Skip to main content

Circulatory System (Cardiovascular and Lymphatic Systems)

  • Chapter
  • First Online:
The Pathophysiologic Basis of Nuclear Medicine

Abstract

This chapter reviews the anatomic, physiologic features of circulatory system comprising both the cardiovascular system and the lymphatic system. The pathophysiology of relevant cardiac and lymphatic diseases will be discussed. This is followed by the review of the role of radionuclide imaging in the diagnosis and management of these diseases such as coronary artery disease, acute ischemic syndromes, heart failure, and lymphedema. The pertinent radiotracers and imaging instruments, and the clinical circumstances under which these tools are applied to clinical decision making will be reviewed in correlation with the pathophysiologic changes. We discuss the usefulness of particular techniques in the management of patients with coronary artery disease, including assessment of myocardial perfusion, contractility, viability, and detection of unstable atherosclerotic plaques. Radioisotope imaging in the diagnostic workup of infective endocarditis, as well as cardiac sarcoidosis and amyloidosis are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parmley WW, Wikman-Coffelt J (1991) Physiology of cardiac muscle contraction. In: Parmley WW, Chatterjee K (eds) Cardiology. Lippincott, Philadelphia, pp 1–26

    Google Scholar 

  2. Parmley WW (1991) Ventricular function. In: Parmley WW, Chatterjee K (eds) Cardiology. Lippincott, Philadelphia, pp 1–20

    Google Scholar 

  3. Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88:1009–1086

    Article  CAS  PubMed  Google Scholar 

  4. Tune JD (2014) Coronary circulation. Morgan & Claypool Life Sciences, San Francisco

    Google Scholar 

  5. Ardehali A, Ports TA (1990) Myocardial oxygen supply and demand. Chest 98:699–705

    Article  CAS  PubMed  Google Scholar 

  6. Goodwill AG, Dick GM, Kiel AM, Tune JD (2017) Regulation of coronary blood flow. Compr Physiol 7(2):321–382

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schelbert HR (2010) Anatomy and physiology of coronary blood flow. J Nucl Cardiol 17:545–554

    Article  PubMed  PubMed Central  Google Scholar 

  8. Niccoli G, Scalone G, Crea F (2015) Acute myocardial infarction with no obstructive coronary atherosclerosis: mechanisms and management. Eur Heart J 36:475

    Article  PubMed  Google Scholar 

  9. Campisi R, Czernin J, Schoder H, Sayre JW, Schelbert HR (1999) L-arginine normalizes coronary vasomotion in long-term smokers. Circulation 99:491–497

    Article  CAS  PubMed  Google Scholar 

  10. Schindler TH, Nitzsche EU, Munzel T, Olschewski M, Brink I, Jeserich M et al (2003) Coronary vasoregulation in patients with various risk factors in response to cold pressor testing: contrasting myocardial blood flow responses to short- and long-term vitamin C administration. J Am Coll Cardiol 42:814–822

    Article  PubMed  Google Scholar 

  11. Gould KL, Nakagawa Y, Nakagawa K, Sdringola S, Hess MJ, Haynie M et al (2000) Frequency and clinical implications of fluid dynamically significant diffuse coronary artery disease manifest as graded, longitudinal, base-to-apex myocardial perfusion abnormalities by noninvasive positron emission tomography. Circulation 101:1931–1939

    Article  CAS  PubMed  Google Scholar 

  12. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 349:1027–1035

    Article  CAS  PubMed  Google Scholar 

  13. Neglia D, Michelassi C, Trivieri MG, Sambuceti G, Giorgetti A, Pratali L et al (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105:186–193

    Article  PubMed  Google Scholar 

  14. Bombardini T (2005) Myocardial contractility in the echo lab: molecular, cellular and pathophysiological basis. Cardiovasc Ultrasound 3:27. https://doi.org/10.1186/1476-7120-3-27

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dandel M, Hetzer R (2021) Ventricular systolic dysfunction with and without altered myocardial contractility: clinical value of echocardiography for diagnosis and therapeutic decision-making. Int J Cardiol 327:236–250

    Article  PubMed  Google Scholar 

  16. Miranda D, Lewis GD, Fifer MA (2016) Heart failure, Chapter 9. In: Lilly LS (ed) Pathophysiology of heart disease: a collaborative project of medical students and faculty, 6th edn. Wolters Kluwer, Alphen aan den Rijn, pp 220–248

    Google Scholar 

  17. Gazewood JD, Turner PL (2017) Heart failure with preserved ejection fraction: diagnosis and management. Am Fam Physician 96(9):582–588

    PubMed  Google Scholar 

  18. Hartupee J, Mann DL (2017) Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol 14(1):30–38

    Article  CAS  PubMed  Google Scholar 

  19. Hayley BD, Burwash IG (2012) Heart failure with normal left ventricular ejection fraction: role of echocardiography. Curr Opin Cardiol 27(2):169–180

    Article  PubMed  Google Scholar 

  20. Patel PA, Ali N (2017) Mechanisms involved in regulation of systemic blood pressure. Arch Clin Hypertension 3(1):016–020

    Article  Google Scholar 

  21. Harrison DG, Florentine MS, Brooks LA et al (1988) The effect of hypertension and left ventricular hyper trophy on the lower range of coronary autoregulation. Circulation 77:1108

    Article  CAS  PubMed  Google Scholar 

  22. Oktay AA, Shah SJ (2014) Current perspectives on systemic hypertension in heart failure with preserved ejection fraction. Curr Cardiol Rep 16:545. https://doi.org/10.1007/s11886-014-0545-9

    Article  PubMed  Google Scholar 

  23. Franch RH, Gravanis MB (1993) Pulmonary hypertension and core pulmonale. In: Gravanis M (ed) Cardiovascular disorders: pathogenesis and pathophysiology. Mosby, St Louis, pp 139–177

    Google Scholar 

  24. Haworth SG (1987) Pulmonary vascular disease in ventricular septal defect: structural and functional correlations in lung biopsies from 85 patients with outcome of intracardiac repair. J Pathol 152:157–168

    Article  CAS  PubMed  Google Scholar 

  25. Sharma GV, McIntyre KM, Sharma S et al (1984) Clinical and hemodynamic correlates in pulmonary embolism. Clin Chest Med 5(421):37

    Google Scholar 

  26. Palevsky HI, Weiss DW (1990) Pulmonary hypertension secondary to chronic thromboembolism. J Nucl Med 31:1–9

    CAS  PubMed  Google Scholar 

  27. Fishman AP (1988) Pulmonary hypertension and cor pulmonale. In: Fishman AP (ed) Pulmonary diseases and disorders, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  28. Dunnill MS (1961) An assessment of the anatomical factor in cor pulmonale in emphysema. J Clin Pathol 14:246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berger HJ, Matthay RA, Lake J et al (1978) Assessment of cardiac performance with quantitative radionuclide angiocardiography: right ventricular ejection fraction with reference to findings in chronic obstructive pulmonary disease. Am J Cardiol 41:897–905

    Article  CAS  PubMed  Google Scholar 

  30. Grossman W (1991) Diastolic dysfunction in congestive heart failure. N Engl J Med 325:1557

    Article  CAS  PubMed  Google Scholar 

  31. McGill HC Jr, McMahan CA, Herderick EE, Malcom GT, Tracy RE, Strong JP (2000) Origin of atherosclerosis in childhood and adolescence. Am J Clin Nutr 72(5 Suppl):1307S–1315S

    CAS  PubMed  Google Scholar 

  32. Tegos TJ, Kalodiki E, Sabetai MM, Nicolaides AN (2001) The genesis of atherosclerosis and risk factors: a review. Angiology 52(2):89–98

    Article  CAS  PubMed  Google Scholar 

  33. Shahawy S, Libby P (2016) Atherosclerosis, Chapter 5. In: Lilly LS (ed) Pathophysiology of heart disease: a collaborative project of medical students and faculty, 6th edn. Wolters Kluwer, Alphen aan den Rijn, pp 112–133

    Google Scholar 

  34. Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Borén J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF et al (2020) Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 41:2313–2330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. He C, Medley S, Hu T, Hindstale ME, Lupu F, Virmani R, Olsen LE (2015) PDGFRβ signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis. Nat Commun 6:7770

    Article  CAS  PubMed  Google Scholar 

  37. Ramji DP, Davies TS (2015) Cytokines in atherosclerosis: key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev 26(6):673–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ward MR, Pasterkamp G, Yeung AC, Borst C (2000) Arterial remodeling mechanisms and clinical implications. Circulation 102:1186–1191

    Article  CAS  PubMed  Google Scholar 

  39. Wilder J, Sabatine MS, Lilly LS (2016) Ischemic heart disease, Chapter 6. In: Lilly LS (ed) Pathophysiology of heart disease: a collaborative project of medical students and faculty, 6th edn. Wolters Kluwer, Alphen aan den Rijn, pp 134–161

    Google Scholar 

  40. Croce K, Libby P (2007) Intertwining of thrombosis and inflammation in atherosclerosis. Curr Opin Hematol 14:55–61

    Article  CAS  PubMed  Google Scholar 

  41. Libby P (2013) Mechanisms of acute coronary syndromes. N Engl J Med 369:883–884

    CAS  PubMed  Google Scholar 

  42. Antonopoulos AS, Goliopoulou A, Vogiatzi G, Tousoulis D (2018) Myocardial oxygen consumption, Chapter 2.2. In: Tousoulis D (ed) Coronary artery disease from biology to clinical practice. Academic, New York, pp 127–136

    Chapter  Google Scholar 

  43. Cannon RO 3rd. (1998) Role of nitric oxide in cardiovascular disease: focus on the endothelium. Clin Chem 44(8 Pt 2):1809–1819

    Article  CAS  PubMed  Google Scholar 

  44. Arbustini E, Narula J, Tavazzi J et al (2014) The MOGE(S) classification of cardiomyopathy or clinicians. J Am Coll Cardiol 64:304–318

    Article  PubMed  Google Scholar 

  45. Garfinkel AC, Seidman JG, Seidman CE (2018) Genetic pathogenesis of hypertrophic and dilated cardiomyopathy. Heart Failure Clin 14:139–146

    Article  Google Scholar 

  46. Maron BJ, Ommen SR, Semsarian C et al (2014) Hypertrophic cardiomyopathy: present and future, with translation into contemporary cardiovascular medicine. J Am Coll Cardiol 64:83–99

    Article  PubMed  Google Scholar 

  47. Rammos A, Meladinis V, Vovas G, Patsouras D (2017) Restrictive cardiomyopathies: the importance of noninvasive cardiac imaging modalities in diagnosis and treatment—a systematic review. Radiol Res Pract 2017:2874902

    PubMed  PubMed Central  Google Scholar 

  48. Jung HO (2012) Pericardial effusion and pericardiocentesis: role of echocardiography. Korean Circ J 42(11):725–734

    Article  PubMed  PubMed Central  Google Scholar 

  49. Vakamudi S, Ho N, Cremer PC (2017) Pericardial effusions: causes, diagnosis, and management. Prog Cardiovasc Dis 59(4):380–388

    Article  PubMed  Google Scholar 

  50. Cheong XP, Law L, Seow SC, Tay L, Tan HC, Yeo WT, Low AF, Kojodjojo P (2020) Causes and prognosis of symptomatic pericardial effusions treated by pericardiocentesis in an Asian academic medical centre. Singap Med J 61(3):137–141

    Article  Google Scholar 

  51. Albugami S, Al-Husayni F, AlMalki A, Dumyati M, Zakri Y, AlRahimi J (2020) Etiology of pericardial effusion and outcomes post pericardiocentesis in the western region of Saudi Arabia: a single-center experience. Cureus 12:e6627

    PubMed  PubMed Central  Google Scholar 

  52. Sachpekidis V, Moralidis E, Arsos G (2018) Equilibrium radionuclide ventriculography: still a clinically useful method for the assessment of cardiac function? Hell J Nucl Med 21(3):213–220

    PubMed  Google Scholar 

  53. Heiba SI, Cerqueira MD (1994) Evaluation of cardiac function. In: Cerqueira MD (ed) Nuclear cardiology. Blackwell Scientific, Cambridge, pp 53–117

    Google Scholar 

  54. Soufer A, Liu C, Henry ML, Baldassarre LA (2020) Nuclear cardiology in the context of multimodality imaging to detect cardiac toxicity from cancer therapeutics: established and emerging methods. J Nucl Cardiol 27:1210–1224

    Article  PubMed  Google Scholar 

  55. Berger HJ, Zaret BL (1984) Radionuclide assessment of cardiovascular performance. In: Freeman L (ed) Freeman and Johnson’s clinical radionuclide imaging. Saunders, Philadelphia

    Google Scholar 

  56. Berman DS, Maddahi J, Garcia EV et al (1981) Assessment of left and right ventricular function with multiple gated equilibrium cardiac blood pool scintig raphy. In: Berman DS, Mason DT (eds) Clinical nuclear cardiology. Grune and Stratton, New York

    Google Scholar 

  57. Scatteia A, Silverio A, Padalino R, De Stefano F, America R, Cappelletti AM et al (2021) Non-invasive assessment of left ventricle ejection fraction: where do we stand? J Pers Med 11(11):1153

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu YH, Fazzone-Chettiar R, Sandoval V et al (2021) New approach for quantification of left ventricular function from low-dose gated bloodpool SPECT: validation and comparison with conventional methods in patients. J Nucl Cardiol 28:939–950

    Article  PubMed  Google Scholar 

  59. Ramon AJ, Yang Y, Wernick MN, Pretorius PH, Johnson KL, Slomka PJ, King MA (2020) Evaluation of the effect of reducing administered activity on assessment of function in cardiac gated SPECT. J Nucl Cardiol 27(2):562–572

    Article  Google Scholar 

  60. Gould KL, Lipscomb K, Hamilton GW (1974) A physiological basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33:84

    Google Scholar 

  61. Maddahi J, Rodrigues E, Kiat J, Van Train KF, Berman DS (1995) Detection and evaluation of coronary artery disease by thallium-201 myocardial perfusion scintigraphy. In: DePuey EG, Berman DS, Garcia E (eds) Cardiac SPECT imaging. Raven, New York

    Google Scholar 

  62. Okada RD (1988) Myocardial kinetics of technetium-99m hexakis 2-methoxyl 2 methylopropylisonitrile. Circulation 77:491

    Article  CAS  PubMed  Google Scholar 

  63. Berman DS, Kiat H, Friedman JD, Wang FP, Van Train K, Metzer L, Maddahi J, Germano G (1993) Separate acquisition rest thallium-201/stress technetium 99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study. J Am Coll Cardiol 22:1455–1464

    Article  CAS  PubMed  Google Scholar 

  64. Seldin DW, Johnson LL, Blood DK (1989) Myocardial perfusion imaging with technetium-99m SQ30217: comparison with thallium-201 and coronary anatomy. J Nucl Med 30:312–319

    CAS  PubMed  Google Scholar 

  65. Henzlova MJ, Machac J (1994) Clinical utility of technetium-99m-teboroxime myocardial washout imaging. J Nucl Med 35:575–579

    CAS  PubMed  Google Scholar 

  66. Fang W, Liu S (2019) New 99mTc radiotracers for myocardial perfusion imaging by SPECT. Curr Radiopharm 12:171–186

    Article  PubMed  CAS  Google Scholar 

  67. Saha GB (2018) Radiopharmaceuticals and general methods of radiolabeling. In: Fundamentals of nuclear pharmacy. Springer, Cham, pp 93–121

    Chapter  Google Scholar 

  68. Norenberg JP (2021) Fundamentals of medical radionuclides. In: Remington. Academic, New York, pp 187–204

    Chapter  Google Scholar 

  69. Vilcant V, Zeltser R (2022) Treadmill stress testing. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island

    Google Scholar 

  70. Heiba SI, Jacobson AF, Cerqueira MD, Shattuc S, Sharma S (1999) The additive values of radionuclide ventriculography and extent of myocardium at risk to dipyridamole thallium-201 imaging for optimal risk stratification prior to vascular surgery. Nucl Med Commun 20:887–894

    Article  CAS  PubMed  Google Scholar 

  71. Mann A, Williams J (2020) Considerations for stress testing performed in conjunction with myocardial perfusion imaging. J Nucl Med Technol 48:114–121

    Article  PubMed  Google Scholar 

  72. Wasserman K, Hansen JE, Sue DY et al (2012) Principles of exercise testing and interpretation, 5th edn. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  73. Farell MB (2016) Myocardial perfusion imaging 2015: quality, safety, and dose optimization. Society of Nuclear Medicine and Molecular Imaging Technologist Section, Reston

    Google Scholar 

  74. Heller GV, Hendel R, Mann A (2009) Nuclear cardiology: technical applications. McGraw Hill, New York

    Google Scholar 

  75. Roger VL, Jacobsen SI, Pelikka PA et al (1998) Prognostic value of treadmill exercise testing. a population based study in Olmsted County, Minnesota. Circulation 98:2836–2841

    Article  CAS  PubMed  Google Scholar 

  76. Young M, Pan W, Wiesner J et al (1994) Characterization of arbutamine: a novel catecholamine stress agent for diagnosis of coronary artery disease. Drug Dev Res 32:19–28

    Article  CAS  Google Scholar 

  77. Iskandrian AS, Verani MS, Heo J (1994) Pharmacologic stress testing: mechanism of action, hemodynamic responses, and results in detection of coronary artery disease. J Nucl Cardiol 1:94–111

    Article  CAS  PubMed  Google Scholar 

  78. Lieu HD, Shryock JC, von Mering GO et al (2007) Regadenoson, a selective A2A adenosine receptor agonist, causes dose-dependent increases in coronary blood flow velocity in humans. J Nucl Cardiol 14:514–520

    Article  PubMed  Google Scholar 

  79. Iskandrian AE, Bateman TM, Belardinelli L et al (2007) Adenosine versus regadenoson comparative evaluation in myocardial perfusion imaging: results of the ADVANCE phase 3 multicenter international trial. J Nucl Cardiol 14:645–658

    Article  PubMed  Google Scholar 

  80. Cerqueira MD, Nguyen P, Staehr P et al (2008) Effects of age, gender, obesity and diabetes on the efficacy and safety of the selective A2A agonist, regadenoson versus adenosine in myocardial perfusion imaging: integrated ADVANCE-MPI trial results. JACC Cardiovasc Imaging 1:207–216

    Article  Google Scholar 

  81. Travin MI, Wexler JP (1999) Pharmacological stress testing. Semin Nucl Med 29:298–318

    Article  Google Scholar 

  82. Vitola JV, Brambatti JC, Caligaris F et al (2001) Exercise supplementation to dipyridamole prevents hypotension, improves electrocardiogram sensitivity, and increases heart-to-liver activity ratio on Tc-99m sestamibi imaging. J Nucl Cardiol 8:652–659

    Article  CAS  PubMed  Google Scholar 

  83. Pennell DJ, Mavrogeni SI, Forbat SM et al (1995) Adenosine combined with dynamic exercise for myocardial perfusion imaging. J Am Coll Cardiol 25:1300–1309

    Article  CAS  PubMed  Google Scholar 

  84. Kiat H, VanTrain KF, Friedman JD et al (1992) Quantitative stress-redistribution thallium-201 SPECT using prone imaging: methodologic development and validation. J Nucl Med 33:1509–1512

    CAS  PubMed  Google Scholar 

  85. Hayes SW, DeLorenzo A, Hachamovich R et al (2003) Prognostic implications of combined prone and supine myocardial perfusion SPECT. J Nucl Med 44:1633–1640

    PubMed  Google Scholar 

  86. DePuey EG (1994) How to detect and avoid myocardial perfusion SPECT artifacts. J Nucl Med 35:699–702

    PubMed  Google Scholar 

  87. Neumann DR, Go RT, Myers BA et al (1993) Parametric phase display for biventricular function from gated cardiac blood pool single-photon emission tomography. Eur J Nucl Med 20:1108–1111

    Article  CAS  PubMed  Google Scholar 

  88. Chen J, Garcia EV, Folks RD et al (2005) Onset of left ventricular contraction determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 6:687–695

    Article  Google Scholar 

  89. Samad Z, Atchley AE, Trimble MA et al (2011) Prevalence and predictors of mechanical dyssynchrony as defined by phase analysis in patients with left ventricular dysfunction undergoing gated SPECT myocardial perfusion imaging. J Nucl Cardiol 18:24–30

    Article  PubMed  Google Scholar 

  90. Bateman TM, O’Keefe JH Jr, Dong VM et al (1995) Coronary angiographic rates after stress single photon emission computed tomographic scintigraphy. J Nucl Cardiol 2:217–223

    Article  CAS  PubMed  Google Scholar 

  91. Hachamovich R, Berman DS, Shaw IJ et al (1998) Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 97:535–543

    Article  Google Scholar 

  92. Diamond GA, Forrester JS (1979) Analysis of probability as an aid in the clinical diagnosis of coronary artery disease. N Engl J Med 300:1350

    Article  CAS  PubMed  Google Scholar 

  93. Hachamovitch R, Berman DS, Kiat H et al (1996) Exercise myocardial perfusion SPECT in patients without known CAD. Incremental prognostic value and use in risk stratification. Circulation 93:905–914

    Article  CAS  PubMed  Google Scholar 

  94. Bateman TM (1997) Clinical relevance of a normal myocardial perfusion scintigraphic study. J Nucl Cardiol 4:172–173

    Article  CAS  PubMed  Google Scholar 

  95. Iskander S, Iskandrian AE (1998) Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol 32:57–62

    Article  CAS  PubMed  Google Scholar 

  96. Mazzanti M, Germano G, Kiat H (1997) Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilatation of the left ventricle in dual isotope myocardial perfusion SPECT. J Am Coll Cardiol 27:1612–1620

    Article  Google Scholar 

  97. Gerson MC, Gerson MC (1997) Test accuracy, test selection, and test result interpretation in chronic coronary artery disease, Chap 20. In: Gerson MC (ed) Cardiac nuclear medicine, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  98. Farkouh ME, Smars RA, Reeder GS, Zinsmeiter AR, Evans RW, Meloy TD, Kopecky SL, Allen M, Allison TG, Gibons RJ, Gabriel SE (1998) A clinical trial of a chest-pain observation unit for patients with unstable angina. N Engl J Med 339:1882–1888

    Article  CAS  PubMed  Google Scholar 

  99. Tatum JL, Jesse RI, Kontros MC et al (1997) Comprehensive strategy for the evaluation and triage of the chest pain patient. Ann Emerg Med 29:116–125

    Article  CAS  PubMed  Google Scholar 

  100. Heller GV, Stowers SA, Hendel RC et al (1998) Clinical value of acute rest technetium-99m tetrofosmin tomographic myocardial perfusion imaging in patients with acute chest pain and nondiagnostic electrocardiograms. J Am Coll Cardiol 31:1011–1017

    Article  CAS  PubMed  Google Scholar 

  101. Boden WE, O’Rourke RA, Crawford MH et al (1998) Outcomes in patients with acute non-Q-wave myocardial infarction randomly assigned to an invasive as compared with a conservative management strategy. Veterans Affairs Non-Q-Wave Infarction Strategies in Hospital (VANQUISH) Trial Investigation. N Engl J Med 338:1785–1792

    Article  CAS  PubMed  Google Scholar 

  102. Mahmarian JJ, Mahmarian AC, Marks GF et al (1995) Role of adenosine thallium-201 tomography for defining long-term risk in patients after acute myocardial infarction. J Am Coll Cardiol 25:1333–1340

    Article  CAS  PubMed  Google Scholar 

  103. Iskandrian AE, Hage FG, Shaw LJ, Mahmarian JJ, Berman DS (2014) Serial myocardial perfusion imaging: defining a significant change and targeting management decisions. JACC Cardiovasc Imaging 7:79–96

    Article  PubMed  Google Scholar 

  104. Gibbons RJ, Balady GJ, Bricker TJ et al (2002) ACC/AHA guideline update for exercise testing: summary article—a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J Am Coll Cardiol 40:1531–1540

    Article  PubMed  Google Scholar 

  105. Young JD (1998) Cardiac transplantation: three decades of experience defines our challenge. Transplant Proc 30:1885–1888

    Article  CAS  PubMed  Google Scholar 

  106. Oyer PE, Stinson EB, Jamieson SW et al (1983) Cyclosporine in cardiac transplantation: 2 and 1/2 year follow-up. Transplant Proc 15:2546–2552

    Google Scholar 

  107. Mairesse GH, Marwick TH, Hanet C et al (1995) Use of exercise electrocardiography, technetium-99m MIBI perfusion tomography for coronary disease surveillance in a low-prevalence population of heart transplant recipients. J Heart Lung Transplant 14:222–229

    CAS  PubMed  Google Scholar 

  108. Fang JC, Roco T, Jarcho J et al (1998) Noninvasive assessment of transplant-associated arteriosclerosis. Am Heart J 125:980–987

    Article  Google Scholar 

  109. Manapragada PP, Andrikopoulou E, Bajaj N, Bhambhvani P (2021) PET cardiac imaging (perfusion, viability, sarcoidosis, and infection). Radiol Clin N Am 59:835–852

    Article  PubMed  Google Scholar 

  110. Bateman TM, Dilsizian V, Beanlands RS et al (2016) American Society of Nuclear Cardiology and Society of Nuclear Medicine and molecular imaging joint position statement on the clinical indications for myocardial perfusion PET. J Nucl Cardiol 23(5):1227–1231

    Article  PubMed  Google Scholar 

  111. Schelbert HR, Wisenberg G, Phelps ME et al (1982) Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation, VI: detection of coronary artery disease in human beings with intravenous N-13 ammonia and positron computed tomography. Am J Cardiol 49:1197–1207

    Article  CAS  PubMed  Google Scholar 

  112. Monahan WG, Tilbury RS, Laughlin JS (1972) Uptake of H-13 labeled ammonia. J Nucl Med 13:274

    CAS  PubMed  Google Scholar 

  113. Bergmann SR, Hack S, Tewson T et al (1980) The dependence of accumulation of N-13-NH3 by myocardium on metabolic factors and its implications for quantitative assessment of perfusion. Circulation 61:34

    Article  CAS  PubMed  Google Scholar 

  114. Gould KL, Schelberth H, Phelps H et al (1979) Noninvasive assessment of coronary stenosis with myocardial perfusion imaging during pharmacologic coronary vasodilation. V. Detection of 47 percent diameter coronary stenosis with intravenous N-14 ammonia and emission-computed tomography in intact dogs. Am J Cardiol 43:200

    Article  CAS  PubMed  Google Scholar 

  115. Tamaki N, Yonekura Y, Senda M et al (1985) Myocardial positron computed tomography with N-13 ammonia. Eur J Nucl Med 11:246–251

    Article  CAS  PubMed  Google Scholar 

  116. Selwyn AP, Allan RM, L’Abbate A et al (1982) Relation between regional myocardial uptake of rubidium-82 and perfusion: absolute reduction of cation uptake in ischemia. Am J Cardiol 50:112–121

    Article  CAS  PubMed  Google Scholar 

  117. Goldstein RA, Mullani NA, Marani SK et al (1983) Myocardial perfusion with rubidium-82. II. Effects of metabolic and pharmacological interventions. J Nucl Med 24:907–915

    CAS  PubMed  Google Scholar 

  118. Schelbert HR, Ashburn WL, Chauncey DM et al (1977) Comparative myocardial uptake of intravenously administered radionuclides. J Nucl Med 15:1092

    Google Scholar 

  119. Gould KL (1978) Assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilatation. IV. Limits of stenosis detection by idealized experimental, cross-sectional myocardial imaging. Am J Cardiol 42:761–768

    Article  CAS  PubMed  Google Scholar 

  120. Maddahi J, Czernin J, Lazewatsky J et al (2011) Phase I, first-in-human study of BMS747158, a novel F18-labeled tracer for myocardial perfusion PET: dosimetry, biodistribution, safety, and imaging characteristics after a single injection at rest. J Nucl Med 52:1490–1498

    Article  CAS  PubMed  Google Scholar 

  121. Berman DS, Maddahi J, Tamarappoo BK et al (2013) Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease. J Am Coll Cardiol 61:469–477

    Article  CAS  PubMed  Google Scholar 

  122. Wackers FJ, Soufer R, Zaret BL et al (2012) Nuclear cardiology. In: Mann Z, Bonow L (eds) Braunwald’s heart disease: a textbook of cardiovascular medicine. Elsevier/Saunders, Philadelphia, pp 293–339

    Google Scholar 

  123. Santos BS, Ferreira MJ (2019) Positron emission tomography in ischemic heart disease. Rev Port Cardiol 38(8):599–608

    Article  PubMed  Google Scholar 

  124. Momose M, Kondo C (2007) Assessment of myocardial viability by FDG-PET. Rinsho Byori 55:639–647

    CAS  PubMed  Google Scholar 

  125. Blume ED, Altmann K, Mayer JE et al (1999) Evolution of risk factors influencing early mortality of the arterial switch operation. J Am Coll Cardiol 33:1702–1709

    Article  CAS  PubMed  Google Scholar 

  126. Gould KL (1991) PET perfusion imaging and nuclear cardiology. J Nucl Med 32:579–606

    CAS  PubMed  Google Scholar 

  127. Arrighi JA, Dione DP, Condos S et al (1999) Adenosine Tc-99m sestamibi SPECT underestimates ischemia compared with N-13 ammonia PET in a chronic canine model of ischemia. J Nucl Med 40:6P (abstract)

    Google Scholar 

  128. Di Carli M, Czernin J, Hoh CK et al (1995) Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 91:1944–1951

    Article  PubMed  Google Scholar 

  129. Bateman TM, Heller GV, McGhie AI et al (2006) Diagnostic accuracy of res/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 13:24–33

    Article  PubMed  Google Scholar 

  130. Jaarsma C, Leiner T, Bekkers SC et al (2012) Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol 59:1719–1728

    Article  PubMed  Google Scholar 

  131. Mc Ardle BA, Dowsley TF, deKemp RA et al (2012) Does rubidium-82PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease? A systematic review and meta-analysis. J Am Coll Cardiol 60:1828–1737

    Article  PubMed  Google Scholar 

  132. Bateman TM, Heller GV, McGhie AI et al (2005) Attenuation-corrected Tc-99m sestamibi SPECT compared with Rb-82 myocardial perfusion PET. J NuclCardiol 12:S118 (abstract)

    Google Scholar 

  133. Bateman TM, Heller GV, McGhie AI et al (2006) Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 13(1):24–33

    Article  PubMed  Google Scholar 

  134. Danad I, Raijmakers PG, Driessen RS, Leipsic J, Raju R, Naoum C et al (2017) Comparison of coronary CT angiography, SPECT, PET, and hybrid imaging for diagnosis of ischemic heart disease determined by fractional flow reserve. JAMA Cardiol 2:1100–1107

    Article  PubMed  PubMed Central  Google Scholar 

  135. Angelidis G, Giamouzis G, Karagiannis G, Butler J, Tsougos I et al (2017) SPECT and PET in ischemic heart failure. Heart Fail Rev 22(2):243–261

    Article  PubMed  Google Scholar 

  136. Dorbala S, Vangala D, Sampson U et al (2007) Value of vasodilator ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J Nucl Med 48:349–358

    PubMed  Google Scholar 

  137. Danad I, Uusitalo V, Kero T et al (2014) Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracyof quantitative [(15)O]H2O PET imaging. J Am Coll Cardiol 64:1464–1475

    Article  PubMed  Google Scholar 

  138. Hajjiri MM, Leavitt MB, Zheng H et al (2009) Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardialtracer content for physiological assessment of coronary arterystenosis severity and location. JACC Cardiovasc Imaging 2:751–758

    Article  PubMed  Google Scholar 

  139. Ohira H, Dowsley T, Dwivedi G et al (2014) Quantification of myocardial blood flow using PET to improve the management of patients with stable ischemic coronary artery disease. Future Cardiol 10:611–631

    Article  CAS  PubMed  Google Scholar 

  140. Marwick TH, Shan K, Patel S et al (1997) Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am J Cardiol 80:865–870

    Article  CAS  PubMed  Google Scholar 

  141. Yoshinaga K, Chow BJW, de Kemp R et al (2004) Prognostic value of rubidium-82 perfusion positron emission tomography: preliminary results from the consecutive 153 patients. J Am Coll Cardiol 43:338A (abstract)

    Article  Google Scholar 

  142. Chow BJW, Wong JW, Yoshinaga K et al (2005) Prognostic significance of dipyridamole-induced ST depression in patients with normal Rb-82 PET myocardial perfusion imaging. J Nucl Med 46:1095–1101

    PubMed  Google Scholar 

  143. Nemirovsky D, Henzlova MJ, Machac J et al (2005) Prognosis of normal rubidium-82 myocardial perfusion study. J Nucl Cardiol 12:S118 (abstract)

    Article  Google Scholar 

  144. Yoshinaga K, Chow BJW, Williams K et al (2006) What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol 48:1029–1039

    Article  PubMed  Google Scholar 

  145. Dorbala S, DiCarli MF, Beanlands RS et al (2013) Prognostic value of stress myocardial perfusion positron emission tomography: results from a multicenter observational registry. J Am Coll Cardiol 61:176–184

    Article  PubMed  Google Scholar 

  146. Kay J, Dorbala S, Goyal A et al (2013) Influence of sex on risk stratification with stress myocardial perfusion Rb-82 positron emission tomography: results from the PET prognosis multicenter registry. J Am Coll Cardiol 62:1866–1876

    Article  PubMed  Google Scholar 

  147. Herzog BA, Husmann L, Valenta I et al (2009) Long-term prognostic value of N13-ammonia myocardial perfusion positron emission tomography: added value of coronary flow reserve. J Am Coll Cardiol 54:150–156

    Article  PubMed  Google Scholar 

  148. Dorbala S, Hachamovich R, Curillova Z et al (2009) Incremental value of gated Rb-82 positron emission tomography myocardial imaging over clinical variables and rest LVEF. J Am Coll Cardiol Imaging 2:846–854

    Article  Google Scholar 

  149. Dorbala S, Di Carli MF (2014) Cardiac PET perfusion: prognosis,risk stratification, and clinical management. Semin Nucl Med 44:344–357

    Article  PubMed  PubMed Central  Google Scholar 

  150. Shaw LJ, Iskandrian AE (2004) Prognostic value of gated myocardialperfusion SPECT. J Nucl Cardiol 11:171–185

    Article  PubMed  Google Scholar 

  151. Hachamovitch R, Hayes S, Friedman JD et al (2003) Determinants of risk and its temporal variation in patients with normal stress myocardial perfusion scans: what is the warranty period of anormal scan? J Am Coll Cardiol 41:1329–1340

    Article  PubMed  Google Scholar 

  152. Pethig K, Heublein B, Meliss RR et al (1999) Volumetric remodeling of the proximal left coronary artery: early versus late after heart transplantation. J Am Coll Cardiol 34:197–203

    Article  CAS  PubMed  Google Scholar 

  153. Julius BK, Vassalli G, Mandonow L et al (1999) Alpha-adrenergic blockade prevents exercise-induced vasoconstriction of stenotic coronary arteries. J Am Coll Cardiol 33:1499–1505

    Article  CAS  PubMed  Google Scholar 

  154. O’Driscoll G, Green D, Maiorana A et al (1999) Improvement in endothelial function by angiotensin-converting enzyme inhibition in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 33:15–16

    Article  Google Scholar 

  155. Kugiyama K, Motoyama T, Doi H, Kawano H et al (1999) Improvement of endothelial vasomotor dysfunction by treatment with alpha-tocopherol in patients with high remnant lipoproteins levels. J Am Coll Cardiol 33:1512–1518

    Article  CAS  PubMed  Google Scholar 

  156. Gould KL, Martucci JP, Goldberg DI, Hess MJ, Edens RP, Latifi R, Dudrick SJ (1994) Short-term cholesterol lowering decreases size and severity of perfusion abnormalities by positron emission tomography after dipyridamole in patients with coronary artery disease. A potential noninvasive marker of healing coronary endothelium. Circulation 89:1530–1538

    Article  CAS  PubMed  Google Scholar 

  157. Huggins GS, Pasternak RC, Alpert NM et al (1998) Effects of short-term treatment of hyperlipidemia on coronary vasodilator function and myocardial perfusion in regions having substantial impairment of baseline dilator reverse. Circulation 98:1291–1296

    Article  CAS  PubMed  Google Scholar 

  158. Yokoyama J, Memomura S, Oktake T, Yonekura K et al (1999) Improvement of impaired myocardial vasodilation due to diffuse coronary atherosclerosis in hypercholesterolemics after lipid-lowering therapy. Circulation 100:117–122

    Article  CAS  PubMed  Google Scholar 

  159. Gould KL, Martucci JP, Goldberg DL et al (1994) Short-term cholesterol lowering decreases disease in patients on a regimen of intensive physical exercise and low fat diet. J Am Coll Cardiol 19:34–42

    Google Scholar 

  160. Murthy VL, Naya M, Foster CR et al (2011) Improved cardiac riskassessment with noninvasive measures of coronary flow reserve. Circulation 124:2215–1224

    Article  PubMed  PubMed Central  Google Scholar 

  161. Ziadi MC, Dekemp RA, Williams KA et al (2011) Impaired myocar-dial flow reserve on rubidium-82 positron emission tomographyimaging predicts adverse outcomes in patients assessed formyocardial ischemia. J Am Coll Cardiol 58:740–748

    Article  PubMed  Google Scholar 

  162. Murthy VL, Lee BC, Sitek A et al (2014) Comparison and prognosticvalidation of multiple methods of quantification of myocardialblood flow with 82Rb PET. J Nucl Med 55:1952–1958

    Article  CAS  PubMed  Google Scholar 

  163. Taqueti VR, Di Carli MF (2015) Radionuclide myocardial perfusion imaging for the evaluation of patients with known or suspectedcoronary artery disease in the era of multimodality cardiovascular imaging. Prog Cardiovasc Dis 57:644–653

    Article  PubMed  PubMed Central  Google Scholar 

  164. Schinkel AF, Bax JJ, Poldermans D et al (2007) Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol 32:375–410

    Article  PubMed  Google Scholar 

  165. Underwood SR, Bax JJ, vom Dahl J et al (2004) Imaging techniques for the assessment of myocardial hibernation report of a study group of the European Society of Cardiology. Eur Heart J 25:815–836

    Article  PubMed  Google Scholar 

  166. Schinkel AF, Bax JJ, Delgado V et al (2010) Clinical relevance of hiber-nating myocardium in ischemic left ventricular dysfunction. Am J Med 123:978–986

    Article  PubMed  Google Scholar 

  167. Beanlands RS, Ruddy TD, deKemp RA et al (2002) Positron emission tomography and recovery following revascularization (PARR-1):the importance of scar and the development of a prediction rule for the degree of recovery of left ventricular function. J Am Coll Cardiol 40:1735–1743

    Article  PubMed  Google Scholar 

  168. D’Egidio G, Nichol G, Williams KA et al (2009) Increasing benefit from revascularization is associated with increasing amounts of myocardial hibernation: a substudy of the PARR-2 trial. JACC Cardiovasc Imaging 2:1060–1068

    Article  PubMed  Google Scholar 

  169. Ohira H, Mc Ardle B, Cocker MS et al (2013) Current and future clinical applications of cardiac positron emission tomography. Circ J 77:836–848

    Article  PubMed  Google Scholar 

  170. Ben Bouallègue F, Maïmoun L, Kucharczak F et al (2021) Left ventricle function assessment using gated first-pass 18F-FDG PET: validation against equilibrium radionuclide angiography. J Nucl Cardiol 28:594–603

    Article  PubMed  Google Scholar 

  171. Sauer WH, Stern BJ, Baughman RP, Culver DA, Royal W (2017) High-risk sarcoidosis: current concepts and research imperatives. Ann Am Thorac Soc 14:S437–S444

    Article  PubMed  Google Scholar 

  172. Ramirez R, Trivieri M, Fayad ZA, Ahmadi A, Narula J, Argulian E (2019) Advanced imaging in cardiac sarcoidosis. J Nucl Med 60(7):892–898

    Article  CAS  PubMed  Google Scholar 

  173. Ramsay SC, Cuscaden C (2020) The current status of quantitative SPECT/CT in the assessment of transthyretin cardiac amyloidosis. J Nucl Cardiol 27(5):1464–1468

    Article  PubMed  Google Scholar 

  174. Okasha O, Kazmirczak F, Chen KHA, Farzaneh-Far A, Shenoy C (2019) Myocardial involvement in patients with histologically diagnosed cardiac sarcoidosis: a systematic review and meta-analysis of gross pathological images from autopsy or cardiac transplantation cases. J Am Heart Assoc 8(10):e011253

    Article  PubMed  PubMed Central  Google Scholar 

  175. Youssef G, Leung E, Mylonas I et al (2012) The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med 53:241–248

    Article  CAS  PubMed  Google Scholar 

  176. White JA, Rajchl M, Butler J, Thompson RT, Prato FS, Wisenberg G (2013) Active cardiac sarcoidosis: first clinical experience of simultaneous positron emission tomography--magnetic resonance imaging for the diagnosis of cardiac disease. Circulation 127:e639–e641

    Article  PubMed  Google Scholar 

  177. Cegła P, Ciepłucha A, Pachowicz M, Chrapko B, Piotrowski T, Lesiak M (2020) Nuclear cardiology: an overview of radioisotope techniques used in the diagnostic workup of cardiovascular disorders. Kardiol Pol 78:520–528

    Article  PubMed  Google Scholar 

  178. Hotta M, Minamimoto R, Awaya T, Hiroe M, Okazaki O, Hiroi Y (2020) Radionuclide imaging of cardiac amyloidosis and sarcoidosis: roles and characteristics of various tracers. Radiographics 40(7):2029–2041

    Article  PubMed  Google Scholar 

  179. Martinez-Naharro A, Baksi AJ, Hawkins PN, Fontana M (2020) Diagnostic imaging of cardiac amyloidosis. Nat Rev Cardiol 17:413–426

    Article  PubMed  Google Scholar 

  180. Fontana M, Ćorović A, Scully P, Moon JC (2019) Myocardial amyloidosis: the exemplar interstitial disease. JACC Cardiovasc Imaging 12(11 Part 2):2345–2356

    Article  PubMed  Google Scholar 

  181. Kyriakou P, Mouselimis D, Tsarouchas A, Rigopoulos A, Bakogiannis C, Noutsias M, Vassilikos V (2018) Diagnosis of cardiac amyloidosis: a systematic review on the role of imaging and biomarkers. BMC Cardiovasc Disord 18(1):1–11

    Article  CAS  Google Scholar 

  182. Shaw LJ, Raggi P, Schisterman E et al (2003) Prognostic value of cardiac risk factors and coronary calcium screening for all-cause mortality. Radiology 228:826–833

    Article  PubMed  Google Scholar 

  183. Berman DS, Wong ND, Gransar H et al (2004) Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol 44:923–930

    Article  CAS  PubMed  Google Scholar 

  184. Kim JH, Machac J, Travis A et al (2013) Coronary artery and thoracic aorta calcification is inversely related to coronary flow reserve as measured by Rb-82 PET/CT in intermediate risk patients. J Nucl Cardiol 20(3):375–384. https://doi.org/10.1007/s12350-013-9702-6

    Article  PubMed  PubMed Central  Google Scholar 

  185. Schenker MP, Dorbala S, Hong EC et al (2008) Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease. Circulation 117:1693–1700

    Article  PubMed  PubMed Central  Google Scholar 

  186. Bolli R (1990) Mechanism of myocardial stunning. Circulation 82:723–772

    Article  CAS  PubMed  Google Scholar 

  187. Ferrari R, LaCanna G, Giubbini R et al (1994) Left ventricular dysfunction due to stunning and hibernation in patients. Cardiovasc Drugs Ther 8(Suppl 2):371–380

    Article  PubMed  Google Scholar 

  188. Fuster V, Badimon L, Badimon JJ et al (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 326(242–250):310–318

    CAS  PubMed  Google Scholar 

  189. Homans DC, Laxson DD, Sublett E et al (1989) Cumulative deterioration of myocardial function after repeated episodes of exercise-induced ischemia. Am J Phys 256:H1462–H1471

    CAS  Google Scholar 

  190. Shivalkar B, Flameng W, Szilard M et al (1999) Repeated stunning precedes myocardial hibernation in progressive multiple coronary artery stenosis. J Am Coll Cardiol 34:2126–2136

    Article  CAS  PubMed  Google Scholar 

  191. Brunken R, Tillisch J, Schwaiger M et al (1986) Regional perfusion, glucose metabolism, and wall motion in patients with chronic electrocardiographic Q-wave infarctions: evidence for persistence of viable tissue in some infarct regions by positron emission tomography. Circulation 73:951–963

    Article  CAS  PubMed  Google Scholar 

  192. Partington SL, Kwong RY, Dorbala S (2011) Multimodality imaging in the assessment of myocardial viability. Heart Fail Rev 16:381–395

    Article  PubMed  PubMed Central  Google Scholar 

  193. Smart S, Wynsen J, Sagar K (1997) Dobutamine-atropine stress echocardiography for reversible dysfunction during the first week after myocardial infarction: limitations and determinations of accuracy. J Am Coll Cardiol 30:1669–1678

    Article  CAS  PubMed  Google Scholar 

  194. Bax JJ, Wijns W, Cornel JH et al (1997) Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol 30:1451–1460

    Article  CAS  PubMed  Google Scholar 

  195. Dilsizian V, Bonow RO (1992) Differential uptake and apparent Tl-201 washout after thallium reinjection: options regarding early redistribution imaging before reinjection or late redistribution imaging after reinjection. Circulation 85:1032–1038

    Article  CAS  PubMed  Google Scholar 

  196. Dilsizian V, Bonow RO (1993) Current diagnostic techniques of assessing myocardial viability in patients with hibernating and stunned myocardium. Circulation 87:1–20

    Article  CAS  PubMed  Google Scholar 

  197. Dilsizian V, Rocco TP, Freedman NMT et al (1990) Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 323:141–146

    Article  CAS  PubMed  Google Scholar 

  198. Dilsizian V, Freedman NMT, Bacharach SL et al (1992) Regional thallium uptake in irreversible defects: magnitude of change in thallium activity after reinjection distinguishes viable from nonviable myocardium. Circulation 85:627–634

    Article  CAS  PubMed  Google Scholar 

  199. Perrone-Filardi P, Bacharach SL, Dilsizian V et al (1992) Regional left ventricular wall thickening: relation to regional uptake of F-18-fluorodeoxyglucose and Tl-201 in patients with chronic coronary artery disease and left ventricular dysfunction. Circulation 86:1125–1137

    Article  CAS  PubMed  Google Scholar 

  200. Romero J, Xue X, Gonzalez W, Garcia MJ (2012) CMR imaging assessing viability in patients with chronic ventricular dysfunction due to coronary artery disease: a meta-analysis of prospective trials. JACC Cardiovasc Imaging 5:494–508

    Article  PubMed  Google Scholar 

  201. Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH (2007) Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol 32:375–410

    Article  PubMed  Google Scholar 

  202. Maes A, Flameng W, Nuyts J et al (1994) Histological alterations in chronically hypoperfused myocardium: correlation with PET findings. Circulation 90(735–745):208

    Google Scholar 

  203. Kim YK, Lee DS, Cheon J et al (1999) Myocardial viability assessment by nitroglycerine gated Tc-99m MIBI SPECT: comparison with rest-24-hour redistribution Tl-201 SPECT. J Nucl Med 40:1P (abstract)

    Google Scholar 

  204. Gunning MG, Anagnostopoulos C, Knight CJ et al (1998) Comparison of Tl-201, Tc-99m-tetrofosmin, and dobutamine magnetic resonance imaging for identifying hibernating myocardium. Circulation 98:1869–1874

    Article  CAS  PubMed  Google Scholar 

  205. Perrone-Filardy P, Bacharach S, Dilsizian V et al (1994) Clinical significance of regional myocardial glucose uptake in regions with normal blood flow in patients with chronic coronary artery disease. J Am Coll Cardiol 23:608–616

    Article  Google Scholar 

  206. Fallavolita JA, Canty JM (1997) F-18 FDG utilization is regionally increased in fasting pigs with hibernating myocardium. J Am Coll Cardiol 29:130A (abstract)

    Google Scholar 

  207. Hansen CL, Corbett JR, Pippin JJ et al (1988) 123-I-phenylpentadecanoic acid and single photon emission computed tomography in identifying LV regional metabolic abnormalities in patients with coronary heart disease: comparison with thallium-201 myocardial tomography. J Am Coll Cardiol 12:78–87

    Article  CAS  PubMed  Google Scholar 

  208. Hansen CL, Rastogi A, Sangrigoli R et al (1998) On myocardial perfusion, metabolism, and viability. J Nucl Cardiol 5:202–204

    Article  CAS  PubMed  Google Scholar 

  209. Beanlands RSB, Ruddy TD, deKemp RA et al (2002) Positron emission tomography and recovery following revascularization (PARR-1): the importance of scar and the development of a prediction rule for the degree of recovery of left ventricular function. J Am Coll Cardiol 40:1735–1743

    Article  PubMed  Google Scholar 

  210. Beanlands RSB, Nichol G, Huszti E et al (2007) F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol 50:2002–2012

    Article  PubMed  Google Scholar 

  211. Bonow RO, Maurer G, Lee KL et al (2011) Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med 364:1617–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Russell RR III, Zaret BL (2006) Nuclear cardiology: present and future. Curr Probl Cardiol 31(9):557–629

    Article  PubMed  Google Scholar 

  213. Lopaschuk GD et al (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

    Article  CAS  PubMed  Google Scholar 

  214. Luyten K, Schoenberger M (2017) Molecular imaging of cardiac metabolism, innervation, and conduction. EMJ Cardiol 5(1):70–78

    Article  Google Scholar 

  215. Taegtmeyer H, Dilsizian V (2013) Imaging cardiac metabolism. In: Atlas of nuclear cardiology. Springer, New York, pp 289–321

    Chapter  Google Scholar 

  216. Guyton AC, Hall JE (1966) Textbook of medical physiology, 9th edn. Saunders, Philadelphia, pp 193–197

    Google Scholar 

  217. Suami H, Scaglioni MF (2018) Anatomy of the lymphatic system and the lymphosome concept with reference to lymphedema. In: Seminars in plastic surgery, vol 32, No. 1. Thieme Medical Publishers, New York, pp 05–11

    Google Scholar 

  218. Weissleder R, Thrall JH (1989) The lymphatic system: diagnostic imaging studies. Radiology 172:315–317

    Article  CAS  PubMed  Google Scholar 

  219. Weiss L (1988) Cell and tissue biology, 6th edn. Urban and Schwarzenberg, Baltimore, pp 499–514

    Google Scholar 

  220. Ruggiero R, Muz J, Fietsam R Jr (1993) Reestablishment of lymphatic drainage after canine lung transplantation. J Thorac Cardiovasc Surg 106:167–171

    Article  CAS  PubMed  Google Scholar 

  221. Ruggiero R, Fietsam R Jr, Thomas GA (1994) Detection of canine allograft lung rejection by pulmonary lymphoscintigraphy. J Thorac Cardiovasc Surg 108:253

    Article  CAS  PubMed  Google Scholar 

  222. Suami H, Pan WR, Mann GB, Taylor GI (2008) The lymphatic anatomy of the breast and its implications foe sentinel lymph node biopsy: a human cadaver study. Ann Surg Oncol 15:863–871

    Article  PubMed  Google Scholar 

  223. Leak LV (1970) Electron microscopic observations on lymphatic capillaries and the structural components of the connective tissue lymph interface. Microvasc Res 2:361–391

    Article  CAS  PubMed  Google Scholar 

  224. Clodius L (1990) Lymphedema. In: McCarthy JG (ed) Plastic surgery. Saunders, Philadelphia, pp 4093–4120

    Google Scholar 

  225. Aspelund A, Robciuc MR, Karaman S, Makinen T, Alitalo K (2016) Lymphatic system in cardiovascular medicine. Circ Res 118(3):515–530

    Article  CAS  PubMed  Google Scholar 

  226. Zuther JE, Norton S (2013) Lymphedema management. The comprehensive guide for practitioners, 3rd edn. Thieme Medical Publishers, New York

    Google Scholar 

  227. Warren AG, Brorson H, Borud LJ, Slavin SA (2007) Lymphedema. Ann Plast Surg 59:464–472

    Article  CAS  PubMed  Google Scholar 

  228. Chen SL, Iddings DM, Scheri RP, Bilchik AJ (2006) Lymphatic mapping and sentinel node analysis: current concepts and applications. CA Cancer J Clin 56:292–309

    Article  PubMed  Google Scholar 

  229. Krag DN, Anderson SJ, Julian TB et al (2010) Sentinel-lymph-node resection compared with conventional axillary-lymphnode dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol 11:927–933

    Article  PubMed  PubMed Central  Google Scholar 

  230. Nawaz MK, Hamad MM, Abdel-Dayem HM (1990) Tc-99m human serum albumin lymphoscintigraphy in lymphedema of the lower extremities. Clin Nucl Med 15:794–799

    Article  CAS  PubMed  Google Scholar 

  231. Szuba A, Shin WS, Strauss HW, Rockson S (2003) The third circulation: radionuclide lymphoscintigraphy in the evaluation of lymphedema. J Nucl Med 44(1):43–57

    PubMed  Google Scholar 

  232. Mavi A, Lakhani P, Zhuang H, Gupta NC, Alavi A (2005) Fluorodeoxyglucose-PET in characterizing solitary pulmonary nodules, assessing pleural diseases and the initial staging, restaging, therapy planning, and monitoring response of lung cancer. Radiol Clin N Am 43(1):1–24

    Article  PubMed  Google Scholar 

  233. Koolen BB, Valdés ORA, Vogel WV et al (2012) 18F-FDG PET/CT for the assessment of locoregional lymph node involvement and radiotherapy indication in stage II-III breast cancer treated with neoadjuvant chemotherapy. Cancer Res 72:nr:P4–02–01 (abstract)

    Article  Google Scholar 

  234. Rijke AM, Croft BY, Johnson RA (1990) Lymphoscintigraphy and lymphedema of the lower extremities. J Nucl Med 31:990–998

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elgazzar, A.H., Alenezi, S.A., Elfawal, M.A. (2022). Circulatory System (Cardiovascular and Lymphatic Systems). In: Elgazzar, A.H. (eds) The Pathophysiologic Basis of Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-96252-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96252-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96251-7

  • Online ISBN: 978-3-030-96252-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics