells and macrophages are associated with response to neoadjuvant durvalumab with chemotherapy in triple-negative breast cancer. Clin Cancer Res. 2020;26(20):5456–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tang H, Wang Y, Chlewicki LK, Zhang Y, Guo J, Liang W, et al. Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell. 2016;29(3):285–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bassez A, Vos H, van Dyck L, Floris G, Arijs I, Desmedt C, et al. anti-PD1 treatment of patients with breast cancer. Nat Med. 2021; https://doi.org/10.1038/s41591-021-01323-8.

  195. Adams S, Loi S, Toppmeyer D, Cescon DW, de Laurentiis M, Nanda R, et al. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: Cohort B of the phase II KEYNOTE-086 study. Ann Oncol. 2019;30(3):405–11.

    Article  CAS  PubMed  Google Scholar 

  196. Emens LA, Molinero L, Loi S, Rugo HS, Schneeweiss A, Diéras V, et al. Atezolizumab and nab -Paclitaxel in advanced triple-negative breast cancer: biomarker evaluation of the IMpassion130 study. J Natl Cancer Inst. 2021;

    Google Scholar 

  197. Foldi J, Silber A, Reisenbichler E, Singh K, Fischbach N, Persico J, et al. Neoadjuvant durvalumab plus weekly nab-paclitaxel and dose-dense doxorubicin/cyclophosphamide in triple-negative breast cancer. NPJ Breast Cancer. 2021;7(1):9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Emens L, Loi S, Rugo H, Schneeweiss A, Dieras V, Iwata H, et al. IMpassion130: efficacy in immune biomarker subgroup from the global, randomized, double-blind, placebo-controlled, phase III study of atezolizumab + nab-paclitaxel in patients with treatment-naive, locally advanced or metastatic triple-negative breast cancer. Presented at the 2018 San Antonio breast cancer sympsium, San Antonio, TX, 4–7 December 2018.

    Google Scholar 

  199. Loi L, Winer E, Lipatov O, Im S, Goncalves A, Cortes J, et al. Relationship between tumor-infiltrating lymphocytes (TILs) and outcomes in the KEYNOTE-119 study of pembrolizumab vs chemotherapy for previously treated metastatic triple-negative breast cancer (mTNBC). Philadelphia, PA: American Association for Cancer Research; 2020.

    Book  Google Scholar 

  200. Loi S, Adams S, Schmid P, Cortes J, Cescon D, Winer E, et al. Relationship between tumor infiltrating lymphocyte levels and response to pembrolizumab in metastatic triple-negative breast cancer: Results from Keynote-086 trial. Presented at the European Society of Medical Oncology (ESMO) 2017 Congress, Madrid, Spain, 8–12 September 2017.

    Google Scholar 

  201. Emens LA, Esteva FJ, Beresford M, Saura C, de Laurentiis M, Kim SB, et al. Trastuzumab emtansine plus atezolizumab versus trastuzumab emtansine plus placebo in previously treated, HER2-positive advanced breast cancer (KATE2): a phase 2, multicentre, randomised, double-blind trial. Lancet Oncol. 2020;21(10):1283–95.

    Article  CAS  PubMed  Google Scholar 

  202. Loibl S, Untch M, Burchardi N, Huober J, Sinn BV, Blohmer JU, et al. A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: Clinical results and biomarker analysis of study. Ann Oncol. 2019;30:1279–88.

    Article  CAS  PubMed  Google Scholar 

  203. Bianchini G, Huang C, Egle D, Bermejo B, Zamagni C, Thill M, et al. Tumour infiltrating lymphocytes (TILs), PD-L1 expression and their dynamics in the NeoTRIPaPDL1 trial. Ann Oncol. 2020;31(Suppl. 4):S1142–215.

    Google Scholar 

  204. Dieci MV, Guarneri V, Bisagni G, Tosi A, Musolino A, Spazzapan S, et al. 162MO Neoadjuvant chemotherapy and immunotherapy in Luminal B BC: results of the phase II GIADA trial. Ann Oncol. 2020 Sep;31:S304–5.

    Article  Google Scholar 

  205. Khoury T, Peng X, Yan L, Wang D, Nagrale V. Tumor-infiltrating lymphocytes in breast cancer: evaluating interobserver variability, heterogeneity, and fidelity of scoring core biopsies. Am J Clin Pathol. 2018;150(5):441–50.

    Article  CAS  PubMed  Google Scholar 

  206. Tramm T, Di Caterino T, Jylling AB, Lelkaitis G, Laenkholm AV, Rago P, et al. Standardized assessment of tumor-infiltrating lymphocytes in breast cancer: an evaluation of inter-observer agreement between pathologists. Acta Oncol. 2018;57(1):90–4.

    Article  PubMed  Google Scholar 

  207. Swisher SK, Wu Y, Castaneda CA, Lyons GR, Yang F, Tapia C, et al. Interobserver agreement between pathologists assessing tumor-infiltrating lymphocytes (TILs) in breast cancer using methodology proposed by the international TILs working group. Ann Surg Oncol. 2016;23(7):2242–8.

    Article  PubMed  Google Scholar 

  208. Amgad M, Stovgaard ES, Balslev E, Thagaard J, Chen W, Dudgeon S, et al. Report on computational assessment of tumor Infiltrating lymphocytes from the international immuno-oncology biomarker working group. NPJ Breast Cancer. 2020;6:16.

    Article  PubMed  PubMed Central  Google Scholar 

  209. von Minckwitz G, Schneeweiss A, Loibl S, Salat C, Denkert C, Rezai M, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol. 2014;15(7):747–56.

    Article  CAS  Google Scholar 

  210. Dieci MV, Radosevic-Robin N, Fineberg S, van den Eynden G, Ternes N, Penault-Llorca F, et al. Update on tumor-infiltrating lymphocytes (TILs) in breast cancer, including recommendations to assess TILs in residual disease after neoadjuvant therapy and in carcinoma in situ: a report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer. Semin Cancer Biol. 2018;52(Pt 2):16–25.

    Article  PubMed  Google Scholar 

  211. Buisseret L, Desmedt C, Garaud S, Fornili M, Wang X, Van den Eyden G, et al. Reliability of tumor-infiltrating lymphocyte and tertiary lymphoid structure assessment in human breast cancer. Mod Pathol. 2017;30(9):1204–12.

    Article  CAS  PubMed  Google Scholar 

  212. Cha YJ, Ahn SG, Bae SJ, Yoon CI, Seo J, Jung WH, et al. Comparison of tumor-infiltrating lymphocytes of breast cancer in core needle biopsies and resected specimens: a retrospective analysis. Breast Cancer Res Treat. 2018;171(2):295–302.

    Article  PubMed  Google Scholar 

  213. Althobiti M, Aleskandarany MA, Joseph C, Toss M, Mongan N, Diez-Rodriguez M, et al. Heterogeneity of tumour-infiltrating lymphocytes in breast cancer and its prognostic significance. Histopathology. 2018;73(6):887–96.

    Article  PubMed  Google Scholar 

  214. Campbell BB, Light N, Fabrizio D, Zatzman M, Fuligni F, de Borja R, et al. Comprehensive analysis of hypermutation in human cancer. Cell. 2017;171(5):1042–1056.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Cheng AS, Leung SCY, Gao D, Burugu S, Anurag M, Ellis MJ, et al. Mismatch repair protein loss in breast cancer: clinicopathological associations in a large British Columbia cohort. Breast Cancer Res Treat. 2020;179(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  217. Salgado R, Bellizzi AM, Rimm D, Bartlett JMS, Nielsen T, Holger M, et al. How current assay approval policies are leading to unintended imprecision medicine. Lancet Oncol. 2020;21:1399–401.

    Article  PubMed  Google Scholar 

  218. Litchfield K, Reading JL, Puttick C, Thakkar K, Abbosh C, Bentham R, et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell. 2021;184(3):596–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br J Cancer. 2021;124:359–67.

    Article  CAS  PubMed  Google Scholar 

  220. Schmidt M, Weyer-Elberich V, Hengstler JG, Heimes AS, Almstedt K, Gerhold-Ay A, et al. Prognostic impact of CD4-positive T cell subsets in early breast cancer: a study based on the FinHer trial patient population. Breast Cancer Res. 2018;20(1):15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Liu S, Lachapelle J, Leung S, Gao D, Foulkes WD, Nielsen TO. CD8 +lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res. 2012;14(2):R48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. García-Martínez E, Gil GL, Benito AC, González-Billalabeitia E, Conesa MAV, García TG, et al. Tumor-infiltrating immune cell profiles and their change after neoadjuvant chemotherapy predict response and prognosis of breast cancer. Breast Cancer Res. 2014;16(1):488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Oda N, Shimazu K, Naoi Y, Morimoto K, Shimomura A, Shimoda M, et al. Intratumoral regulatory T cells as an independent predictive factor for pathological complete response to neoadjuvant paclitaxel followed by 5-FU/epirubicin/cyclophosphamide in breast cancer patients. Breast Cancer Res Treat. 2012;136(1):107–16.

    Article  CAS  PubMed  Google Scholar 

  224. Lee JS, Ruppin E. Multiomics prediction of response rates to therapies to inhibit programmed cell death 1 and programmed cell death 1 ligand 1. JAMA Oncol. 2019;5(11):1614–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Jiang W, He Y, He W, Wu G, Zhou X, Sheng Q, et al. Exhausted CD8+T cells in the tumor immune microenvironment: new pathways to therapy. Front Immunol. 2021;11:622509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Speiser DE, Ho P-C, Verdeil G. Regulatory circuits of T cell function in cancer. Nat Rev Immunol. 2016;16(10):599–611.

    Article  CAS  PubMed  Google Scholar 

  227. Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, et al. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab. 2021;33(5):1001–1012.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Gruosso T, Gigoux M, Manem VSK, Bertos N, Zuo D, Perlitch I, et al. Spatially distinct tumor immune microenvironments stratify triple-negative breast cancers. J Clin Investig. 2019;129(4):1785–800.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541:321–30.

    Article  CAS  PubMed  Google Scholar 

  230. Nawaz S, Heindl A, Koelble K, Yuan Y. Beyond immune density: Critical role of spatial heterogeneity in estrogen receptor-negative breast cancer. Mod Pathol. 2015;28(6):766–77.

    Article  CAS  PubMed  Google Scholar 

  231. Heindl A, Sestak I, Naidoo K, Cuzick J, Dowsett M, Yuan Y. Relevance of spatial heterogeneity of immune infiltration for predicting risk of recurrence after endocrine therapy of ER+ breast cancer. J Natl Cancer Inst. 2018;110(2)

    Google Scholar 

  232. Berben L, Wildiers H, Marcelis L, Antoranz A, Bosisio F, Hatse S, et al. Computerised scoring protocol for identification and quantification of different immune cell populations in breast tumour regions by the use of QuPath software. Histopathology. 2020;77(1):79–91.

    Article  PubMed  Google Scholar 

  233. Berben L, Floris G, Kenis C, Dalmasso B, Smeets A, Vos H, et al. Age-related remodelling of the blood immunological portrait and the local tumor immune response in patients with luminal breast cancer. Clin Transl Immunol. 2020;9(10):e1184.

    Article  CAS  Google Scholar 

  234. Sobottka B, Pestalozzi B, Fink D, Moch H, Varga Z. Similar lymphocytic infiltration pattern in primary breast cancer and their corresponding distant metastases. OncoImmunology. 2016;5(6):e1153208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Keren L, Bosse M, Marquez D, Angoshtari R, Jain S, Varma S, et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell. 2018;174(6):1373–1387.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Nederlof I, Horlings HM, Curtis C, Kok M. A high-dimensional window into the micro-environment of triple negative breast cancer. Cancers. 2021;13(2):316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Nederlof I, de Bortoli D, Bareche Y, Nguyen B, de Maaker M, Hooijer GKJ, et al. Comprehensive evaluation of methods to assess overall and cell-specific immune infiltrates in breast cancer. Breast Cancer Res. 2019;21(1):151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. de Smet F, Antoranz Martinez A, Bosisio FM. Next-generation pathology by multiplexed immunohistochemistry. Trends Biochem Sci. 2021;46:80–2.

    Article  PubMed  CAS  Google Scholar 

  239. Lun XK, Bodenmiller B. Profiling cell signaling networks at single-cell resolution. Mol Cell Proteomics. 2020;19:744–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Jackson HW, Fischer JR, Zanotelli VRT, Ali HR, Mechera R, Soysal SD, et al. The single-cell pathology landscape of breast cancer. Nature. 2020;578(7796):615–20.

    Article  CAS  PubMed  Google Scholar 

  241. Egelston CA, Avalos C, Tu TY, Rosario A, Wang R, Solomon S, et al. Resident memory CD8+ T cells within cancer islands mediate survival in breast cancer patients. JCI Insight. 2019;4(19)

    Google Scholar 

  242. Byrne A, Savas P, Sant S, Li R, Virassamy B, Luen SJ, et al. Tissue-resident memory T cells in breast cancer control and immunotherapy responses. Nat Rev Clin Oncol. 2020;17:341–8.

    Article  PubMed  Google Scholar 

  243. Reddy SM, Reuben A, Barua S, Jiang H, Zhang S, Wang L, et al. Poor response to neoadjuvant chemotherapy correlates with mast cell infiltration in inflammatory breast cancer. Cancer Immunol Res. 2019;7(6):1025–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Carvajal-Hausdorf DE, Patsenker J, Stanton KP, Villarroel-Espindola F, Esch A, Montgomery RR, et al. Multiplexed (18-Plex) measurement of signaling targets and cytotoxic T cells in Trastuzumab-treated patients using imaging mass cytometry. Clin Cancer Res. 2019;25(10):3054–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Griguolo G, Serna G, Pascual T, Fasani R, Guardia X, Chic N, et al. Immune microenvironment characterisation and dynamics during anti-HER2-based neoadjuvant treatment in HER2-positive breast cancer. NPJ Precis Oncol. 2021;5(1):23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. de Angelis C, Nagi C, Hoyt CC, Liu L, Roman K, Wang C, et al. Evaluation of the predictive role of tumor immune infiltrate in patients with HER2-positive breast cancer treated with neoadjuvant anti-HER2 therapy without chemotherapy. Clin Cancer Res. 2020;26(3):738–45.

    Article  PubMed  Google Scholar 

  247. Allam M, Cai S, Coskun AF. Multiplex bioimaging of single-cell spatial profiles for precision cancer diagnostics and therapeutics. NPJ Precis Oncol. 2020;4(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Klauschen F, Müller KR, Binder A, Bockmayr M, Hägele M, Seegerer P, et al. Scoring of tumor-infiltrating lymphocytes: from visual estimation to machine learning. Semin Cancer Biol. 2018;52:151–7.

    Article  CAS  PubMed  Google Scholar 

  249. Saltz J, Gupta R, Hou L, Kurc T, Singh P, Nguyen V, et al. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep. 2018;23(1):181–93 e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Basavanhally AN, Ganesan S, Agner S, Monaco JP, Feldman MD, Tomaszewski JE, et al. Computerized image-based detection and grading of lymphocytic infiltration in HER2+ breast cancer histopathology. IEEE Trans Biomed Eng. 2010;57(3):642–53.

    Article  PubMed  Google Scholar 

  251. Acs B, Ahmed FS, Gupta S, Wong PF, Gartrell RD, Sarin Pradhan J, et al. An open source automated tumor infiltrating lymphocyte algorithm for prognosis in melanoma. Nat Commun. 2019;10(1)

    Google Scholar 

  252. Chou M, Illa-Bochaca I, Minxi B, Darvishian F, Johannet P, Moran U, et al. Optimization of an automated tumor-infiltrating lymphocyte algorithm for improved prognostication in primary melanoma. Mod Pathol. 2021;34(3):562–71.

    Article  CAS  PubMed  Google Scholar 

  253. Yuan Y, Failmezger H, Rueda OM, Ali HR, Gräf S, Chin S-F, et al. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci Transl Med. 2012;4(157):157ra43-ra43.

    Article  Google Scholar 

  254. Le H, Gupta R, Hou L, Abousamra S, Fassler D, Kurc T, et al. Utilizing automated breast cancer detection to identify spatial distributions of tumor infiltrating lymphocytes in invasive breast cancer. Am J Pathol. 2020;190(7):1491–504.

    Article  PubMed  PubMed Central  Google Scholar 

  255. Swiderska-Chadaj Z, Pinckaers H, van Rijthoven M, Balkenhol M, Melnikova M, Oscar G, et al. Convolutional neural networks for lymphocyte detection in immunohistochemically stained whole-slide images MIDL 2018 conference submission2018.

    Google Scholar 

  256. Yoon HH, Shi Q, Heying EN, Muranyi A, Bredno J, Ough F, et al. Intertumoral heterogeneity of CD3+ and CD8+ T-cell densities in the microenvironment of DNA mismatch-repair–deficient colon cancers: implications for prognosis. Clin Cancer Res. 2019;25(1):125–33.

    Article  CAS  PubMed  Google Scholar 

  257. Corredor G, Wang X, Zhou Y, Lu C, Fu P, Syrigos K, et al. Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non–small cell lung cancer. Clin Cancer Res. 2019;25(5):1526–34.

    Article  CAS  PubMed  Google Scholar 

  258. Amgad M, Elfandy H, Hussein H, Atteya LA, Elsebaie MAT, Abo Elnasr LS, et al. Structured crowdsourcing enables convolutional segmentation of histology images. Bioinformatics. 2019;35(18):3461–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Amgad M, Sarkar A, Srinivas C, Redman R, Ratra S, Bechert C, et al. Joint region and nucleus segmentation for characterization of tumor infiltrating lymphocytes in breast cancer. SPIE. 2019;

    Google Scholar 

  260. Tizhoosh HR, Pantanowitz L. Artificial intelligence and digital pathology: challenges and opportunities. J Pathol Inform. 2018;9:38.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Cui M, Zhang DY. Artificial intelligence and computational pathology. Lab Investig. 2021;101(4):412–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Floris, G. et al. (2022). Tumor Infiltrating Lymphocytes in Breast Cancer: Implementation of a New Histopathological Biomarker. In: Akslen, L.A., Watnick, R.S. (eds) Biomarkers of the Tumor Microenvironment. Springer, Cham. https://doi.org/10.1007/978-3-030-98950-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98950-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98949-1

  • Online ISBN: 978-3-030-98950-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics