Skip to main content

A Planning Domain Definition Language Generator, Interpreter, and Knowledge Base for Efficient Automated Planning

  • Conference paper
  • First Online:
  • 1177 Accesses

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 412))

Abstract

The Planning Domain Definition Language (PDDL) successfully encodes classical planning tasks by easily describing objects, actions, and states in many planning domains. PDDL also describes domains, but they include only predefined sets of actions that can solve problems in a finite set of states. Indeed, the PDDL structure disables the processing of single predicates and operators. As a consequence, they cannot be arbitrarily composed to model new domains. To overcome these limitations, we propose a domain-independent, general-purpose knowledge design and task planning system based on the combination of a PDDL generator and interpreter and a Knowledge Base. The former builds planning data structures, where every object is a PDDL token independent of its original domain. It also allows merging these objects to formulate new PDDL domains and problems, ensuring consistency and validity of generated definitions. Their resolution is based on a powerful object-based reasoning instead of an inefficient lexical-based one. The latter contains the necessary relationships and representations to allow data storing and reusability. Their combination enables the storage, interpretation, and reuse of planning data, resulting in integration between the planning process and description logic reasoning. The overall system guarantees a flexible adaptation of the computed planning domains to changing environmental conditions, agent capabilities, and assigned tasks, promoting effective sharing and reuse of domain knowledge across different systems and applications.

L. Tagliapietra and E. Tosello—Equal contribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Julia PDDL Parser available at https://github.com/JuliaPlanners/PDDL.jl.

  2. 2.

    Universal PDDL Parser available at https://github.com/wisdompoet/universal-pddl-parser.git.

  3. 3.

    Universal PDDL Parser - Multi-agent Extension available at https://github.com/aig-upf/universal-pddl-parser-multiagent.

  4. 4.

    Temporal Planning available at https://github.com/aig-upf/temporal-planning.

  5. 5.

    Panda Franka Emika specifications available at https://www.franka.de/.

References

  1. Hoffmann, J.: FF: the fast-forward planning system. AI Mag. 22(3), 57 (2001)

    Google Scholar 

  2. Ghallab, M., et al.: PDDL–The Planning Domain Definition Language (1998)

    Google Scholar 

  3. Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theorem proving to problem solving. Artif. Intell. 2(3), 189–208 (1971)

    Article  Google Scholar 

  4. Haslum, P., Lipovetzky, N., Magazzeni, D., Muise, C.: An Introduction to the Planning Domain Definition Language (2019)

    Google Scholar 

  5. Tagliapietra, L., Tosello, E., MEnegatti, E.: CURAMI: human-robot collaboration for intelligent assembly tasks. In: Seconda Conferenza Italiana di Robotica e Macchine Intelligenti, I-RIM 2020 (2020)

    Google Scholar 

  6. Tosello, E., Fan, Z., Castro, A.G., Pagello, E.: Cloud-based task planning for smart robots. In: Chen, W., Hosoda, K., Menegatti, E., Shimizu, M., Wang, H. (eds.) IAS 2016. AISC, vol. 531, pp. 285–300. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48036-7_21

    Chapter  Google Scholar 

  7. Tosello, E., Fan, Z., Pagello, E.: A semantic knowledge base for cognitive robotics manipulator. In: Workshop on Toward Intelligent Social Robots - Current Advances in Cognitive Robotics (2015)

    Google Scholar 

  8. Fan, Z., Tosello, E., Palmia, M., Pagello, E.: Applying semantic web technologies to multi-robot coordination. In: Workshop on New Research Frontiers for Intelligent Autonomous Systems, NRF-IAS-2014 (2014)

    Google Scholar 

  9. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  10. Crosby, M., Jonsson, A., Rovatsos, M.: A single-agent approach to multiagent planning. In: Proceedings of the 21st European Conference on Artificial Intelligence, ECAI 2014, pp. 237–242. IOS Press (2014)

    Google Scholar 

  11. Kovacs, D.L.: A multi-agent extension of PDDL 3.1. In: Proceedings of the 3rd Workshop on the International Planning Competition (IPC), pp. 19–27 (2012)

    Google Scholar 

  12. Gerevini, A., Long, D.: Plan constraints and preferences in PDDL 3 - the language of the fifth international planning competition. Technical report (2005)

    Google Scholar 

  13. Balakirsky, S., Kootbally, Z.: An ontology based approach to action verification for agile manufacturing. In: Advances in Intelligent Systems and Computing, vol. 274, pp. 201–217 (January 2014)

    Google Scholar 

  14. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal planning domains. J. Artif. Intell. Res. (JAIR) 20, 61–124 (2003)

    Article  Google Scholar 

  15. Prestes, E., et al.: Towards a core ontology for robotics and automation. Robot. Auton. Syst. 61(11), 1193–1204 (2013). Ubiquitous Robotics

    Article  Google Scholar 

  16. de Freitas, E.P., et al.: Ontological concepts for information sharing in cloud robotics. J. Ambient Intell. Humanized Comput. (2020)

    Google Scholar 

  17. Jiang, Y., Zhang, S., Khandelwal, P., Stone, P.: Task planning in robotics: an empirical comparison of PDDL- and ASP-based systems. Front. Inf. Technol. Electron. Eng. 20, 363–373 (2019)

    Article  Google Scholar 

  18. García, C.T., Carrillo, P.S.S., Trigueros, J.A.: A PDDL-based simulation system. In: Proceedings of the IADIS International Conference Intelligent Systems and Agents, pp. 81–88. International Association for Development of the Information Society (IADIS) (July 2015)

    Google Scholar 

  19. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. The Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann, Amsterdam (2004)

    Google Scholar 

  20. Nicola, G., Tagliapietra, L., Tosello, E., Navarin, N., Ghidoni, S., Menegatti, E.: Robotic object sorting via deep reinforcement learning: a generalized approach. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1266–1273 (2020)

    Google Scholar 

  21. Ceola, F., Tosello, E., Tagliapietra, L., Nicola, G., Ghidoni, S.: Robot task planning via deep reinforcement learning: a tabletop object sorting application. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 486–492 (2019)

    Google Scholar 

  22. Tosello, E., Michieletto, S., Bisson, A., Pagello, E., Menegatti, E.: A learning from demonstration framework for manipulation tasks. In: 41st International Symposium on Robotics, ISR/Robotik 2014, pp. 1–7 (2014)

    Google Scholar 

  23. Niles, I., Pease, A.: Towards a standard upper ontology. In: Proceedings of the International Conference on Formal Ontology in Information Systems, FOIS 2001, New York, NY, USA, vol. 2001, pp. 2–9. Association for Computing Machinery (2001)

    Google Scholar 

  24. Mascardi, V., Cord‘i, V., Rosso, P.: A comparison of upper ontologies. Technical report DISI-TR-06-21, Dipartimento di Informatica e Scienze dell’Informazione (DISI), Universit’a degli Studi di Genova, Via Dodecaneso 35, 16146, Genova, Italy (2006)

    Google Scholar 

  25. Borgo, S., Cesta, A., Orlandini, A., Umbrico, A.: Knowledge-based adaptive agents for manufacturing domains. Eng. Comput. 35(3), 755–779 (2018). https://doi.org/10.1007/s00366-018-0630-6

    Article  Google Scholar 

  26. Barwise, J.: An introduction to first-order logic. In: Barwise, J. (eds.) Handbook of Mathematical Logic. Studies in Logic and the Foundations of Mathematics, vol. 90, pp. 5–46. Elsevier (1977)

    Google Scholar 

  27. Vargas, J., Mariño, C., Aldas, C., Morales, L., Toasa, R.: Kinect sensor performance for windows v2 through graphical processing. In: Proceedings of the 2018 10th International Conference on Machine Learning and Computing, ICMLC 2018, New York, NY, USA, pp. 263–268. Association for Computing Machinery (2018)

    Google Scholar 

  28. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)

    Google Scholar 

  29. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), vol. 3, pp. 2149–2154 (2004)

    Google Scholar 

  30. Hoffmann, J., Nebel, B.: The FF planning system: fast plan generation through heuristic search. J. Artif. Intell. Res. 14, 253–302 (2001)

    Article  Google Scholar 

  31. Robbins, H.: Some aspects of the sequential design of experiments. Bull. Am. Math. Soc. 58(5), 527–535 (1952)

    Article  MathSciNet  Google Scholar 

  32. Kaelbling, L.P., Garrett, C.R., Lozano-Pérez, T.: PDDLStream: integrating symbolic planners and blackbox samplers via optimistic adaptive planning. In: International Conference on Automated Planning and Scheduling (ICAPS) (2020)

    Google Scholar 

Download references

Acknowledgments

Part of this work was supported by MIUR (Italian Minister for Education), under the initiative Departments of Excellence (Law 232/2016), and by Fondazione Cariverona, under the project Collaborazione Uomo-Robot per Assemblaggi Manuali Intelligenti (CURAMI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Tosello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tagliapietra, L., Tosello, E., Pagello, E., Menegatti, E. (2022). A Planning Domain Definition Language Generator, Interpreter, and Knowledge Base for Efficient Automated Planning. In: Ang Jr, M.H., Asama, H., Lin, W., Foong, S. (eds) Intelligent Autonomous Systems 16. IAS 2021. Lecture Notes in Networks and Systems, vol 412. Springer, Cham. https://doi.org/10.1007/978-3-030-95892-3_43

Download citation

Publish with us

Policies and ethics