Skip to main content

Precision Medicine for Diabetic Neuropathy

  • Chapter
  • First Online:
Book cover Precision Medicine in Diabetes

Abstract

Diabetic peripheral neuropathy (DPN) is the most prevalent diabetic and prediabetic complication and leads to substantial morbidity. The most common manifestation is distal symmetric polyneuropathy, which can present with tingling, pain, and loss of sensory function. A precision medicine-based approach to DPN requires a nuanced understanding of evolving concepts in its underlying pathophysiology, as DPN due to type 1 (T1D) and type 2 (T2D) diabetes represents largely different disease processes. In T1D, aggressive glycemic control significantly reduces the progression of DPN, while in T2D, there is only a modest benefit. There is growing evidence that metabolic syndrome, obesity, and dyslipidemia contribute to the development of DPN, particularly in T2D. Emerging data, based largely on murine models, now identifies potentially viable dyslipidemic, mitochondrial, substrate uptake and transport, as well as inflammatory therapeutic targets. In addition, DPN neuropathic pain is becoming more precisely phenotyped and classified using such modalities as functional MRI, quantitative sensory testing, and even genomic data. Targeted pain treatment remains challenging due to the inability to guide drug selection based on patient profile at the present time. Through the use of predictive models, the goal is to individualize treatments based on a more nuanced understanding of underlying pathogenesis and pain processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Callaghan BC, Gao L, Li Y, Zhou X, Reynolds E, Banerjee M, et al. Diabetes and obesity are the main metabolic drivers of peripheral neuropathy. Ann Clin Transl Neurol. 2018;5(4):397–405.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Callaghan BC, Xia R, Reynolds E, Banerjee M, Rothberg AE, Burant CF, et al. Association between metabolic syndrome components and polyneuropathy in an obese population. JAMA Neurol. 2016;73(12):1468–76.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Callaghan BC, Xia R, Banerjee M, de Rekeneire N, Harris TB, Newman AB, et al. Metabolic syndrome components are associated with symptomatic polyneuropathy independent of glycemic status. Diabetes Care. 2016;39(5):801–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanewinckel R, Drenthen J, Ligthart S, Dehghan A, Franco OH, Hofman A, et al. Metabolic syndrome is related to polyneuropathy and impaired peripheral nerve function: a prospective population-based cohort study. J Neurol Neurosurg Psychiatry. 2016;87(12):1336–42.

    Article  PubMed  Google Scholar 

  5. Lu B, Hu J, Wen J, Zhang Z, Zhou L, Li Y, et al. Determination of peripheral neuropathy prevalence and associated factors in Chinese subjects with diabetes and pre-diabetes - ShangHai diabetic neuRopathy epidemiology and molecular genetics study (SH-DREAMS). PLoS One. 2013;8(4):e61053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schlesinger S, Herder C, Kannenberg JM, Huth C, Carstensen-Kirberg M, Rathmann W, et al. General and abdominal obesity and incident distal sensorimotor polyneuropathy: insights into inflammatory biomarkers as potential mediators in the KORA F4/FF4 cohort. Diabetes Care. 2019;42(2):240–7.

    Article  CAS  PubMed  Google Scholar 

  7. Callaghan BC, Hur J, Feldman EL. Diabetic neuropathy: one disease or two? Curr Opin Neurol. 2012;25(5):536–41.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Eid S, Sas KM, Abcouwer SF, Feldman EL, Gardner TW, Pennathur S, et al. New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia. 2019;62(9):1539–49.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kazamel M, Stino AM, Smith AG. Metabolic syndrome and peripheral neuropathy. Muscle Nerve. 2021;63(3):285–93.

    Article  PubMed  Google Scholar 

  10. Smith AG, Rose K, Singleton JR. Idiopathic neuropathy patients are at high risk for metabolic syndrome. J Neurol Sci. 2008;273(1–2):25–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hinder LM, O’Brien PD, Hayes JM, Backus C, Solway AP, Sims-Robinson C, et al. Dietary reversal of neuropathy in a murine model of prediabetes and metabolic syndrome. Dis Model Mech. 2017;10(6):717–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hur J, Dauch JR, Hinder LM, Hayes JM, Backus C, Pennathur S, et al. The metabolic syndrome and microvascular complications in a murine model of type 2 diabetes. Diabetes. 2015;64(9):3294–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McGregor BA, Eid S, Rumora AE, Murdock B, Guo K, de Anda-Jáuregui G, et al. Conserved transcriptional signatures in human and murine diabetic peripheral neuropathy. Sci Rep. 2018;8(1):17678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. O’Brien PD, Hinder LM, Rumora AE, Hayes JM, Dauch JR, Backus C, et al. Juvenile murine models of prediabetes and type 2 diabetes develop neuropathy. Dis Model Mech. 2018;18:11(12).

    Google Scholar 

  15. Stino AM, Rumora AE, Kim B, Feldman EL. Evolving concepts on the role of dyslipidemia, bioenergetics, and inflammation in the pathogenesis and treatment of diabetic peripheral neuropathy. J Peripher Nerv Syst JPNS. 2020;25(2):76–84.

    Article  CAS  PubMed  Google Scholar 

  16. Kobayashi M, Zochodne DW. Diabetic polyneuropathy: bridging the translational gap. J Peripher Nerv Syst JPNS. 2020;25(2):66–75.

    Article  CAS  PubMed  Google Scholar 

  17. Malik RA, Calcutt NA. Translating diabetic peripheral neuropathy. J Peripher Nerv Syst JPNS. 2020;25(2):64–5.

    Article  PubMed  Google Scholar 

  18. Dyck PJ, Kratz KM, Karnes JL, Litchy WJ, Klein R, Pach JM, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester diabetic neuropathy study. Neurology. 1993;43(4):817–24.

    Article  CAS  PubMed  Google Scholar 

  19. Franklin GM, Kahn LB, Baxter J, Marshall JA, Hamman RF. Sensory neuropathy in non-insulin-dependent diabetes mellitus. The San Luis Valley diabetes study. Am J Epidemiol. 1990;131(4):633–43.

    Article  CAS  PubMed  Google Scholar 

  20. Partanen J, Niskanen L, Lehtinen J, Mervaala E, Siitonen O, Uusitupa M. Natural history of peripheral neuropathy in patients with non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333(2):89–94.

    Article  CAS  PubMed  Google Scholar 

  21. Pop-Busui R, Boulton AJM, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136–54.

    Article  CAS  PubMed  Google Scholar 

  22. Ang L, Jaiswal M, Martin C, Pop-Busui R. Glucose control and diabetic neuropathy: lessons from recent large clinical trials. Curr Diab Rep. 2014;14(9):528.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Martin CL, Albers JW, Pop-Busui R, DCCT/EDIC Research Group. Neuropathy and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2014;37(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  24. Boulton AJ, Knight G, Drury J, Ward JD. The prevalence of symptomatic, diabetic neuropathy in an insulin-treated population. Diabetes Care. 1985;8(2):125–8.

    Article  CAS  PubMed  Google Scholar 

  25. Control D, Complications Trial Research Group, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Article  Google Scholar 

  26. Albers JW, Herman WH, Pop-Busui R, Feldman EL, Martin CL, Cleary PA, et al. Effect of prior intensive insulin treatment during the diabetes Control and complications trial (DCCT) on peripheral neuropathy in type 1 diabetes during the epidemiology of diabetes interventions and complications (EDIC) study. Diabetes Care. 2010;33(5):1090–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Callaghan BC, Little AA, Feldman EL, Hughes RAC. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst Rev. 2012;6:CD007543.

    Google Scholar 

  28. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39.

    Article  CAS  PubMed  Google Scholar 

  29. Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet Lond Engl. 2010;376(9739):419–30.

    Article  Google Scholar 

  30. Tesfaye S, Vileikyte L, Rayman G, Sindrup SH, Perkins BA, Baconja M, et al. Painful diabetic peripheral neuropathy: consensus recommendations on diagnosis, assessment and management. Diabetes Metab Res Rev. 2011;27(7):629–38.

    Article  CAS  PubMed  Google Scholar 

  31. Smith AG, Singleton JR. Obesity and hyperlipidemia are risk factors for early diabetic neuropathy. J Diabetes Complicat. 2013;27(5):436–42.

    Article  Google Scholar 

  32. Andersson C, Guttorp P, Särkkä A. Discovering early diabetic neuropathy from epidermal nerve fiber patterns. Stat Med. 2016;35(24):4427–42.

    Article  PubMed  Google Scholar 

  33. Devigili G, Tugnoli V, Penza P, Camozzi F, Lombardi R, Melli G, et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain J Neurol. 2008;131(Pt 7):1912–25.

    Article  Google Scholar 

  34. Vinik AI, Erbas T. Diabetic autonomic neuropathy. Handb Clin Neurol. 2013;117:279–94.

    Article  PubMed  Google Scholar 

  35. Moore JX, Chaudhary N, Akinyemiju T. Metabolic syndrome prevalence by race/ethnicity and sex in the United States, National Health and nutrition examination survey, 1988-2012. Prev Chronic Dis. 2017;14:E24.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Christensen DH, Knudsen ST, Gylfadottir SS, Christensen LB, Nielsen JS, Beck-Nielsen H, et al. Metabolic factors, lifestyle habits, and possible polyneuropathy in early type 2 diabetes: a Nationwide study of 5,249 patients in the Danish Centre for Strategic Research in type 2 diabetes (DD2) cohort. Diabetes Care. 2020;43(6):1266–75.

    Article  PubMed  Google Scholar 

  37. Callaghan BC, Reynolds E, Banerjee M, Chant E, Villegas-Umana E, Feldman EL. Central obesity is associated with neuropathy in the severely obese. Mayo Clin Proc. 2020;95(7):1342–53.

    Article  PubMed  Google Scholar 

  38. Reynolds EL, Callaghan BC, Banerjee M, Feldman EL, Viswanathan V. The metabolic drivers of neuropathy in India. J Diabetes Complicat. 2020;34(10):107653.

    Article  Google Scholar 

  39. Hughes RAC, Umapathi T, Gray IA, Gregson NA, Noori M, Pannala AS, et al. A controlled investigation of the cause of chronic idiopathic axonal polyneuropathy. Brain J Neurol. 2004;127(Pt 8):1723–30.

    Article  CAS  Google Scholar 

  40. Wiggin TD, Sullivan KA, Pop-Busui R, Amato A, Sima AAF, Feldman EL. Elevated triglycerides correlate with progression of diabetic neuropathy. Diabetes. 2009;58(7):1634–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Callaghan BC, Feldman E, Liu J, Kerber K, Pop-Busui R, Moffet H, et al. Triglycerides and amputation risk in patients with diabetes: ten-year follow-up in the DISTANCE study. Diabetes Care. 2011;34(3):635–40.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Smith AG, Russell J, Feldman EL, Goldstein J, Peltier A, Smith S, et al. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care. 2006;29(6):1294–9.

    Article  PubMed  Google Scholar 

  43. Look AHEAD Research Group. Effects of a long-term lifestyle modification programme on peripheral neuropathy in overweight or obese adults with type 2 diabetes: the look AHEAD study. Diabetologia. 2017;60(6):980–8.

    Article  Google Scholar 

  44. Kristensen FP, Christensen DH, Callaghan BC, Kahlert J, Knudsen ST, Sindrup SH, et al. Statin therapy and risk of polyneuropathy in type 2 diabetes: a Danish cohort study. Diabetes Care. 2020;43(12):2945–52.

    Article  PubMed  Google Scholar 

  45. Rajamani K, Colman PG, Li LP, Best JD, Voysey M, D’Emden MC, et al. Effect of fenofibrate on amputation events in people with type 2 diabetes mellitus (FIELD study): a prespecified analysis of a randomised controlled trial. Lancet Lond Engl. 2009;373(9677):1780–8.

    Article  CAS  Google Scholar 

  46. Müller-Stich BP, Fischer L, Kenngott HG, Gondan M, Senft J, Clemens G, et al. Gastric bypass leads to improvement of diabetic neuropathy independent of glucose normalization--results of a prospective cohort study (DiaSurg 1 study). Ann Surg. 2013;258(5):760–5; discussion 765-766.

    Article  PubMed  Google Scholar 

  47. Davis TME, Yeap BB, Davis WA, Bruce DG. Lipid-lowering therapy and peripheral sensory neuropathy in type 2 diabetes: the Fremantle diabetes study. Diabetologia. 2008;51(4):562–6.

    Article  CAS  PubMed  Google Scholar 

  48. Sjöström L, Peltonen M, Jacobson P, Sjöström CD, Karason K, Wedel H, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307(1):56–65.

    Article  PubMed  Google Scholar 

  49. Ziegler D, Rathmann W, Dickhaus T, Meisinger C, Mielck A, KORA Study Group. Neuropathic pain in diabetes, prediabetes and normal glucose tolerance: the MONICA/KORA Augsburg surveys S2 and S3. Pain Med Malden Mass. 2009;10(2):393–400.

    Article  Google Scholar 

  50. Lee CC, Perkins BA, Kayaniyil S, Harris SB, Retnakaran R, Gerstein HC, et al. Peripheral neuropathy and nerve dysfunction in individuals at high risk for type 2 diabetes: the PROMISE cohort. Diabetes Care. 2015;38(5):793–800.

    Article  PubMed  CAS  Google Scholar 

  51. Sumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology. 2003;60(1):108–11.

    Article  CAS  PubMed  Google Scholar 

  52. Pourhamidi K, Dahlin LB, Englund E, Rolandsson O. No difference in small or large nerve fiber function between individuals with normal glucose tolerance and impaired glucose tolerance. Diabetes Care. 2013;36(4):962–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thaisetthawatkul P, Lyden E, Americo Fernandes J, Herrmann DN. Prediabetes, diabetes, metabolic syndrome, and small fiber neuropathy. Muscle Nerve. 2020;61(4):475–9.

    Article  CAS  PubMed  Google Scholar 

  54. Dyck PJ, Clark VM, Overland CJ, Davies JL, Pach JM, Dyck PJB, et al. Impaired glycemia and diabetic polyneuropathy: the OC IG survey. Diabetes Care. 2012;35(3):584–91.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kassardjian CD, Dyck PJB, Davies JL, Carter RE, Dyck PJ. Does prediabetes cause small fiber sensory polyneuropathy? Does it matter? J Neurol Sci. 2015;355(1–2):196–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. American Diabetes Association. 13. children and adolescents: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S163–82.

    Google Scholar 

  57. Divers J, Mayer-Davis EJ, Lawrence JM, Isom S, Dabelea D, Dolan L, et al. Trends in incidence of type 1 and type 2 diabetes among youths - selected counties and Indian reservations, United States, 2002-2015. MMWR Morb Mortal Wkly Rep. 2020;69(6):161–5.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pettitt DJ, Talton J, Dabelea D, Divers J, Imperatore G, Lawrence JM, et al. Prevalence of diabetes in U.S. youth in 2009: the SEARCH for diabetes in youth study. Diabetes Care. 2014;37(2):402–8.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dabelea D, Mayer-Davis EJ, Saydah S, Imperatore G, Linder B, Divers J, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA. 2014;311(17):1778–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L, et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002-2012. N Engl J Med. 2017;376(15):1419–29.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Patterson CC, Gyürüs E, Rosenbauer J, Cinek O, Neu A, Schober E, et al. Trends in childhood type 1 diabetes incidence in Europe during 1989-2008: evidence of non-uniformity over time in rates of increase. Diabetologia. 2012;55(8):2142–7.

    Article  CAS  PubMed  Google Scholar 

  62. Zeitler P. Progress in understanding youth-onset type 2 diabetes in the United States: recent lessons from clinical trials. World J Pediatr WJP. 2019;15(4):315–21.

    Article  PubMed  Google Scholar 

  63. Imperatore G, Boyle JP, Thompson TJ, Case D, Dabelea D, Hamman RF, et al. Projections of type 1 and type 2 diabetes burden in the U.S. population aged <20 years through 2050: dynamic modeling of incidence, mortality, and population growth. Diabetes Care. 2012;35(12):2515–20.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Maser RE, Steenkiste AR, Dorman JS, Nielsen VK, Bass EB, Manjoo Q, et al. Epidemiological correlates of diabetic neuropathy. Report from Pittsburgh epidemiology of diabetes complications study. Diabetes. 1989;38(11):1456–61.

    Article  CAS  PubMed  Google Scholar 

  65. Tesfaye S, Stevens LK, Stephenson JM, Fuller JH, Plater M, Ionescu-Tirgoviste C, et al. Prevalence of diabetic peripheral neuropathy and its relation to glycaemic control and potential risk factors: the EURODIAB IDDM complications study. Diabetologia. 1996;39(11):1377–84.

    Article  CAS  PubMed  Google Scholar 

  66. Olsen BS, Johannesen J, Sjølie AK, Borch-Johnsen K, Hougarrdss P, Thorsteinsson B, et al. Metabolic control and prevalence of microvascular complications in young Danish patients with type 1 diabetes mellitus. Danish study Group of Diabetes in childhood. Diabet Med J Br Diabet Assoc. 1999;16(1):79–85.

    Article  CAS  Google Scholar 

  67. Nelson D, Mah JK, Adams C, Hui S, Crawford S, Darwish H, et al. Comparison of conventional and non-invasive techniques for the early identification of diabetic neuropathy in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2006;7(6):305–10.

    Article  PubMed  Google Scholar 

  68. Eppens MC, Craig ME, Cusumano J, Hing S, Chan AKF, Howard NJ, et al. Prevalence of diabetes complications in adolescents with type 2 compared with type 1 diabetes. Diabetes Care. 2006;29(6):1300–6.

    Article  PubMed  Google Scholar 

  69. Jaiswal M, Divers J, Dabelea D, Isom S, Bell RA, Martin CL, et al. Prevalence of and risk factors for diabetic peripheral neuropathy in youth with type 1 and type 2 diabetes: SEARCH for diabetes in youth study. Diabetes Care. 2017;40(9):1226–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Moser J, Lipman T, Langdon DR, Bevans KB. Development of a youth-report measure of DPN symptoms: conceptualization and content validation. J Clin Transl Endocrinol. 2017;9:55–60.

    PubMed  PubMed Central  Google Scholar 

  71. Arslanian S, Bacha F, Grey M, Marcus MD, White NH, Zeitler P. Evaluation and Management of Youth-Onset Type 2 diabetes: a position statement by the American Diabetes Association. Diabetes Care. 2018;41(12):2648–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet Lond Engl. 2017;390(10113):2627–42.

    Article  Google Scholar 

  73. Janssen I, Katzmarzyk PT, Boyce WF, Vereecken C, Mulvihill C, Roberts C, et al. Comparison of overweight and obesity prevalence in school-aged youth from 34 countries and their relationships with physical activity and dietary patterns. Obes Rev Off J Int Assoc Study Obes. 2005;6(2):123–32.

    Article  CAS  Google Scholar 

  74. Akinci G, Savelieff MG, Gallagher G, Callaghan BC, Feldman EL. Diabetic neuropathy in children and youth: new and emerging risk factors. Pediatr Diabetes. 2021;22(2):132–47.

    Article  PubMed  Google Scholar 

  75. Thamotharampillai K, Chan AKF, Bennetts B, Craig ME, Cusumano J, Silink M, et al. Decline in neurophysiological function after 7 years in an adolescent diabetic cohort and the role of aldose reductase gene polymorphisms. Diabetes Care. 2006;29(9):2053–7.

    Article  CAS  PubMed  Google Scholar 

  76. Monastiriotis C, Papanas N, Trypsianis G, Karanikola K, Veletza S, Maltezos E. The ε4 allele of the APOE gene is associated with more severe peripheral neuropathy in type 2 diabetic patients. Angiology. 2013;64(6):451–5.

    Article  CAS  PubMed  Google Scholar 

  77. Rudofsky G, Schroedter A, Schlotterer A, Voron’ko OE, Schlimme M, Tafel J, et al. Functional polymorphisms of UCP2 and UCP3 are associated with a reduced prevalence of diabetic neuropathy in patients with type 1 diabetes. Diabetes Care. 2006;29(1):89–94.

    Article  CAS  PubMed  Google Scholar 

  78. Strokov IA, Bursa TR, Drepa OI, Zotova EV, Nosikov VV, Ametov AS. Predisposing genetic factors for diabetic polyneuropathy in patients with type 1 diabetes: a population-based case-control study. Acta Diabetol. 2003;40(Suppl 2):S375–9.

    Article  CAS  PubMed  Google Scholar 

  79. Chistiakov DA, Zotova EV, Savost’anov KV, Bursa TR, Galeev IV, Strokov IA, et al. The 262T>C promoter polymorphism of the catalase gene is associated with diabetic neuropathy in type 1 diabetic Russian patients. Diabetes Metab. 2006;32(1):63–8.

    Article  CAS  PubMed  Google Scholar 

  80. Guo K, Eid SA, Elzinga SE, Pacut C, Feldman EL, Hur J. Genome-wide profiling of DNA methylation and gene expression identifies candidate genes for human diabetic neuropathy. Clin Epigenetics. 2020;12(1):123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fernyhough P. Mitochondrial dysfunction in diabetic neuropathy: a series of unfortunate metabolic events. Curr Diab Rep. 2015;15(11):89.

    Article  PubMed  CAS  Google Scholar 

  82. Rumora AE, Lentz SI, Hinder LM, Jackson SW, Valesano A, Levinson GE, et al. Dyslipidemia impairs mitochondrial trafficking and function in sensory neurons. FASEB J Off Publ Fed Am Soc Exp Biol. 2018;32(1):195–207.

    CAS  Google Scholar 

  83. O’Brien PD, Guo K, Eid SA, Rumora AE, Hinder LM, Hayes JM, et al. Integrated lipidomic and transcriptomic analyses identify altered nerve triglycerides in mouse models of prediabetes and type 2 diabetes. Dis Model Mech. 2020;24:13(2).

    Google Scholar 

  84. Viader A, Sasaki Y, Kim S, Strickland A, Workman CS, Yang K, et al. Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy. Neuron. 2013;77(5):886–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hur J, Sullivan KA, Pande M, Hong Y, Sima AAF, Jagadish HV, et al. The identification of gene expression profiles associated with progression of human diabetic neuropathy. Brain J Neurol. 2011;134(Pt 11):3222–35.

    Article  Google Scholar 

  86. Vincent AM, Hayes JM, McLean LL, Vivekanandan-Giri A, Pennathur S, Feldman EL. Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1. Diabetes. 2009;58(10):2376–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nowicki M, Müller K, Serke H, Kosacka J, Vilser C, Ricken A, et al. Oxidized low-density lipoprotein (oxLDL)-induced cell death in dorsal root ganglion cell cultures depends not on the lectin-like oxLDL receptor-1 but on the toll-like receptor-4. J Neurosci Res. 2010;88(2):403–12.

    Article  CAS  PubMed  Google Scholar 

  88. Vincent AM, Perrone L, Sullivan KA, Backus C, Sastry AM, Lastoskie C, et al. Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology. 2007;148(2):548–58.

    Article  CAS  PubMed  Google Scholar 

  89. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116(7):1793–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Elzinga S, Murdock BJ, Guo K, Hayes JM, Tabbey MA, Hur J, et al. Toll-like receptors and inflammation in metabolic neuropathy; a role in early versus late disease? Exp Neurol. 2019;320:112967.

    Article  CAS  PubMed  Google Scholar 

  91. Shevalye H, Yorek MS, Coppey LJ, Holmes A, Harper MM, Kardon RH, et al. Effect of enriching the diet with menhaden oil or daily treatment with resolvin D1 on neuropathy in a mouse model of type 2 diabetes. J Neurophysiol. 2015;114(1):199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hinder LM, Park M, Rumora AE, Hur J, Eichinger F, Pennathur S, et al. Comparative RNA-Seq transcriptome analyses reveal distinct metabolic pathways in diabetic nerve and kidney disease. J Cell Mol Med. 2017;21(9):2140–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Eid SA, O’Brien PD, Hinder LM, Hayes JM, Mendelson FE, Zhang H, et al. Differential effects of Empagliflozin on microvascular complications in murine models of type 1 and type 2 diabetes. Biology. 2020;22:9(11).

    Google Scholar 

  94. Kellogg AP, Wiggin TD, Larkin DD, Hayes JM, Stevens MJ, Pop-Busui R. Protective effects of cyclooxygenase-2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fiber loss in experimental diabetes. Diabetes. 2007;56(12):2997–3005.

    Article  CAS  PubMed  Google Scholar 

  95. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med. 2000;6(4):435–42.

    Article  CAS  PubMed  Google Scholar 

  96. Truini A, Spallone V, Morganti R, Tamburin S, Zanette G, Schenone A, et al. A cross-sectional study investigating frequency and features of definitely diagnosed diabetic painful polyneuropathy. Pain. 2018;159(12):2658–66.

    Article  PubMed  Google Scholar 

  97. Themistocleous AC, Ramirez JD, Shillo PR, Lees JG, Selvarajah D, Orengo C, et al. The pain in neuropathy study (PiNS): a cross-sectional observational study determining the somatosensory phenotype of painful and painless diabetic neuropathy. Pain. 2016;157(5):1132–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Raputova J, Srotova I, Vlckova E, Sommer C, Üçeyler N, Birklein F, et al. Sensory phenotype and risk factors for painful diabetic neuropathy: a cross-sectional observational study. Pain. 2017;158(12):2340–53.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Shillo P, Sloan G, Greig M, Hunt L, Selvarajah D, Elliott J, et al. Painful and painless diabetic neuropathies: what is the difference? Curr Diab Rep. 2019;19(6):32.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sloan G, Selvarajah D, Tesfaye S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat Rev End. In Press.

    Google Scholar 

  101. Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14(2):162–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Woolf CJ, Bennett GJ, Doherty M, Dubner R, Kidd B, Koltzenburg M, et al. Towards a mechanism-based classification of pain? Pain. 1998;77(3):227–9.

    Article  PubMed  Google Scholar 

  103. Edwards RR, Dworkin RH, Turk DC, Angst MS, Dionne R, Freeman R, et al. Patient phenotyping in clinical trials of chronic pain treatments: IMMPACT recommendations. Pain. 2016;157(9):1851–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Maier C, Baron R, Tölle TR, Binder A, Birbaumer N, Birklein F, et al. Quantitative sensory testing in the German research network on neuropathic pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain. 2010;150(3):439–50.

    Article  CAS  PubMed  Google Scholar 

  105. Shy ME, Frohman EM, So YT, Arezzo JC, Cornblath DR, Giuliani MJ, et al. Quantitative sensory testing: report of the therapeutics and technology assessment Subcommittee of the American Academy of neurology. Neurology. 2003;60(6):898–904.

    Article  CAS  PubMed  Google Scholar 

  106. Rolke R, Magerl W, Campbell KA, Schalber C, Caspari S, Birklein F, et al. Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur J Pain Lond Engl. 2006;10(1):77–88.

    Article  CAS  Google Scholar 

  107. Tesfaye S, Boulton AJM, Dickenson AH. Mechanisms and management of diabetic painful distal symmetrical polyneuropathy. Diabetes Care. 2013;36(9):2456–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Birbaumer N, Lutzenberger W, Montoya P, Larbig W, Unertl K, Töpfner S, et al. Effects of regional anesthesia on phantom limb pain are mirrored in changes in cortical reorganization. J Neurosci. 1997;17(14):5503–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumer N, et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature. 1995;375(6531):482–4.

    Article  CAS  PubMed  Google Scholar 

  110. Wrigley PJ, Press SR, Gustin SM, Macefield VG, Gandevia SC, Cousins MJ, et al. Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. Pain. 2009;141(1–2):52–9.

    Article  CAS  PubMed  Google Scholar 

  111. Wilkinson ID, Teh K, Heiberg-Gibbons F, Awadh M, Kelsall A, Shillo P, et al. Determinants of treatment response in painful diabetic peripheral neuropathy: a combined deep sensory phenotyping and multimodal brain MRI study. Diabetes. 2020;69(8):1804–14.

    Article  PubMed  Google Scholar 

  112. Campbell CM, Kipnes MS, Stouch BC, Brady KL, Kelly M, Schmidt WK, et al. Randomized control trial of topical clonidine for treatment of painful diabetic neuropathy. Pain. 2012;153(9):1815–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bouhassira D, Wilhelm S, Schacht A, Perrot S, Kosek E, Cruccu G, et al. Neuropathic pain phenotyping as a predictor of treatment response in painful diabetic neuropathy: data from the randomized, double-blind. COMBO-DN study Pain. 2014;155(10):2171–9.

    PubMed  Google Scholar 

  114. Demant et al. The effect of oxcarbazepine in peripheral neuropathic pain depends on pain phenotype: a randomised, double-blind, placebo-controlled phenotype-stratified study. Pain. 2014;155(11):2263–73.

    Google Scholar 

  115. Yarnitsky D, Granot M, Nahman-Averbuch H, Khamaisi M, Granovsky Y. Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy. Pain. 2012;153(6):1193–8.

    Article  CAS  PubMed  Google Scholar 

  116. Haroutounian S, Nikolajsen L, Bendtsen TF, Finnerup NB, Kristensen AD, Hasselstrøm JB, et al. Primary afferent input critical for maintaining spontaneous pain in peripheral neuropathy. Pain. 2014;155(7):1272–9.

    Article  PubMed  Google Scholar 

  117. Feldman et al. Diabetic neuropathy. Nature reviews disease primers. 2019;5(1):1–8.

    Google Scholar 

  118. Wager TD, Atlas LY, Lindquist MA, Roy M, Woo C-W, Kross E. An fMRI-based neurologic signature of physical pain. N Engl J Med. 2013;368(15):1388–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tracey I. “Seeing” how our drugs work brings translational added value. Anesthesiology. 2013;119(6):1247–8.

    Article  PubMed  Google Scholar 

  120. Selvarajah D, Wilkinson ID, Emery CJ, Harris ND, Shaw PJ, Witte DR, et al. Early involvement of the spinal cord in diabetic peripheral neuropathy. Diabetes Care. 2006;29(12):2664–9.

    Article  PubMed  Google Scholar 

  121. Selvarajah D, Wilkinson ID, Maxwell M, Davies J, Sankar A, Boland E, et al. Magnetic resonance neuroimaging study of brain structural differences in diabetic peripheral neuropathy. Diabetes Care. 2014;37(6):1681–8.

    Article  PubMed  Google Scholar 

  122. Selvarajah D, Wilkinson ID, Fang F, Sankar A, Davies J, Boland E, et al. Structural and functional abnormalities of the primary somatosensory cortex in diabetic peripheral neuropathy: a multimodal MRI study. Diabetes. 2019;68(4):796–806.

    Article  CAS  PubMed  Google Scholar 

  123. Buxton RB. Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism. Front Neuroenerg. 2010;2:8.

    Google Scholar 

  124. Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. NeuroImage. 2009;45(1 Suppl):S199–209.

    Article  PubMed  Google Scholar 

  125. Wager TD, Lindquist MA, Nichols TE, Kober H, Van Snellenberg JX. Evaluating the consistency and specificity of neuroimaging data using meta-analysis. NeuroImage. 2009;45(1 Suppl):S210–21.

    Article  PubMed  Google Scholar 

  126. Alger JR, Ellingson BM, Ashe-McNalley C, Woodworth DC, Labus JS, Farmer M, et al. Multisite, multimodal neuroimaging of chronic urological pelvic pain: methodology of the MAPP research network. NeuroImage Clin. 2016;12:65–77.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zunhammer M, Bingel U, Wager TD. Placebo imaging consortium. Placebo effects on the neurologic pain signature: a meta-analysis of individual participant functional magnetic resonance imaging data. JAMA Neurol. 2018;75(11):1321–30.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Eddy S, Mariani LH, Kretzler M. Integrated multi-omics approaches to improve classification of chronic kidney disease. Nat Rev Nephrol. 2020;16(11):657–68.

    Article  PubMed  Google Scholar 

  129. Heerspink HJL, de Zeeuw D. Treating diabetic complications; from large randomized clinical trials to precision medicine. Diabetes Obes Metab. 2018;20(Suppl 3):3–5.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Idzerda NMA, Pena MJ, Heerspink HJL. Personalized medicine in diabetic kidney disease: a novel approach to improve trial design and patient outcomes. Curr Opin Nephrol Hypertens. 2018;27(6):426–32.

    Article  PubMed  Google Scholar 

  131. de Boer IH, Alpers CE, Azeloglu EU, Balis UGJ, Barasch JM, Barisoni L, et al. Rationale and design of the kidney precision medicine project. Kidney Int. 2021;99(3):498–510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. van Zuydam NR, Ahlqvist E, Sandholm N, Deshmukh H, Rayner NW, Abdalla M, et al. A genome-wide association study of diabetic kidney disease in subjects with type 2 diabetes. Diabetes. 2018;67(7):1414–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Pezzolesi MG, Poznik GD, Mychaleckyj JC, Paterson AD, Barati MT, Klein JB, et al. Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes. 2009;58(6):1403–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lan D, Jiang H-Y, Su X, Zhao Y, Du S, Li Y, et al. Transcriptome-wide association study identifies genetically dysregulated genes in diabetic neuropathy. Comb Chem High Throughput Screen. 2021;24(2):319–25.

    Article  CAS  PubMed  Google Scholar 

  135. Ustinova M, Peculis R, Rescenko R, Rovite V, Zaharenko L, Elbere I, et al. Novel susceptibility loci identified in a genome-wide association study of type 2 diabetes complications in population of Latvia. BMC Med Genet. 2021;14(1):18.

    CAS  Google Scholar 

  136. Guo K, Elzinga S, Eid S, Figueroa-Romero C, Hinder LM, Pacut C, et al. Genome-wide DNA methylation profiling of human diabetic peripheral neuropathy in subjects with type 2 diabetes mellitus. Epigenetics. 2019;14(8):766–79.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Yang H, Sloan G, Ye Y, Wang S, Duan B, Tesfaye S, et al. New perspective in diabetic neuropathy: from the periphery to the brain, a call for early detection, and precision medicine. Front Endocrinol. 2019;10:929.

    Article  CAS  Google Scholar 

  138. Themistocleous AC, Crombez G, Baskozos G, Bennett DL. Using stratified medicine to understand, diagnose, and treat neuropathic pain. Pain. 2018;159(Suppl 1):S31–42.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Chen W-T, Yuan R-Y, Chiang S-C, Sheu J-J, Yu J-M, Tseng I-J, et al. OnabotulinumtoxinA improves tactile and mechanical pain perception in painful diabetic polyneuropathy. Clin J Pain. 2013;29(4):305–10.

    Article  PubMed  Google Scholar 

  140. Ghasemi M, Ansari M, Basiri K, Shaigannejad V. The effects of intradermal botulinum toxin type a injections on pain symptoms of patients with diabetic neuropathy. J Res Med Sci Off J Isfahan Univ Med Sci. 2014;19(2):106–11.

    CAS  Google Scholar 

  141. Nawfar SA, Yacob NBM. Effects of monochromatic infrared energy therapy on diabetic feet with peripheral sensory neuropathy: a randomised controlled trial. Singap Med J. 2011;52(9):669–72.

    CAS  Google Scholar 

  142. Jude EB, Dang C, Boulton AJM. Effect of L-arginine on the microcirculation in the neuropathic diabetic foot in type 2 diabetes mellitus: a double-blind, placebo-controlled study. Diabet Med J Br Diabet Assoc. 2010;27(1):113–6.

    Article  CAS  Google Scholar 

  143. Syngle A, Verma I, Krishan P, Garg N, Syngle V. Minocycline improves peripheral and autonomic neuropathy in type 2 diabetes: MIND study. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol. 2014;35(7):1067–73.

    Google Scholar 

  144. Fraser DA, Diep LM, Hovden IA, Nilsen KB, Sveen KA, Seljeflot I, et al. The effects of long-term oral benfotiamine supplementation on peripheral nerve function and inflammatory markers in patients with type 1 diabetes: a 24-month, double-blind, randomized, placebo-controlled trial. Diabetes Care. 2012;35(5):1095–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

LD, AMS, SAS, and ELF are supported by the NeuroNetwork for Emerging Therapies at the University of Michigan

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Solomon Tesfaye or Eva L. Feldman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davalos, L., Stino, A.M., Selvarajah, D., Sakowski, S.A., Tesfaye, S., Feldman, E.L. (2022). Precision Medicine for Diabetic Neuropathy. In: Basu, R. (eds) Precision Medicine in Diabetes. Springer, Cham. https://doi.org/10.1007/978-3-030-98927-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98927-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98926-2

  • Online ISBN: 978-3-030-98927-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics