Skip to main content

Influence of Extrusion on Food Bioactives

  • Chapter
  • First Online:

Part of the book series: Food Bioactive Ingredients ((FBC))

Abstract

Today, consumers are concerned with the fact that the food they eat should not only be tasty, but also healthy and should include more bioactive compounds. Extrusion cooking technology provides consumers with multiple choices in terms of nourishment and functionality, as well as palatability. Food extrusion has grown over the past 50 years and become a well-known industrial technology with different food applications such as production of snacks, breakfast cereals and supplementary foods. The versatility of extrusion technology makes it possible to develop fortified food products by incorporating inexpensive ingredients such as fruit by-products and their extracts into cereal and pulse-based raw materials, making them more appealing to consumers. However, extrusion processing conditions such as temperature, screw speed and moisture content should be carefully controlled to prevent degradation of the bioactive compounds including phenolics, anthocyanins, flavonoids, and etc. Many studies have shown reduction in bioactive components of raw ingredients after extrusion cooking. On the other hand, some researchers have reported the increase of free/bound phenolic acid content due to structural modification, causing the release of these compounds. Extrusion also provides elimination of antinutrient factors in legumes. Novel application of extrusion is microencapsulation, which allows to encapsulate sensitive bioactive components within a stable polymer without the use of organic solvents and controlled release of bioactives when the food is consumed. This chapter covers the effect of extrusion on bioactive compounds and recent applications of extrusion technology in encapsulation of active ingredients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ainsworth P, Ibanoglu S (2006) Extrusion. In: Brennan JG (ed) Food processing handbook. Wiley-VCH, Weinheim, pp 237–283

    Google Scholar 

  • Altan A, Maskan M (2011) Development of extruded foods by utilizing food industry by-products. In: Maskan M, Altan A (eds) Advances in food extrusion technology. CRC Press - Taylor & Francis Group, Boca Raton, FL, pp 121–167

    Google Scholar 

  • Altan A, McCarthy KL, Maskan M (2009) Effect of extrusion process on antioxidant activity, total phenolics and β-glucan content of extrudates developed from barley-fruit and vegetable by-products. Int J Food Sci Technol 44:1263–1271

    Article  CAS  Google Scholar 

  • Anunciação PC, Cardoso LdeM, Gomes JVP, Della Lucia CM, Carvalho CWP, Galdeano MC, … Pinheiro- Sant’Ana HM (2017) Comparing sorghum and wheat whole grain breakfast cereals: Sensorial acceptance and bioactive compound content. Food Chem 221:984–989

    Google Scholar 

  • Arribas C, Cabellos B, Cuadrado C, Guillamón E, Pedrosa MM (2018) The effect of extrusion on the bioactive compounds and antioxidant capacity of novel gluten-free expanded products based on carob fruit, pea and rice blends. Innovative Food Sci Emerg Technol 52:100–107

    Article  CAS  Google Scholar 

  • Asp NG, Bjorck I (1989) Nutritional properties of extruded foods. In: Mercier C, Linko P, Harper JM (eds) Extrusion cooking. American Association of Cereal Chemists Inc., Minnesota, pp 399–434

    Google Scholar 

  • Bahattacharya M, Hanna MA (1987) Kinetics of starch gelatinization during extrusion cooking. J Food Sci 52:764–766

    Article  Google Scholar 

  • Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, Liang L (2015) Microencapsulation of oils: a comprehensive review of benefits, techniques, and applications. Compr Rev Food Sci Food Saf 15:143–182

    Article  PubMed  CAS  Google Scholar 

  • Baublis AJ, Lu C, Clydesdale FM, Decker EA (2000) Potential of wheat-based breakfast cereals as a source of dietary antioxidants. J Am Coll Nutr 19(3):308S–311S

    Article  CAS  PubMed  Google Scholar 

  • Beta T (2003) Anti-nutrients or anti-oxidants in cereal grains: an evaluation of the composition and functionality of phenolic compounds with special reference to sorghum and barley. In: Belton PS, Taylor JRN (eds) Workshop on the proteins of sorghum and millet: enhancing nutritional and functional properties for Africa. Pretoria, South Africa

    Google Scholar 

  • Brennan C, Brennan M, Derbyshire E, Tiwari BK (2011) Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends Food Sci Technol 22:570–575

    Article  CAS  Google Scholar 

  • Burtea O (2001) Snack foods from formers and high-shear extruders. In: Lusas EW, Rooney LW (eds) Snack foods processing. CRC Press, Boca Raton, pp 281–314

    Google Scholar 

  • Calinoiu LF, Vodnar DC (2018) Whole grains and phenolic acids: a review on bioactivity, functionality, health benefits and bioavailability. Nutrients 10:1615

    Article  PubMed Central  CAS  Google Scholar 

  • Camire ME (2000) Chemical and nutritional changes in food during extrusion. In: Riaz MN (ed) Extruders in food applications. CRC Press, Boca Raton, pp 127–148

    Google Scholar 

  • Camire ME (2001) Extrusion and nutritional quality. In: Guy R (ed) Extrusion cooking—technologies and applications. Woodhead Publishing, Cambridge, pp 108–129

    Chapter  Google Scholar 

  • Camire ME (2012) Nutritional changes during extrusion cooking. In: Altan A, Maskan M (eds) Advances in food extrusion technology. CRC Press, Boca Raton, pp 87–101

    Google Scholar 

  • Camire ME, Dougherty MP, Briggs JL (2007) Functionality of fruit powders in extruded corn breakfast cereals. Food Chem 101:765–770

    Article  CAS  Google Scholar 

  • Carbonaro M (2007) Bioactivity of legume components. Grain Legumes 48:8–9

    Google Scholar 

  • Cardoso LM, Pinheiro SS, Carvalho CWP et al (2015) Phenolic compounds profile in sorghum processed by extrusion cooking and dry heat in a conventional oven. J Cereal Sci 65:220–226

    Article  CAS  Google Scholar 

  • Castro N, Durrieu V, Raynaud C, Rouilly A, Rigal L, Quellet C (2016) Melt extrusion encapsulation of flavors: a review. Polym Rev 56:137–186

    Article  CAS  Google Scholar 

  • Chang D, Hayat K, Abbas S, Zhang X (2019) Ascorbic acid encapsulation in a glassy carbohydrate matrix via hot melt extrusion: preparation and characterization. Food Sci Technol 39:660–666

    Article  Google Scholar 

  • Chávez DWH, Ascheri JLR, Carvalho CWP, Godoy RLO, Pacheco S (2017) Sorghum and roasted coffee blends as a novel extruded product: bioactive compounds and antioxidant capacity. J Funct Foods 29:93–103

    Article  CAS  Google Scholar 

  • Cheftel JC (1986) Nutritional effects of extrusion-cooking. Food Chem 20:263–283

    Article  CAS  Google Scholar 

  • Choton S, Gupta N, Bandral JD, Anjum N, Choudary A (2020) Extrusion technology and its application in food processing: a review. Pharma Innovation J 9(2):162–168

    Article  CAS  Google Scholar 

  • Ciudad-Mulero M, Barros L, Fernandes Â, Berrios JDJ, Cámara M, Morales P, Fernández-Ruiz V, Ferreira ICFR (2018) Bioactive compounds and antioxidant capacity of extruded snack-type products developed from novel formulations of lentil and nutritional yeast flours. Food Funct 9:819–829

    Article  CAS  PubMed  Google Scholar 

  • Dykes L, Rooney LW (2007) Phenolic compounds in cereal grains and their health benefits. Cereal Foods World 52(3):105–111

    CAS  Google Scholar 

  • Favaro-Trindade CS, Patel B, Silva MP, Comunian TA, Federici E, Jones OG, Campanella OH (2020) Microencapsulation as a tool to producing an extruded functional food. LWT Food Sci Technol 128:109433

    Article  CAS  Google Scholar 

  • Gat Y, Ananthanarayan L (2015) Physicochemical, phytochemical and nutritional impact of fortified cereal-based extrudate snacks. Forum Nutr 14:141–149

    CAS  Google Scholar 

  • Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15:330–347

    Article  CAS  Google Scholar 

  • Gumul D, Ziobro R, Korus J, Kruczek M, Árvay J (2018) Characteristics of extruded cereal snacks enriched by an addition of freeze-dried red and purple potatoes. J Food Process Eng 41:e12927

    Article  CAS  Google Scholar 

  • Guy R (2001) Raw materials for extrusion cooking. In: Guy R (ed) Extrusion cooking—technologies and applications. Woodhead Publishing, Cambridge, pp 5–28

    Chapter  Google Scholar 

  • Harper JM (1986) Extrusion texturization of foods. Food Technol 40:70–76

    Google Scholar 

  • Harper JM (1989) Food extruders and their applications. In: Mercier C, Linko P, Harper JM (eds) Extrusion cooking. American Association of Cereal Chemists Inc., St Paul, MN, pp 1–14

    Google Scholar 

  • Hemery Y, Rouau X, Lullien-Pellerin V, Barron C, Abecassis J (2007) Dry processes to develop wheat fractions and products with enhanced nutritional quality. J Cereal Sci 46:327–347

    Article  CAS  Google Scholar 

  • Hirth M, Leiter A, Beck SM, Schuchmann HP (2014) Effect of extrusion cooking process parameters on the retention of bilberry anthocyanins in starch based food. J Food Eng 125:139–146

    Article  CAS  Google Scholar 

  • Hu X, Zhao J, Zhao Q, Zheng J (2015) β-Glucan from barley, oat and wheat. J Food Process Preserv 39:3145–3153

    Article  CAS  Google Scholar 

  • Huber G (2001) Snack foods from cooking extruders. In: Lusas EW, Rooney LW (eds) Snack foods processing. CRC Press, Boca Raton, pp 315–368

    Google Scholar 

  • Jaganath IB, Crozier A (2010) Dietary flavonoids and phenolic compounds. In: Fraga CG (ed) Plant phenolics and human health. John Wiley & Sons, Inc., Hoboken, NJ, pp 1–50

    Google Scholar 

  • Khor CM, Ng WK, Kanaujia P, Chan KP, Dong Y (2017) Hot-melt extrusion microencapsulation of quercetin for taste-masking. J Microencapsul 34:29–37

    Article  CAS  PubMed  Google Scholar 

  • Kokini JL, Chang CN, Lai LS (1992) The role of rheological properties on extrudate expansion. In: Kokini JL, Ho CT, Karwe MV (eds) Food extrusion science and technology. Marcel Dekker Inc., New York, pp 631–652

    Google Scholar 

  • Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16:945–960

    Article  CAS  Google Scholar 

  • Leyva-Corral J, Quintero-Ramos A, Camacho-Dávila A, de Jesús Zazueta-Morales J, Aguilar-Palazuelos E, Ruiz-Gutiérrez MG, Melendez-Pizarro CO, Ruiz-Anchondo T (2016) Polyphenolic compound stability and antioxidant capacity of apple pomace in an extruded cereal. LWT Food Sci Technol 65:228–236

    Article  CAS  Google Scholar 

  • Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134:3479S–3485S

    Article  CAS  PubMed  Google Scholar 

  • Liu RH (2007) Whole grain phytochemicals and health. J Cereal Sci 46:207–219

    Article  CAS  Google Scholar 

  • Miller RC (1990) Unit operations and equipment. IV. Extrusion and extruders. In: Fast RB, Caldwell EF (eds) Breakfast cereals and how they are made. American Association of Cereal Chemists Inc., St Paul, MN, pp 135–196

    Google Scholar 

  • Morales P, Berrios JDJ, Varela A, Burbano C, Cuadrado C, Muzquiz M, Pedrosa MM (2015) Novel fiber-rich lentil flours as snack-type functional foods: an extrusion cooking effect on bioactive compounds. Food Funct 6:3135–3143

    Article  CAS  PubMed  Google Scholar 

  • Moraru CI, Kokini JL (2003) Nucleation and expansion during extrusion and microwave heating of cereal foods. Compr Rev Food Sci Food Saf 2:147–162

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Valdespino CA, Luna-Vital D, Camacho-Ruiz RM, Mojica L (2020) Bioactive proteins and phytochemicals from legumes: mechanisms of action preventing obesity and type-2 diabetes. Food Res Int 130:108905

    Article  CAS  PubMed  Google Scholar 

  • Moscicki L, Mitrus M, Wojtowicz A, Oniszczuk T, Rejak A (2013) Extrusion cooking of starch. In: Grundas S, Stepniewski A (eds) Advances in agrophysical research. InTech, Croatia, pp 319–346

    Google Scholar 

  • Moussa-Ayoub TE, Youssef K, El-Samahy SK, Kroh LW, Rohn S (2015) Flavonol profile of cactus fruits (Opuntia ficus-indica) enriched cereal-based extrudates: authenticity and impact of extrusion. Food Res Int 78:442–447

    Article  CAS  PubMed  Google Scholar 

  • Nayak B, Liu RH, Tang J (2015) Effect of processing on phenolic antioxidants of fruits, vegetables, and grains—a review. Crit Rev Food Sci Nutr 55(7):887–918

    Article  CAS  PubMed  Google Scholar 

  • Nikmaram N, Leong SY, Koubaa M, Zhu Z, Barba FJ, Greiner R, Oey I, Roohinejad S (2017) Effect of extrusion on the anti-nutritional factors of food products: an overview. Food Control 79:62–73

    Article  CAS  Google Scholar 

  • Oliveira AR, Chaves Ribeiro AE, Resende Oliveira É, da Silva Ana Caroline M, Soares Soares Júnior M, Caliari M (2019) Broken rice grains pregelatinized flours incorporated with lyophilized açaí pulp and the effect of extrusion on their physicochemical properties. J Food Sci Technol 56:1337–1348

    Article  CAS  Google Scholar 

  • Ortiz-Cruz RA, Ramírez-Wong B, Ledesma-Osuna AI, Torres-Chávez PI, Sánchez-Machado DI, Montaño-Leyva B, López-Cervantes J, Gutiérrez-Dorado R (2020) Effect of extrusion processing conditions on the phenolic compound content and antioxidant capacity of sorghum (Sorghum bicolor (L.) Moench) bran. Plant Foods Human 75:252–257

    Article  CAS  Google Scholar 

  • Panfili G, Fratianni A, Irano M (2003) Normal phase high- performance liquid chromatography method for the determination of tocopherols and tocotrienols in cereals. J Agric Food Chem 51:3940–3944

    Article  CAS  PubMed  Google Scholar 

  • Rathod RP, Annapure US (2017) Antioxidant activity and polyphenolic compound stability of lentil-orange peel powder blend in an extrusion process. J Food Sci Technol 54:954–963

    Article  CAS  PubMed  Google Scholar 

  • Repo-Carrasco-Valencia R, Peña J, Kallio H, Salminen S (2009) Dietary fiber and other functional components in two varieties of crude and extruded kiwicha (Amaranthus caudatus). J Cereal Sci 49:219–224

    Article  CAS  Google Scholar 

  • Riaz MN (2000) Introduction to extruders and their principles. In: Riaz MN (ed) Extruders in food applications. CRC Press, Boca Raton, pp 1–23

    Chapter  Google Scholar 

  • Riaz MN (2001) Selecting the right extruder. In: Guy R (ed) Extrusion cooking—technologies and applications. Woodhead Publishing, Cambridge, pp 29–50

    Chapter  Google Scholar 

  • Rokey GJ (2000) Single screw extruders. In: Riaz MN (ed) Extruders in food applications. CRC Press, Boca Raton, pp 26–49

    Google Scholar 

  • Ruiz-Gutiérrez M, Amaya-Guerra C, Quintero-Ramos A, Pérez-Carrillo E, Ruiz-Anchondo T, Báez-González J, Meléndez-Pizarro C (2015) Effect of extrusion cooking on bioactive compounds in encapsulated red cactus pear powder. Molecules 20:8875–8892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saleh ASM, Wang P, Wang N, Yang S, Xiao Z (2019) Technologies for enhancement of bioactive components and potential health benefits of cereal and cereal-based foods: research advances and application challenges. Crit Rev Food Sci Nutr 59(2):207–227

    Article  CAS  PubMed  Google Scholar 

  • Shah FH, Sharif MK, Bashir S, Ahsan F (2019) Role of healthy extruded snacks to mitigate malnutrition. Food Rev Intl 35(4):299–323

    Article  CAS  Google Scholar 

  • Shrestha AK, Arcot J, Yuliani S (2012) Susceptibility of 5-methyltetrahydrofolic acid to heat and microencapsulation to enhance its stability during extrusion processing. Food Chem 130:291–298

    Article  CAS  Google Scholar 

  • Singh S, Gamlath S, Wakeling L (2007) Nutritional aspects of food extrusion: a review. Int J Food Sci Technol 42:916–929

    Article  CAS  Google Scholar 

  • Steel C, Leoro M, Schmiele M, Ferreira R, Chang Y (2012) Thermoplastic extrusion in food processing. In: Adel ES (ed) Thermoplastic elastomers. InTech, Croatia, pp 265–290

    Google Scholar 

  • Tackenberg MW, Krauss R, Schuchmann HP, Kleinebudde P (2015) Encapsulation of orange terpenes investigating a plasticisation extrusion process. J Microencapsul 32:408–417

    Article  CAS  PubMed  Google Scholar 

  • Thymi S, Krokida MK, Papa A, Maroulis ZB (2005) Structural properties of extruded corn starch. J Food Eng 68:519–526

    Article  Google Scholar 

  • Ti H, Zhang R, Zhang M, Wei Z, Chi J, Deng Y, Zhang Y (2015) Effect of extrusion on phytochemical profiles in milled fractions of black rice. Food Chem 178:186–194

    Article  CAS  PubMed  Google Scholar 

  • Valdez-Flores M, Germán-Báez LJ, Gutiérrez-Dorado R, Medina-Godoy S, Norzagaray-Valenzuela C, Hernández-Verdugo S, Reyes-Moreno C, Valdez-Ortiz A (2016) Improving bioactivities of Jatropha curcas protein hydrolysates by optimizing with response surface methodology the extrusion cooking process. Ind Crop Prod 85:353–360

    Article  CAS  Google Scholar 

  • Vasanthan T, Gaosong J, Yeung J, Li J (2002) Dietary fiber profile of barley flour as affected by extrusion cooking. Food Chem 77:35–40

    Article  CAS  Google Scholar 

  • Wang J, Bai J, Fan M, Li T, Li Y, Qian H, Wang L, Zhang H, Qi X, Rao Z (2020) Cereal-derived arabinoxylans: structural features and structure–activity correlations. Trends Food Sci Technol 96:157–165

    Article  CAS  Google Scholar 

  • Xiong Y, Zhang P, Warner RS, Fang Z (2019) Sorghum grain: from genotype, nutrition, and phenolic profile to its health benefits and food applications. Compr Rev Food Sci Food Saf 18:2025–2046

    Article  CAS  PubMed  Google Scholar 

  • Yacu WA (2012) Extruder selection, design, and operation for different food applications. In: Altan A, Maskan M (eds) Advances in food extrusion technology. CRC Press, Boca Raton, pp 23–67

    Google Scholar 

  • Yağcı S, Altan A, Doğan F (2020) Effects of extrusion processing and gum content on physicochemical, microstructural and nutritional properties of fermented chickpea-based extrudates. LWT Food Sci Technol 124:109150

    Article  CAS  Google Scholar 

  • Yaǧcı S., Göǧüs F., Jouppila K., Talja R., Hyvönen L., Kristbergsson K. (2014) Extrusion technology. Unpublished manuscript

    Google Scholar 

  • Yu X, Chu M, Chu C, Du Y, Shi J, Liu X, Liu Y, Zhang H, Zhang Z, Yan N (2020) Wild rice (Zizania spp.): a review of its nutritional constituents, phytochemicals, antioxidant activities, and health-promoting effects. Food Chem 331:127293

    Article  CAS  PubMed  Google Scholar 

  • Zeng Z, Liu C, Luo S, Chen J, Gong E (2016) The profile and bioaccessibility of phenolic compounds in cereals influenced by improved extrusion cooking treatment. PLoS One 11:e0161086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu F (2019) Proanthocyanidins in cereals and pseudocereals. Crit Rev Food Sci Nutr 59(10):1521–1533

    Article  CAS  PubMed  Google Scholar 

  • Zuidam NJ, Heinrich E (2010) Encapsulation of aroma. In: Zuidam NJ, Nedovic V (eds) Encapsulation technologies for active food ingredients and food processing. Springer, Basel, Switzerland, pp 127–160

    Chapter  Google Scholar 

  • Zuidam NJ, Shimoni E (2010) Overview of microencapsulates for use in food products or processes and methods to make them. In: Zuidam NJ, Nedovic V (eds) Encapsulation technologies for active food ingredients and food processing. Springer, Basel, Switzerland, pp 3–39

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel Yağci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yağci, S., Altan, A. (2022). Influence of Extrusion on Food Bioactives. In: Jafari, S.M., Capanoglu, E. (eds) Retention of Bioactives in Food Processing. Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-96885-4_8

Download citation

Publish with us

Policies and ethics