Skip to main content

Role of Materials in Cervical Spine Fusion

  • Chapter
  • First Online:
Cervical Spine
  • 800 Accesses

Abstract

Degeneration of the cervical spine is present in over 50% of middle-aged people and is the most common cause of neural dysfunction. Usually, the first approach is conservative; however, surgery indicated for symptomatic patients who are unresponsive to conservative management.

Spondylosis is the most common cause of neural dysfunction in the cervical spine. The degenerative changes of ageing typically herniated disc, osteophyte formation and hypertrophied ligament may compress the spinal cord to present symptomatically as neck pain, radiculopathy, myelopathy or radiculo-myelopathy.

Anterior cervical corpectomy and fusion (ACCF) and anterior cervical discectomy and fusion (ACDF) are common surgical procedures for patients suffering pain and/or neurological deficits and unresponsive to conservative management. However, ACDF is the gold standard for the treatment of degenerative disc disease and cervical spondylosis associated with radiculopathy or myelopathy, hitherto the ideal implant from the biological and biomechanical points of view has yet not been determined and it depends largely on the surgeon’s preference and training.

Several authors have described various methods of anterior cervical fusion; these methods were developed in the 1950s and 1960s and serve as the historical foundation for modern reconstruction techniques. The success of these procedures relied on a thorough decompression and development of a solid osseous fusion.

Bone graft performs a biologic role in promoting a bony fusion, which spans the spinal defect and achieves long-term stability. To be successful, bone grafts must be able to successfully fulfill the dual role of providing structural support and achieving a solid fusion.

Various materials have been used for interbody grafts in anterior cervical fusion. In the past decades, autologous tricortical iliac bone graft had always been the preferred bone grafting material. Although this demonstrates high fusion rate, because the potential donor-site complications of autografts and low bony fusion rate and graft collapse of allografts, surgeons focus their attention on other graft materials: Demineralized bone matrix (DBM), Ceramics (hydroxyapatites, tricalcium phosphate, biphasic calcium phosphate], calcium phosphate cements, bioactive glass), Osteogenic growth factors (namely Bone Morphogenic Proteins), Autologous growth factors (AGFs) (Platelet derived growth factors), Stem cell products and Synthetic peptides.

Cage interbody implants have improved biomechanical properties, designs having improved year by year with to maximization of biocompatibility and osseointegration. Historically, three main materials have been utilized in the creation of cervical cages: Titanium (Ti) and its alloys, polyetheretherketone (PEEK), carbon fiber and carbon fiber-PEEK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chong E, Mobbs RJ, Pelletier MH, Walsh WR. Titanium/polyetheretherketone cages for cervical arthrodesis with degenerative and traumatic pathologies: early clinical outcomes and fusion rates. Orthop Surg. 2016;8(1):19–26.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Whitecloud TS. Modern alternatives and techniques for one-level discectomy and fusion. Clin Orthop Relat Res. 1999;359:67–76.

    Article  Google Scholar 

  3. Wen Z, Lu T, Wang Y, Liang H, Gao Z, He X. Anterior cervical corpectomy and fusion and anterior cervical discectomy and fusion using titanium mesh cages for treatment of degenerative cervical pathologies: a literature review. Med Sci Monitor. 2018;24:6398–404.

    Article  CAS  Google Scholar 

  4. Dorai Z, Morgan H, Coimbra C. Titanium cage reconstruction after cervical corpectomy. J Neurosurg. 2003;99(1 Suppl):3–7.

    PubMed  Google Scholar 

  5. Chen Z, et al. Comparison of anterior corpectomy and fusion versus laminoplasty for the treatment of cervical ossification of posterior longitudinal ligament: a meta-analysis. Neurosurg Focus. 2016;40(6):1–10.

    Article  Google Scholar 

  6. Andaluz N, Zuccarello M, Kuntz C IV. Long-term follow-up of cervical radiographic sagittal spinal alignment after 1- and 2-level cervical corpectomy for the treatment of spondylosis of the subaxial cervical spine causing radiculomyelopathy or myelopathy: a retrospective study: clinical artic. J Neurosurg Spine. 2012;16(1):2–7.

    Article  PubMed  Google Scholar 

  7. Grasso G, Giambartino F, Tomasello G, Iacopino G. Anterior cervical discectomy and fusion with ROI-C peek cage: cervical alignment and patient outcomes. Eur Spine J. 2014;23:S650–7.

    Article  Google Scholar 

  8. Kulkarni AG, Hee HT, Wong HK. Solis cage (PEEK) for anterior cervical fusion: preliminary radiological results with emphasis on fusion and subsidence. Spine J. 2007;7(2):205–9.

    Article  PubMed  Google Scholar 

  9. Song KJ, Taghavi CE, Lee KB, Song JH, Eun JP. The efficacy of plate construct augmentation versus cage alone in anterior cervical fusion. Spine (Phila Pa 1976). 2009;34(26):2886–92.

    Article  Google Scholar 

  10. Pitzen TR, et al. Implant complications, fusion, loss of lordosis, and outcome after anterior cervical plating with dynamic or rigid plates: two-year results of a multi-centric, randomized, controlled study. Spine (Phila Pa 1976). 2009;34(7):641–6.

    Article  Google Scholar 

  11. Riley LH, Robinson RA, Johnson KA, Walker AE. The results of anterior interbody fusion of the cervical spine. Review of ninety-three consecutive cases. J Neurosurg. 1969;30(2):127–33.

    Article  PubMed  Google Scholar 

  12. Cloward RB. The anterior approach for removal of ruptured cervical disks. J Neurosurg Spine. 2007;6(5):496–508.

    Article  PubMed  Google Scholar 

  13. Bailey RW, Badgley CE. Stabilization of the cervical spine by anterior fusion. J Bone Joint Surg Am. 1960;44:1569–87.

    Google Scholar 

  14. Simmons EH, Bhalla SK. Anterior cervical discectomy and fusion: a clinical and biomechanical study with eight years follow-up. J Bone Jointt Surg Br. 1969;51:225–37.

    Article  CAS  Google Scholar 

  15. Bohlman HH, et al. Robinson anterior cervical discectomy and arthrodesis for cervical radiculopathy: long-term follow-up of one hundred and twenty-two patients. J Bone Joint Surg. 1993;75:1298–307.

    Article  CAS  PubMed  Google Scholar 

  16. Bose B. Anterior cervical instrumentation enhances fusion rates in multilevel reconstruction in smokers. J Spinal Disord. 2001;14(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  17. Kwon WK, et al. Analysis of associating factors with C2-7 sagittal vertical axis after two-level anterior cervical fusion. Spine (Phila Pa 1976). 2017;42(5):318–25.

    Article  Google Scholar 

  18. Xie Y, Li H, Yuan J, Fu L, Yang J, Zhang P. A prospective randomized comparison of PEEK cage containing calcium sulphate or demineralized bone matrix with autograft in anterior cervical interbody fusion. Int Orthop. 2015;39(6):1129–36.

    Article  PubMed  Google Scholar 

  19. Yang S, et al. Clinical and radiological results comparison of allograft and polyetheretherketone cage for one to two-level anterior cervical discectomy and fusion: a CONSORT-compliant article. Medicine. 2019;98(45):e17935.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kaiser MG, Haid RW, Subach BR, Barnes B, Rodts GE. Anterior cervical plating enhances arthrodesis after discectomy and fusion with cortical allograft. Neurosurgery. 2002;50(2):229–36.

    PubMed  Google Scholar 

  21. Sampath P, Bendebba M, Davis JD, Ducker TB. Outcome of patients treated for cervical myelopathy: a prospective, multicenter study with independent clinical review. Spine (Phila Pa 1976). 2000;25(6):670–6.

    Article  CAS  Google Scholar 

  22. Sampath P, Bendebba M, Davis JD, Ducker T. Outcome in patients with cervical radiculopathy. Spine. 1999;24(6):591–7.

    Article  CAS  PubMed  Google Scholar 

  23. Papadopoulos EC, et al. Three-level anterior cervical discectomy and fusion. Spine (Phila Pa 1976). 1997;22:2622–5.

    Article  Google Scholar 

  24. Zdeblick TA, Ducker TB. The use of freeze-dried allograft bone for anterior cervical fusions. Spine (Phila Pa 1976). 1991;16(7):726–9.

    Article  CAS  Google Scholar 

  25. Zdeblick T, et al. Anterior cervical discectomy, fusion, and plating. 1991. p. 18:1974–83.

    Google Scholar 

  26. Schneeberger AG, et al. Anterior cervical interbody fusion with plate fixation for chronic sponylotic radiculopathy: a 2- to 8-year follow-up. J Spinal Disord. 1999;12:215–20.

    CAS  PubMed  Google Scholar 

  27. Katsuura A, et al. Anterior cervical plate used in degenerative disease can maintain lordosis. J Spinal Disord. 1996;9:470–6.

    Article  CAS  PubMed  Google Scholar 

  28. Shapiro S. Banked fibula and the locking anterior cervical plate in anterior cervical fusions following cervical discectomy. J Neurosurg. 1996;84(2):161–5.

    Article  CAS  PubMed  Google Scholar 

  29. Shapiro S, Connolly P, Donnaldson J, Abel T. Cadaveric fibula, locking plate, and allogeneic bone matrix for anterior cervical fusions after cervical discectomy for radiculopathy or myelopathy. J Neurosurg. 2001;95(1 Suppl):43–50.

    CAS  PubMed  Google Scholar 

  30. Coric D, Branch CL, Jenkins JD. Revision of anterior cervical pseudarthrosis with anterior allograft fusion and plating. J Neurosurg. 1997;86(6):969–74.

    Article  CAS  PubMed  Google Scholar 

  31. Kostuik JP, Connolly PJ, Esses SI, Suh P. Anterior cervical plate fixation with the titanium hollow screw plate system. Spine (Phila Pa 1976). 1993;18(10):1273–8.

    Article  CAS  Google Scholar 

  32. In NC, With P, Profeta L, Cigliano A, Raja AI. Anterior cervical microdiscectomy and interbody titanium cage fusion cervical disc disease. 2000;3019

    Google Scholar 

  33. Eleraky MA, Llanos C, Sonntag VKH. Cervical corpectomy: report of 185 cases and review of the literature. J Neurosurg. 1999;90(1 Suppl):35–41.

    CAS  PubMed  Google Scholar 

  34. Geyer TE, Foy MA. Oral extrusion of a screw after anterior cervical spine plating. Spine (Phila Pa 1976). 2001;26(16):1814–6.

    Article  CAS  Google Scholar 

  35. Hanci M, Toprak M, Sarioğlu A, Kaynar MY, Uzan M, Işlak C. Oesophageal perforation subsequent to anterior cervical spine screw/plate fixation. Paraplegia. 1995;33(10):606–9.

    CAS  PubMed  Google Scholar 

  36. Park JB, Cho YS, Riew KD. Development of adjacent-level ossification in patients with an anterior cervical plate. J Bone Joint Surg Ser A. 2005;87(3):558–63.

    Article  Google Scholar 

  37. Yang L, et al. Stand-alone anchored spacer versus anterior plate for multilevel anterior cervical diskectomy and fusion. Orthopedics. 2012;35(10):1503–10.

    Article  Google Scholar 

  38. Bazaz R, Lee MJ, Yoo JU. Incidence of dysphagia after anterior cervical spine surgery: a prospective study. Spine (Phila Pa 1976). 2002;27(22):2453–8.

    Article  Google Scholar 

  39. El Baz EA, Sultan AM, Barakat AS, Koptan W, ElMiligui Y, Shaker H. The use of anterior cervical interbody spacer with integrated fixation screws for management of cervical disc disease. Sicot J. 2019;5:8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yee TJ, Swong K, Park P. Complications of anterior cervical spine surgery: a systematic review of the literature. J Spine Surg. 2020;6(1):302–22.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu Y, et al. Comparison of a zero-profile anchored spacer (ROI-C) and the polyetheretherketone (PEEK) cages with an anterior plate in anterior cervical discectomy and fusion for multilevel cervical spondylotic myelopathy. Eur Spine J. 2016;25(6):1881–90.

    Article  PubMed  Google Scholar 

  42. Duan Y, et al. Comparison of anterior cervical discectomy and fusion with the zero-profile device versus plate and cage in treating cervical degenerative disc disease: a meta-analysis. J Clin Neurosci. 2016;33:11–8.

    Article  PubMed  Google Scholar 

  43. Shao H, et al. Zero-profile implant versus conventional cage-plate implant in anterior cervical discectomy and fusion for the treatment of degenerative cervical spondylosis: a meta-analysis. J Orthop Surg Res. 2015;10(1):148.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cheung ZB, et al. Comparison of anterior cervical discectomy and fusion with a stand-alone interbody cage versus a conventional cage-plate technique: a systematic review and meta-analysis. Glob Spine J. 2019;9(4):446–55.

    Article  Google Scholar 

  45. Anderson DG, Albert TJ. Bone grafting, implants, and plating options for anterior cervical fusions. Orthop Clin North Am. 2002;33(2):317–28.

    Article  PubMed  Google Scholar 

  46. Malloy KM, Hilibrand AS. Autograft versus allograft in degenerative cervical disease. Clin Orthop Relat Res. 2002;394:27–38.

    Article  Google Scholar 

  47. Silber JS, et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine (Phila Pa 1976). 2003;28(2):134–9.

    Article  Google Scholar 

  48. Shi S, De Liu Z, Li XF, Qian L, Bin Zhong G, Chen FJ. Comparison of plate-cage construct and stand-alone anchored spacer in the surgical treatment of three-level cervical spondylotic myelopathy: a preliminary clinical study. Spine J. 2015;15(9):1973–80.

    Article  PubMed  Google Scholar 

  49. Debusscher F, Aunoble S, Alsawad Y, Clement D, Le Huec JC. Anterior cervical fusion with a bio-resorbable composite cage (beta TCP-PLLA): clinical and radiological results from a prospective study on 20 patients. Eur Spine J. 2009;18(9):1314–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bagby GW. Arthrodesis by the distraction-compression method using a stainless steel implant. Orthopedics. 1988;11(6):931–4.

    Article  CAS  PubMed  Google Scholar 

  51. Mcconnell JR, Freeman BJC, Debnath UK, Grevitt MP, Prince HG, Webb JK. A prospective randomized comparison of coralline hydroxyapatite with autograft in cervical interbody fusion. Spine (Phila Pa 1976). 2003;28(4):317–23.

    Article  Google Scholar 

  52. Wilke HJ, Kettler A, Claes L. Primary stabilizing effect of interbody fusion devices for the cervical spine: an in vitro comparison between three different cage types and bone cement. Eur Spine J. 2000;9(5):410–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zdeblick TA, Phillips FM. Interbody cage devices. Spine (Phila Pa 1976). 2003;28(15 Suppl):2–7.

    Article  Google Scholar 

  54. Ofluoglu AE, Erdogan U, Aydogan M, Cevik OM, Ofluoglu O. Anterior cervical fusion with interbody cage containing beta-tricalcium phosphate: clinical and radiological results. Acta Orthop Traumatol Turc. 2017;51(3):197–200.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Toth JM, Wang M, Estes BT, Scifert JL, Seim HB, Turner AS. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials. 2006;27(3):324–34.

    Article  CAS  PubMed  Google Scholar 

  56. Brantigan JW 1991_Spine v16 n6S.pdf.

    Google Scholar 

  57. Bartels RHMA, Donk R, Van Dijk Azn R. Height of cervical foramina after anterior discectomy and implantation of a carbon fiber cage. J Neurosurg. 2001;95(1 Suppl):40–2.

    CAS  PubMed  Google Scholar 

  58. Bishop RC, Moore KA, Hadley MN. Anterior cervical interbody fusion using autogeneic and allogeneic bone graft substrate: a prospective comparative analysis. J Neurosurg. 1996;85(2):206–10.

    Article  CAS  PubMed  Google Scholar 

  59. Tullberg T. Failure of a carbon fiber implant. A case report. Spine (Phila Pa 1976). 1998;23:1804–6.

    Article  CAS  Google Scholar 

  60. Siddiqui AA, Jackowski A. Cage versus tricortical graft for cervical interbody fusion. J Bone Joint Surg Br. 2003;85(7):1019–25.

    Article  CAS  PubMed  Google Scholar 

  61. Brooke NSR, Rorke AW, King AT, Gullan RW. Preliminary experience of carbon fibre cage prostheses for treatment of cervical spine disorders. Br J Neurosurg. 1997;11(3):221–7.

    Article  CAS  PubMed  Google Scholar 

  62. Agrillo U, Mastronardi L, Puzzilli F. Anterior cervical fusion with carbon fiber cage containing coralline hydroxyapatite: preliminary observations in 45 consecutive cases of soft-disc herniation. J Neurosurg. 2002;96(3 Suppl):273–6.

    CAS  PubMed  Google Scholar 

  63. Tancredi A, Agrillo A, Delfini R, Fiume D, Frati A, Rinaldi A. Use of carbon fiber cages for treatment of cervical myeloradiculopathies. Surg Neurol. 2004;61(3):221–6.

    Article  PubMed  Google Scholar 

  64. Payer M, May D, Reverdin A, Tessitore E. Implantation of an empty carbon fiber composite frame cage after single-level anterior cervical discectomy in the treatment of cervical disc herniation: preliminary results. J Neurosurg. 2003;98(2 Suppl):143–8.

    PubMed  Google Scholar 

  65. Hacker RJ, Cauthen JC, Gilbert TJ, Griffith SL. A prospective randomized multicenter clinical evaluation of an anterior cervical fusion cage. Spine (Phila Pa 1976). 2000;25(20):2646–55.

    Article  CAS  Google Scholar 

  66. Salame K, Ouaknine GER, Razon N, Rochkind S. The use of carbon fiber cages in anterior cervical interbody fusion: report of 100 cases. Neurosurg Focus. 2002;12(1):1–5.

    Article  Google Scholar 

  67. Vavruch L, Hedlund R, Javid D, Leszniewski W, Shalabi A. A prospective randomized comparison between the Cloward procedure and a carbon fiber cage in the cervical spine: a clinical and radiologic study. Spine (Phila Pa 1976). 2002;27(16):1694–701.

    Article  Google Scholar 

  68. Marotta N, Landi A, Tarantino R, Mancarella C, Ruggeri A, Delfini R. Five-year outcome of stand-alone fusion using carbon cages in cervical disc arthrosis. Eur Spine J. 2011;20(SUPPL. 1):8–12.

    Article  PubMed Central  Google Scholar 

  69. Cawley DT, et al. Carbon-fibre cage reconstruction in anterior cervical corpectomy for multilevel cervical spondylosis: mid-term outcomes. J Spine Surg. 2019;5(2):251–8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ryu SI, Mitchell M, Kim DH. A prospective randomized study comparing a cervical carbon fiber cage to the Smith-Robinson technique with allograft and plating: up to 24 months follow-up. Eur Spine J. 2006;15(2):157–64.

    Article  PubMed  Google Scholar 

  71. Cho D, et al. Preliminary experience using a polyetheretherketone (PEEK) cage in the treatment of cervical disc disease. Neurosurgery. 2002;51:1–8.

    Article  Google Scholar 

  72. Torstrick FB, et al. Porous PEEK improves the bone-implant interface compared to plasma-sprayed titanium coating on PEEK. Biomaterials. 2018;185:106–16.

    Article  CAS  PubMed  Google Scholar 

  73. Yi J, et al. A prospective randomized clinical trial comparing bone union rate following anterior cervical discectomy and fusion using a polyetheretherketone cage: hydroxyapatite/B-Tricalcium phosphate mixture versus hydroxyapatite/demineralized bone matrix mixture. Asian Spine J. 2015;9(1):30–8.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kim SH, Lee JK, Jang JW, Park HW, Hur H. Polyetheretherketone cage with demineralized bone matrix can replace iliac crest autografts for anterior cervical discectomy and fusion in subaxial cervical spine injuries. J Korean Neurosurg Soc. 2017;60(2):211–9.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chong E, Pelletier MH, Mobbs RJ, Walsh WR. The design evolution of interbody cages in anterior cervical discectomy and fusion: a systematic review Orthopedics and biomechanics. BMC Musculoskelet Disord. 2015;16(1):1–11.

    Article  Google Scholar 

  76. Cabraja M, Oezdemir S, Koeppen D, Kroppenstedt S. Anterior cervical discectomy and fusion: comparison of titanium and polyetheretherketone cages. BMC Musculoskelet Disord. 2012;13(1):1.

    Article  CAS  Google Scholar 

  77. Chen Y, et al. Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up. Eur Spine J. 2013;22(7):1539–46.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Jain A, et al. Structural allograft versus PEEK implants in anterior cervical discectomy and fusion: a systematic review. Glob Spine J. 2020;10(6):775–83.

    Article  Google Scholar 

  79. Suess O, Schomaker M, Cabraja M, Danne M, Kombos T, Hanna M. Empty polyetheretherketone (PEEK) cages in anterior cervical diskectomy and fusion (ACDF) show slow radiographic fusion that reduces clinical improvement: results from the prospective multicenter ‘PIERCE-PEEK’ study. Patient Saf Surg. 2017;11(1):1–12.

    Article  Google Scholar 

  80. Ahmed AF, Al Dosari MAA, Al Kuwari A, Khan NM. The outcomes of stand alone polyetheretherketone cages in anterior cervical discectomy and fusion. Int Orthop. 2021;45(1):173–80.

    Article  PubMed  Google Scholar 

  81. Fischer CR, Cassilly R, Cantor W, Edusei E, Hammouri Q, Errico T. A systematic review of comparative studies on bone graft alternatives for common spine fusion procedures. Eur Spine J. 2013;22(6):1423–35.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zadegan SA, et al. Bone morphogenetic proteins in anterior cervical fusion: a systematic review and meta-analysis. World Neurosurg. 2017;104:752–87.

    Article  PubMed  Google Scholar 

  83. Walsh WR, Bertollo N, Christou C, Schaffner D, Mobbs RJ. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface. Spine J. 2015;15(5):1041–9.

    Article  PubMed  Google Scholar 

  84. Torstrick FB. Getting PEEK to stick to bone: the development of porous PEEK for interbody fusion devices. Physiol Behav. 2017;32(3):158–66.

    Google Scholar 

  85. Seaman S, Kerezoudis P, Bydon M, Torner JC, Hitchon PW. Titanium vs. polyetheretherketone (PEEK) interbody fusion: meta-analysis and review of the literature. J Clin Neurosci. 2017;44:23–9.

    Article  CAS  PubMed  Google Scholar 

  86. Riew KD, Rhee JM. The use of titanium mesh cages in the cervical spine. Clin Orthop Relat Res. 2002;(394):47–54.

    Google Scholar 

  87. Kandziora F, et al. Biomechanical comparison of cervical spine interbody fusion cages. Spine (Phila Pa 1976). 2001;26(17):1850–7.

    Article  CAS  Google Scholar 

  88. Uribe JS, Sangala JR, Duckworth EAM, Vale FL. Comparison between anterior cervical discectomy fusion and cervical corpectomy fusion using titanium cages for reconstruction: analysis of outcome and long-term follow-up. Eur Spine J. 2009;18(5):654–62.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kepler CK, Rawlins BA. Mesh cage reconstruction with autologous cancellous graft in anterior cervical discectomy and fusion. J Spinal Disord Tech. 2010;23(5):328–32.

    Article  PubMed  Google Scholar 

  90. Koptan W, Elmiligui Y, Elsharkawi M. Single stage anterior reconstruction using titanium mesh cages in neglected kyphotic tuberculous spondylodiscitis of the cervical spine. Eur Spine J. 2011;20(2):308–13.

    Article  PubMed  Google Scholar 

  91. Jang JW, Lee JK, Lee JH, Hur H, Kim TW, Kim SH. Effect of posterior subsidence on cervical alignment after anterior cervical corpectomy and reconstruction using titanium mesh cages in degenerative cervical disease. J Clin Neurosci. 2014;21(10):1779–85.

    Article  PubMed  Google Scholar 

  92. Weber MH, et al. Graft subsidence and revision rates following anterior cervical corpectomy. Clin Spine Surg. 2017;30(9):E1239–45.

    Article  PubMed  Google Scholar 

  93. Wu J, Luo D, Ye X, Luo X, Yan L, Qian H. Anatomy-related risk factors for the subsidence of titanium mesh cage in cervical reconstruction after one-level corpectomy. Int J Clin Exp Med. 2015;8(5):7405–11.

    PubMed  PubMed Central  Google Scholar 

  94. Lu T, et al. Single-level anterior cervical corpectomy and fusion using a new 3D-printed anatomy-adaptive titanium mesh cage for treatment of cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament: a retrospective case series study. Med Sci Monit. 2017;23:3106–13.

    Article  Google Scholar 

  95. Yu F, Miao J, Liao X, Wang X, Chen Y, Chen D. Evaluation of a new type of titanium mesh cage versus the traditional titanium mesh cage for single-level, anterior cervical corpectomy and fusion. Eur Spine J. 2013;22(12):2891–6.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Liu X, et al. The application of a new type of titanium mesh cage in hybrid anterior decompression and fusion technique for the treatment of continuously three-level cervical spondylotic myelopathy. Eur Spine J. 2017;26(1):122–30.

    Article  PubMed  Google Scholar 

  97. Arts M, Torensma B, Wolfs J. Porous titanium cervical interbody fusion device in the treatment of degenerative cervical radiculopathy; 1-year results of a prospective controlled trial. Spine J. 2020;20(7):1065–72.

    Article  PubMed  Google Scholar 

  98. Burke GL. The corrosion of metals in tissues; and an introduction to tantalum. Can Med Assoc J. 1940;43(2):125–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mohandas G, Oskolkov N, McMahon MT, Walczak P, Janowski M. Porous tantalum and tantalum oxide nanoparticles for regenerative medicine. Acta Neurobiol Exp (Wars). 2014;74(2):188–96.

    Google Scholar 

  100. Levine BR, Sporer S, Poggie RA, Della Valle CJ, Jacobs JJ. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials. 2006;27(27):4671–81.

    Article  CAS  PubMed  Google Scholar 

  101. Katie DMF, Welldon J, Atkins GJ, Howie DW. Primary human osteoblasts grow into porous tantalum and maintain an osteoblastic phenotype. J Biomed Mater Res A. 2006;84(3):691–701.

    Google Scholar 

  102. Zardiackas LD, Parsell DE, Dillon LD, Mitchell DW, Nunnery LA, Poggie R. Structure, metallurgy, and mechanical properties of a porous tantalum foam. J Biomed Mater Res. 2001;58(2):180–7.

    Article  CAS  PubMed  Google Scholar 

  103. Hanc M, Fokter SK, Vogrin M, Molicnik A, Recnik G. Porous tantalum in spinal surgery: an overview. Eur J Orthop Surg Traumatol. 2016;26(1):1–7.

    Article  PubMed  Google Scholar 

  104. Tahal D, Madhavan K, Chieng LO, Ghobrial GM, Wang MY. Metals in Spine. World Neurosurg. 2017;100:619–27.

    Article  PubMed  Google Scholar 

  105. Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br. 1999;81(5):907–14.

    Article  CAS  PubMed  Google Scholar 

  106. Wang Q, et al. Biocompatibility and osteogenic properties of porous tantalum. Exp Ther Med. 2015;9(3):780–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hanzlik JA, Day JS, Acknowledged Contributors: ingrowth Retrieval Study Group. Bone ingrowth in well-fixed retrieved porous tantalum implants. J Arthroplast. 2013;28(6):922–7.

    Article  Google Scholar 

  108. Wigfield C, Robertson J, Gill S, Nelson R. Clinical experience with porous tantalum cervical interbody implants in a prospective randomized controlled trial. Br J Neurosurg. 2003;17(5):418–25.

    Article  CAS  PubMed  Google Scholar 

  109. Yang SC, Chen HS, Kao YH, Tu YK. Single-stage anterior debridement and reconstruction with tantalum mesh cage for complicated infectious spondylitis. World J Orthop. 2017;8(9):710–8.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Patel MS, McCormick JR, Ghasem A, Huntley SR, Gjolaj JP. Tantalum: the next biomaterial in spine surgery? J Spine Surg. 2020;6(1):72–86.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wang Y, Wei R, Subedi D, Jiang H, Yan J, Li J. Tantalum fusion device in anterior cervical discectomy and fusion for treatment of cervical degeneration disease: a systematic review and meta-analysis. Clin Spine Surg. 2019;33(3):111–9.

    Article  Google Scholar 

  112. Li N, Hu WQ, Xin WQ, Li QF, Tian P. Comparison between porous tantalum metal implants and autograft in anterior cervical discectomy and fusion: a meta-analysis. J Comp Eff Res. 2019;8(7):511–21.

    Article  CAS  PubMed  Google Scholar 

  113. King V, Swart A, Winder MJ. Tantalum trabecular metal implants in anterior cervical corpectomy and fusion: 2-year prospective analysis. J Clin Neurosci. 2016;32:91–4.

    Article  CAS  PubMed  Google Scholar 

  114. Fernández-Fairen M, Alvarado E, Torres A. Eleven-year follow-up of two cohorts of patients comparing stand-alone porous tantalum cage versus autologous bone graft and plating in anterior cervical fusions. World Neurosurg. 2019;122:e156–67.

    Article  PubMed  Google Scholar 

  115. Fernández-Fairen M, Sala P, Dufoo M, Ballester J, Murcia A, Merzthal L. Anterior cervical fusion with tantalum implant: a prospective randomized controlled study. Spine (Phila Pa 1976). 2008;33(5):465–72.

    Article  Google Scholar 

  116. Löfgren H, Engquist M, Hoffmann P, Sigstedt B, Vavruch L. Clinical and radiological evaluation of Trabecular Metal and the Smith-Robinson technique in anterior cervical fusion for degenerative disease: a prospective, randomized, controlled study with 2-year follow-up. Eur Spine J. 2010;19(3):464–73.

    Article  PubMed  Google Scholar 

  117. Tomé-Bermejo F, et al. Degenerative cervical disc disease: long-term changes in sagittal alignment and their clinical implications after cervical interbody fusion cage subsidence. Clin Spine Surg. 2017;30(5):E648–55.

    Article  PubMed  Google Scholar 

  118. Mastronardi L, Roperto R, Cacciotti G, Calvosa F. Anterior cervical fusion with stand-alone trabecular metal cages to treat cervical myelopathy caused by degenerative disk disease observations in 88 cases with minimum 12-month follow-up. J Neurol Surg A Cent Eur Neurosurg. 2018;79(6):496–501.

    Article  PubMed  Google Scholar 

  119. Papacci F, Rigante L, Fernandez E, Meglio M, Montano N. Anterior cervical discectomy and interbody fusion with porous tantalum implant. Results in a series with long-term follow-up. J Clin Neurosci. 2016;33:159–62.

    Article  PubMed  Google Scholar 

  120. Kasliwal MK, Baskin DS, Traynelis VC. Failure of porous tantalum cervical interbody fusion devices. J Spinal Disord Tech. 2013;26(5):239–45.

    Article  PubMed  Google Scholar 

  121. Lim TH, et al. Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion. Spine (Phila Pa 1976). 2001;26(8):951–6.

    Article  CAS  Google Scholar 

  122. Levi AD. The radiographic and imaging characteristics of porus tantalum implants within the human cervical spine. Spine (Phila Pa 1976). 1998;23(11):1245–50.

    Article  CAS  Google Scholar 

  123. Elliott CA, Fox R, Ashforth R, Gourishankar S, Nataraj A. Magnetic resonance imaging artifact following anterior cervical discectomy and fusion with a trabecular metal cage. J Neurosurg Spine. 2016;24(3):496–501.

    Article  PubMed  Google Scholar 

  124. Blumenthal SL, Gill K. Can lumbar spine radiographs accurately determine fusion in postoperative patients?: correlation of routine radiographs with a second surgical look at lumbar fusions. Spine. 1993;18(9):1186–9.

    Article  CAS  PubMed  Google Scholar 

  125. Kadam A, et al. Bone substitutes and expanders in spine surgery: a review of their fusion efficacies. Int J Spine Surg. 2016;10:2016.

    Article  Google Scholar 

  126. Wright IP, Eisenstein SM. Anterior cervical discectomy and fusion without instrumentation. Spine (Phila Pa 1976). 2007;32(7):772–4.

    Article  Google Scholar 

  127. Fernyhough JC, et al. Fusion rates in multilevel cervical spondylosis comparing allograft fibula with autograft fibula in 126 patients. Spine (Phila Pa 1976). 1991;16(10 Suppl):S561–4.

    Article  CAS  Google Scholar 

  128. D’Souza M, Macdonald NA, Gendreau JL, Duddleston PJ, Feng AY, Ho AL. Graft materials and biologics for spinal interbody fusion. Biomedicines. 2019;7(4):75.

    Article  PubMed Central  CAS  Google Scholar 

  129. Grabowski G, Robertson R. Bone allograft with mesenchymal stem cells: a critical review of the literature. Hard Tissue. 2012;2(2):1–8.

    Article  Google Scholar 

  130. Samartzis D, Shen FH, Goldberg EJ, An HS. Is autograft the gold standard in achieving radiographic fusion in one-level anterior cervical discectomy and fusion with rigid anterior plate fixation? Spine (Phila Pa 1976). 2005;30(15):1756–61.

    Article  Google Scholar 

  131. Schnee CL, Freese A, Weil RJ, Marcotte PJ. Analysis of harvest morbidity and radiographic outcome using autograft for anterior cervical fusion. Spine. 1997;22(19):2222–7.

    Article  CAS  PubMed  Google Scholar 

  132. Rawlinson JN. Morbidity after anterior cervical decompression and fusion. The influence of the donor site on recovery, and the results of a trial of surgibone compared to autologous bone. Acta Neurochir. 1994;131(1–2):106–18.

    Article  CAS  PubMed  Google Scholar 

  133. Epstein NE, Hollingsworth R. Does donor site reconstruction following anterior cervical surgery diminish postoperative pain? J Spinal Disord Tech. 2003;16(1):20–6.

    Article  PubMed  Google Scholar 

  134. Tubbs RS, et al. Use of the clavicle in anterior cervical discectomy/corpectomy fusion procedures: cadaveric feasibility study. Childs Nerv Syst. 2008;24(3):337–41.

    Article  PubMed  Google Scholar 

  135. Peelle MW, Rawlins BA, Frelinghuysen P. A novel source of cancellous autograft for ACDF surgery: the manubrium. J Spinal Disord Tech. 2007;20(1):36–41.

    Article  PubMed  Google Scholar 

  136. Resnick DK. Reconstruction of anterior iliac crest after bone graft harvest decreases pain: a randomized, controlled clinical trial. Neurosurgery. 2005;57(3):526–9.

    Article  PubMed  Google Scholar 

  137. Hamer AJ, Strachan JR, Black MM, Ibbotson CJ, Stockley I, Elson RA. Biomechanical properties of cortical allograft bone using a new method of bone strength measurement: a comparison of fresh, fresh-frozen and irradiated bone. J Bone Joint Surg Br. 1996;78(3):363–8.

    Article  CAS  PubMed  Google Scholar 

  138. Cohen JD, Kanim LE, Tronits AJ, Bae HW. Allografts and spinal fusion. Int J Spine Surg. 2021;15(Suppl 1):68–93.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Sandhu HS, Grewal HS, Parvataneni H. Bone grafting for spinal fusion. Orthop Clin North Am. 1999;30(4):685–98.

    Article  CAS  PubMed  Google Scholar 

  140. Stevenson S, Emery SE, Goldberg VM. Factors affecting bone graft incorporation. Clin Orthop Relat Res. 1996;324:66–74.

    Article  Google Scholar 

  141. Strong DM, et al. Immunologic responses in human recipients of osseous and osteochondral allografts. Clin Orthop Relat Res. 1996;326:107–14.

    Article  Google Scholar 

  142. Mohr J, et al. Disinfection of human musculoskeletal allografts in tissue banking: a systematic review. Cell Tissue Bank. 2016;17(4):573–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Harrell CR, Djonov V, Fellabaum C, Volarevic V. Risks of using sterilization by gamma radiation: the other side of the coin. Int J Med Sci. 2018;15(3):274–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Asselmeier MA, Caspari RB, Bottenfield S. A review of allograft processing and sterilization techniques and their role in transmission of the human immunodeficiency virus. Am J Sports Med. 1993;21(2):170–5.

    Article  CAS  PubMed  Google Scholar 

  145. Zimmermann G, Moghaddam A. Allograft bone matrix versus synthetic bone graft substitutes. Injury. 2011;42(SUPPL. 2):S16–21.

    Article  PubMed  Google Scholar 

  146. Burchardt H. The biology of bone graft repair. Clin Orthop. 1983;174:28–42.

    Article  Google Scholar 

  147. Buttermann GR, Glazer PA, Bradford DS. The use of bone allografts in the spine. Clin Orthop Relat Res. 1996;324:75–85.

    Article  Google Scholar 

  148. Buttermann GR, Glazer PA, Hu SS, Bradford DS. Revision of failed lumbar fusions: a comparison of anterior autograft and allograft. Spine. 1997;22(23):2748–55.

    Article  CAS  PubMed  Google Scholar 

  149. Smith G, Robinson RA. The treatment of certain cervical spine disorders by anterior removal of the intervertebral disc and interbody fusion. Bone Joint Surg Am. 1958;40:607–24.

    Article  Google Scholar 

  150. Cloward RB. The anterior approach for removal of ruptured discs. J Neurosurg. 1958;15:602–17.

    Article  CAS  PubMed  Google Scholar 

  151. Zdeblick TA. A prospective randomized study of lumbar fusion: preliminary results. Spine (Phila Pa 1976). 1993;18(8):983–91.

    Article  CAS  Google Scholar 

  152. Park JH, Bae YK, Suh SW, Yang JH, Hong JY. Efficacy of cortico/cancellous composite allograft in treatment of cervical spondylosis. Medicine. 2017;96(33):Aug.

    Article  Google Scholar 

  153. Graham RS, et al. Evaluation of glycerol-preserved bone allografts in cervical spine fusion: a prospective, randomized controlled trial. J Neurosurg Spine. 2015;22(1):1–10.

    Article  PubMed  Google Scholar 

  154. Suchomel P, Barsa P, Buchvald P, Svobodnik A, Vanickova E. Autologous versus allogenic bone grafts in instrumented anterior cervical discectomy and fusion: a prospective study with respect to bone union pattern. Eur Spine J. 2004;13(6):510–5.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Hillard VH, Fassett DR, Finn MA, Apfelbaum RI. Use of allograft bone for posterior C1-2 fusion: clinical article. J Neurosurg Spine. 2009;11(4):396–401.

    Article  PubMed  Google Scholar 

  156. Yue WM, Brodner W, Highland TR. Long-term results after anterior cervical discectomy and fusion with allograft and plating: a 5- to 11-year radiologic and clinical follow-up study. Spine (Phila Pa 1976). 2005;30(19):2138–44.

    Article  Google Scholar 

  157. Samartzis D, Shen FH, Matthews DK, Yoon ST, Goldberg EJ, An HS. Comparison of allograft to autograft in multilevel anterior cervical discectomy and fusion with rigid plate fixation. Spine J. 2003;3(6):451–9.

    Article  PubMed  Google Scholar 

  158. Tilkeridis K, Touzopoulos P, Ververidis A, Christodoulou S, Kazakos K, Drosos GI. Use of demineralized bone matrix in spinal fusion. World J Orthop. 2014;5(1):30–7.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Campana V, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;25(10):2445–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Chung H-J, Hur J-W, Ryu K-S, Kim J-S, Seong J-H. Surgical outcomes of anterior cervical fusion using deminaralized bone matrix as stand-alone graft material: single arm, pilot study. Korean J Spine. 2016;13(3):114.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics. Organogenesis. 2012;8(4):114–24.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Wang JC, et al. A comparison of commercially available demineralized bone matrix for spinal fusion. Eur Spine J. 2007;16(8):1233–40.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Tuli SN, Singh AD. The osteoinductive property of decalcified bone matrix. An experimental study. J. Bone Joint Surg. 1978;60B:116.

    Google Scholar 

  164. Pieske O, et al. Autologous bone graft versus demineralized bone matrix in internal fixation of ununited long bones. J Trauma Manag Outcomes. 2009;3(1):1–8.

    Article  Google Scholar 

  165. An HS. Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicenter study. Spine (Phila Pa 1976). 1995;20(20):2211–6.

    Article  CAS  Google Scholar 

  166. Moon HJ, Kim JH, Kim JH, Kwon TH, Chung HS, Park YK. The effects of anterior cervical discectomy and fusion with stand-alone cages at two contiguous levels on cervical alignment and outcomes. Acta Neurochir. 2011;153(3):559–65.

    Article  PubMed  Google Scholar 

  167. Topuz K, et al. Two-level contiguous cervical disc disease treated with peek cages packed with demineralized bone matrix: results of 3-year follow-up. Eur Spine J. 2009;18(2):238–43.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Laser A, Baker N, Rectenwald J, Eliason JL, Criado-Pallares E, Upchurch GR. Graft infection after endovascular abdominal aortic aneurysm repair. J Vasc Surg. 2011;54(1):58–63.

    Article  PubMed  Google Scholar 

  169. Demircan MN, et al. Multilevel cervical fusion without plates, screws or autogenous iliac crest bone graft. J Clin Neurosci. 2007;14(8):723–8.

    Article  PubMed  Google Scholar 

  170. Dang L, et al. A new source of autograft bone for interbody fusion in anterior cervical discectomy and fusion surgery: experience in 893 cases. Br J Neurosurg. 2017;31(1):33–8.

    Article  PubMed  Google Scholar 

  171. Vaz K, Verma K, Protopsaltis T, Schwab F, Lonner B, Errico T. Bone grafting options for lumbar spine surgery: a review examining clinical efficacy and complications. SAS J. 2010;4(3):75–86.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Ortega B, Gardner C, Roberts S, Chung A, Wang JC, Buser Z. Ceramic biologics for bony fusion—a journey from first to third generations. Curr Rev Musculoskelet Med. 2020;13(4):530–6.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Cook RW, Hsu WK. Ceramics: clinical evidence for ceramics in spine fusion. Semin Spine Surg. 2016;28(4):217–25.

    Article  Google Scholar 

  174. Brandoff JF, Silber JS, Vaccaro AR. Contemporary alternatives to synthetic bone grafts for spine surgery. Am J Orthop (Belle Mead NJ). 2008;37(8):410–4.

    Google Scholar 

  175. Albee FH. Studies in bone growth: triple calcium phosphate as a stimulus to osteogenesis. Ann Surg. 1920;71(1):32–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Class Pap Orthop. 1981:419–21.

    Google Scholar 

  177. Geesink RGT, De Groot K. Bonding of bone to apatite coated implants. J Bone Joint Surg Br. 1988;70:17–22.

    Article  CAS  PubMed  Google Scholar 

  178. Byrd HS, Hobar PC. Augmentation of craniofacial skeleton with porous hyroxyapatite granules. Reconstr Surg. 1993;91:15–22.

    Article  CAS  Google Scholar 

  179. Hollinger JO, Brekke J, Gruskin E, Lee D. Role of bone substitutes. Clin Orthop Relat Res. 1996;324:55–65.

    Article  Google Scholar 

  180. Dai LY, Jiang LS. Anterior cervical fusion with interbody cage containing β-tricalcium phosphate augmented with plate fixation: a prospective randomized study with 2-year follow-up. Eur Spine J. 2008;17(5):698–705.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Sugawara T, Itoh Y, Hirano Y, Higashiyama N, Mizoi K. Β-tricalcium phosphate promotes bony fusion after anterior cervical discectomy and fusion using titanium cages. Spine (Phila Pa 1976). 2011;36(23):1509–14.

    Article  Google Scholar 

  182. Ahn JS, Lee JK, Kim JH. Comparative study of clinical outcomes of anterior cervical discectomy and fusion using autobone graft or cage with bone substitute. Asian Spine J. 2011;5(3):169–75.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Zadegan SA, Abedi A, Jazayeri SB, Bonaki HN, Vaccaro AR, Rahimi-Movaghar V. Clinical application of ceramics in anterior cervical discectomy and fusion: a review and update. Global Spine J. 2017;7(4):343–9.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Ghosh SK, et al. In vivo response of porous hydroxyapatite and β-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. J Biomed Mater Res B Appl Biomater. 2008;86(1):217–27.

    Article  PubMed  CAS  Google Scholar 

  185. Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res. 2010;132(7):15–30.

    CAS  PubMed  Google Scholar 

  186. Cook SD, et al. In vivo evaluation of anterior cervical fusions with hydroxylapatite graft material. Spine. 1994;19:1856–66.

    Article  CAS  PubMed  Google Scholar 

  187. Bruneau M, Nisolle JF, Gilliard C, Gustin T. Anterior cervical interbody fusion with hydroxyapatite graft and plate system. Neurosurg Focus. 2001;10(4):1–6.

    Article  Google Scholar 

  188. Eggli PS, Muller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bone ingrowth and implant substitution. Clin Orthop Relat Res. 1988;232:127–38.

    Article  CAS  Google Scholar 

  189. Senter HJ, Kortyna R, Kemp WR. Anterior cervical discectomy with hydroxylapatite fusion. Neurosurgery. 1989;25:39.

    Article  CAS  PubMed  Google Scholar 

  190. Kim P, Wakai S, Matsuo S, Moriyama T, Kirino T. Bisegmental cervical interbody fusion using hydroxyapatite implants: surgical results and long-term observation in 70 cases. J Neurosurg. 1998;88(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  191. Koyama T, Handa J. Porous hydroxyapatite ceramics for use in neurosurgical practice. Surg Neurol. 1986;25(1):71–3.

    Article  CAS  PubMed  Google Scholar 

  192. Böker DK, Schultheiß R, van Roost D, Osborn JF, Kaden B. Anterior cervical discectomy and vertebral interbody fusion with hydroxy-apatite ceramic. Preliminary results. Acta Neurochir. 1993;121(3–4):191–5.

    Article  PubMed  Google Scholar 

  193. Sung CK, Sung WK, Se HK, Ki HC, Sang HK. Clinical and radiological outcomes of anterior cervical interbody fusion using hydroxyapatite spacer. J Korean Neurosurg Soc. 2009;46(4):300–4.

    Article  CAS  Google Scholar 

  194. Vukić M, et al. Hydroxyapatite ceramics in multilevel cervical interbody fusion—is there a role? Coll Antropol. 2011;35(Suppl. 1):275–9.

    PubMed  Google Scholar 

  195. Suetsuna F, Yokoyama T, Kenuka E, Harata S. Anterior cervical fusion using porous hydroxyapatite ceramics for cervical disc herniation: a two-year follow-up. Spine J. 2001;1(5):348–57.

    Article  CAS  PubMed  Google Scholar 

  196. Mcconnell JR, et al. Anterior cervical fusion using porous hydroxyapatite ceramics for cervical disc herniation: a two-year follow-up. Indian J Orthop. 2014;38(10):152–7.

    Google Scholar 

  197. Yang X, Liu L, Song Y, Kong Q, Zeng J, Tu C. Outcome of single level anterior cervical discectomy and fusion using nano-hydroxyapatite/polyamide-66 cage. Indian J Orthop. 2014;48(2):152–7.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Papavero L, Zwönitzer R, Burkard I, Klose K, Herrmann HD. A composite bone graft substitute for anterior cervical fusion: assessment of osseointegration by quantitative computed tomography. Spine (Phila Pa 1976). 2002;27(10):1037–43.

    Article  Google Scholar 

  199. Chang WC, Tsou HK, Chen WS, Chen CC, Shen CC. Preliminary comparison of radiolucent cages containing either autogenous cancellous bone or hydroxyapatite graft in multilevel cervical fusion. J Clin Neurosci. 2009;16(6):793–6.

    Article  PubMed  Google Scholar 

  200. Roy DM, Linnehan SK. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature. 1974;247(5438):220–2.

    Article  CAS  PubMed  Google Scholar 

  201. Gershuni H, Holmes E. Coralline hydroxyapatite substitutes preliminary report of radiographic evaluation. Radiology. 1986;159(1):133–7.

    Article  PubMed  Google Scholar 

  202. Zdeblick TA, Cooke ME, Kunz DN, Wilson D, McCabe RP. Anterior cervical discectomy and fusion using a porous hydroxyapatite bone graft substitute. Spine. 1994;19(20):2348–57.

    Article  CAS  PubMed  Google Scholar 

  203. Thalgott JS, Fritts K, Giuffre JM, Timlin M. Anterior interbody fusion of the cervical spine with coralline hydroxyapatite. Spine. 1999;24(13):1295–9.

    Article  CAS  PubMed  Google Scholar 

  204. Buser Z, et al. Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review. J Neurosurg. 2016;25(4):509–16.

    Google Scholar 

  205. Hollinger JO, Battistone GC. Biodegradable bone repair materials. Clin Orthop. 1986;207:290–305.

    Article  CAS  Google Scholar 

  206. Guth K, Buckland T, Hing KA. Silicon dissolution from microporous silicon substituted hydroxyapatite and its effect on osteoblast behaviour. Key Eng Mater. 2006;309–311:117–20.

    Article  Google Scholar 

  207. Wenisch S, et al. In vivo mechanisms of hydroxyapatite ceramic degradation by osteoclasts: fine structural microscopy. J Biomed Mater Res A. 2003;67(3):713–8.

    Article  CAS  PubMed  Google Scholar 

  208. Nandyala K, Sreeharsha V, Marquez-Lara A, Fineberg SJ, Pelton M, Singh. Prospective, randomized, controlled trial of silicate-substituted calcium phosphate versus rhBMP-2 in a minimally invasive transforaminal lumbar interbody fusion. Spine (Phila Pa 1976) 2014. 39(3). Spine (Phila Pa 1976). 2003;46(1):ii.

    Google Scholar 

  209. Pimenta L, Marchi L, Oliveira L, Coutinho E, Amaral R. A prospective, randomized, controlled trial comparing radiographic and clinical outcomes between stand-alone lateral interbody lumbar fusion with either silicate calcium phosphate or rh-BMP2. J Neurol Surg A Cent Eur Neurosurg. 2013;74(6):343–50.

    Article  PubMed  Google Scholar 

  210. Jenis LG, Banco RJ. Efficacy of silicate-substituted calcium phosphate ceramic in posterolateral instrumented lumbar fusion. Spine (Phila Pa 1976). 2010;35(20):1058–63.

    Article  Google Scholar 

  211. Nagineni VV, et al. Silicate-substituted calcium phosphate ceramic bone graft replacement for spinal fusion procedures. Spine (Phila Pa 1976). 2012;37(20):E1264–72.

    Article  Google Scholar 

  212. Alimi M, et al. Radiographic and clinical outcome of silicate-substituted calcium phosphate (Si-CaP) ceramic bone graft in spinal fusion procedures. Clin Spine Surg. 2016;30(6):E845–52.

    Article  Google Scholar 

  213. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;5(6):117–41.

    Article  Google Scholar 

  214. Hench LL, Wilson J. Surface-active biomaterials surface-active biomaterials. Science. 1984;226(4675):630–6.

    Article  CAS  PubMed  Google Scholar 

  215. Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013;9(1):4457–86.

    Article  CAS  PubMed  Google Scholar 

  216. Heikkilä JT, Kukkonen J, Aho AJ, Moisander S, Kyyrönen T, Mattila K. Bioactive glass granules: a suitable bone substitute material in the operative treatment of depressed lateral tibial plateau fractures: a prospective, randomized 1 year follow-up study. J Mater Sci Mater Med. 2011;22(4):1073–80.

    Article  PubMed  CAS  Google Scholar 

  217. Wallace KE, Hill RG, Pembroke JT, Brown CJ, Hatton PV. Influence of sodium oxide content on bioactive glass properties. J Mater Sci Mater Med. 1999;10(12):697–701.

    Article  CAS  PubMed  Google Scholar 

  218. Smeds MR, et al. Treatment and outcomes of aortic endograft infection. J Vasc Surg. 2016;63(2):332–40.

    Article  PubMed  Google Scholar 

  219. Hench LL. The story of Bioglass®. J Mater Sci Mater.Med. 2006;17(11):967–78.

    Article  CAS  PubMed  Google Scholar 

  220. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. J Biomed Mater Res. 2001;55(2):151–7.

    Article  CAS  PubMed  Google Scholar 

  221. Kaufmann EABE, Ducheyne P, Shapiro IM. Effect of varying physical properties of porous, surface modified bioactive glass 45S5 on osteoblast proliferation and maturation. J Biomed Mater Res. 2000;52(4):783–96.

    Article  CAS  PubMed  Google Scholar 

  222. Stokes W, Janvier J, Vaughan S. Chronic Q fever in alberta: a case of coxiella burnetii mycotic aneurysm and concomitant vertebral osteomyelitis. Can J Infect Dis Med Microbiol. 2016;2016:7456157.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Zhang H, Ye XJ, Li JS. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds. Biomed Mater. 2009;4(4):045007.

    Article  PubMed  CAS  Google Scholar 

  224. De Aza PN, Luklinska ZB, Santos C, Guitian F, De Aza S. Mechanism of bone-like formation on a bioactive implant in vivo. Biomaterials. 2003;24(8):1437–45.

    Article  PubMed  Google Scholar 

  225. Moimas L, Biasotto M, Di Lenarda R, Olivo A, Schmid C. Rabbit pilot study on the resorbability of three-dimensional bioactive glass fibre scaffolds. Acta Biomater. 2006;2(2):191–9.

    Article  PubMed  Google Scholar 

  226. Lindfors NC, Tallroth K, Aho AJ. Bioactive glass as bone-graft substitute for posterior spinal fusion in rabbit. J Biomed Mater Res. 2002;63(2):237–44.

    Article  CAS  PubMed  Google Scholar 

  227. Biomaterial Histology Spine Biomechanics. The use of bioglass for posterolateral spinal arthrodesis and iliac crest donor site repair—an in vivo sheep model. 1999;410:21218.

    Google Scholar 

  228. Ilharreborde B, et al. Bioactive glass as a bone substitute for spinal fusion in adolescent idiopathic scoliosis: a comparative study with iliac crest autograft. J Pediatr Orthop. 2008;28(3):347–51.

    Article  PubMed  Google Scholar 

  229. Frantzén J, et al. Instrumented spondylodesis in degenerative. J Spinal Disord Tech. 2011;24(7):455–61.

    Article  PubMed  Google Scholar 

  230. Barrey C, Broussolle T. Clinical and radiographic evaluation of bioactive glass in posterior cervical and lumbar spinal fusion. Eur J Orthop Surg Traumatol. 2019;29(8):1623–9.

    Article  PubMed  Google Scholar 

  231. Westerlund LE, Borden M. Clinical experience with the use of a spherical bioactive glass putty for cervical and lumbar interbody fusion. J Spine Surg. 2020;6(1):49–61.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Kim HC, et al. Comparison of the effectiveness and safety of bioactive glass ceramic to allograft bone for anterior cervical discectomy and fusion with anterior plate fixation. Neurosurg Rev. 2020;43(5):1423–30.

    Article  PubMed  Google Scholar 

  233. Fernandez de Grado G, et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 2018;9:2041731418776819.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Park MS, Moon SH, Kim TH, Oh JK, Yoon WY, Chang HG. Platelet-rich plasma for the spinal fusion. J Orthop Surg. 2018;26(1):2309499018755772.

    Article  Google Scholar 

  235. Daculsi G, LeGeros RZ, Heughebaert M, Barbieux I. Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics. Calcif Tissue Int. 1990;46(1):20–7.

    Article  CAS  PubMed  Google Scholar 

  236. Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios. Biomaterials. 1997;18(15):1037–41.

    Article  CAS  PubMed  Google Scholar 

  237. Cho DY, Lee WY, Sheu PC, Chen CC. Cage containing a biphasic calcium phosphate ceramic (Triosite) for the treatment of cervical spondylosis. Surg Neurol. 2005;63(6):497–503.

    Article  PubMed  Google Scholar 

  238. Chou YC, et al. Efficacy of anterior cervical fusion: comparison of titanium cages, polyetheretherketone (PEEK) cages and autogenous bone grafts. J Clin Neurosci. 2008;15(11):1240–5.

    Article  CAS  PubMed  Google Scholar 

  239. Mobbs RJ, Chau AMT, Durmush D. Biphasic calcium phosphate contained within a polyetheretherketone cage with and without plating for anterior cervical discectomy and fusion. Orthop Surg. 2012;4(3):156–65.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Wuisman PIJM, Smit TH. Bioresorbable polymers: heading for a new generation of spinal cages. Eur Spine J. 2006;15(2):133–48.

    Article  CAS  PubMed  Google Scholar 

  241. Tegnander A, Engebretsen L, Bergh K, Eide E, Holen KJ, Iversen OJ. Activation of the complement system and adverse effects of biodegradable pins of poly-lactic acid (biofix® in osteochondritis dissecans). Acta Orthop. 1994;65(4):472–5.

    Article  CAS  Google Scholar 

  242. Robbins MM, Vaccaro AR, Madigan L. The use of bioabsorbable implants in spine surgery. Neurosurg Focus. 2004;16(3):227–37.

    Article  Google Scholar 

  243. Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21(23):2335–46.

    Article  CAS  PubMed  Google Scholar 

  244. Daniels AU, Chang MK, Andriano KP. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater. 1990;1(1):57–78.

    Article  CAS  PubMed  Google Scholar 

  245. Kulkarni RK, Pani KC, Neuman C, Leonard F. Polylactic acid for surgical implants LACTI C ACTIC acid in its racemic or optically. 2013;20012

    Google Scholar 

  246. Eap S, et al. Electrospun nanofibrous 3D scaffold for bone tissue engineering. Biomed Mater Eng. 2012;22(1–3):137–41.

    PubMed  Google Scholar 

  247. Eap S, et al. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration. Int J Nanomedicine. 2015;10:1061–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Porter JR, Henson A, Popat KC. Biodegradable poly(ε-caprolactone) nanowires for bone tissue engineering applications. Biomaterials. 2009;30(5):780–8.

    Article  CAS  PubMed  Google Scholar 

  249. Urist MR, McLean FC. Bone repair in rats with multiple fractures. Am J Surg. 1950;80(6):685–95.

    Article  CAS  PubMed  Google Scholar 

  250. Lamplot JD, Rodeo SA, Brophy RH. A practical guide for the current use of biologic therapies in sports medicine. Am J Sports Med. 2020;48(2):488–503.

    Article  PubMed  Google Scholar 

  251. Chang KY, Hsu WK. Spinal biologics in minimally invasive lumbar surgery. Minim Invasive Surg. 2018;2018:5230350.

    PubMed  PubMed Central  Google Scholar 

  252. Salazar VS, Gamer LW, Rosen V. BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol. 2016;12(4):203–21.

    Article  CAS  PubMed  Google Scholar 

  253. Boden SD, Zdeblick TA, Sandhu HS, Heim SE. The use of rhBMP-2 in interbody fusion cages. Spine (Phila Pa 1976). 2000;25(3):376–81.

    Article  CAS  Google Scholar 

  254. Burkus JK, Heim SE, Gornet MF, Zdeblick TA. Is INFUSE Bone Graft superior to autograft bone? An integrated analysis of clinical trials using the LT-CAGE Lumbar Tapered Fusion device. J Spinal Disord Tech. 2003;16(2):113–22.

    Article  PubMed  Google Scholar 

  255. Zdeblick TA, et al. Cervical interbody fusion cages: an animal model with and without bone morphogenetic protein. Spine. 1998;23(7):758–66.

    Article  CAS  PubMed  Google Scholar 

  256. Parajón A, et al. Minimally invasive transforaminal lumbar interbody fusion: meta-analysis of the fusion rates. What is the optimal graft material? Clin Neurosurg. 2017;81(6):958–71.

    Article  Google Scholar 

  257. Baskin DS, Ryan P, Sonntag V, Westmark R, Widmayer MA. A prospective, randomized, controlled cervical fusion study using recombinant human bone morphogenetic protein-2 with the CORNERSTONE-SRTM allograft ring and the ATLANTISTM anterior cervical plate. Spine (Phila Pa 1976). 2003;28(12):1219–24.

    Article  Google Scholar 

  258. Boakye M, Mummaneni PV, Garrett M, Rodts G, Haid R. Anterior cervical discectomy and fusion involving a polyetheretherketone spacer and bone morphogenetic protein. J Neurosurg Spine. 2005;2(5):521–5.

    Article  PubMed  Google Scholar 

  259. Smucker JD, Rhee JM, Singh K, Yoon ST, Heller JG. Increased swelling complications associated with off-label usage of rhBMP-2 in the anterior cervical spine. Spine (Phila Pa 1976). 2006;31(24):2813–9.

    Article  Google Scholar 

  260. Shields LBE, et al. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine (Phila Pa 1976). 2006;31(5):542–7.

    Article  Google Scholar 

  261. Tumialán LM, Pan J, Rodts GE, Mummaneni PV. The safety and efficacy of anterior cervical discectomy and fusion with polyetheretherketone spacer and recombinant human bone morphogenetic protein-2: a review of 200 patients. J Neurosurg Spine. 2008;8(6):529–35.

    Article  PubMed  Google Scholar 

  262. Buttermann GR. Prospective nonrandomized comparison of an allograft with bone morphogenic protein versus an iliac-crest autograft in anterior cervical discectomy and fusion. Spine J. 2008;8(3):426–35.

    Article  PubMed  Google Scholar 

  263. Khajavi K, Shen A. Safety and efficacy of bioabsorbable cervical spacers and low-dose rhBMP-2 in multi-level ACDF. Int J Spine Surg. 2014;8:9.

    Article  PubMed Central  Google Scholar 

  264. Dickerman RD, et al. rh-BMP-2 can be used safely in the cervical spine: dose and containment are the keys. Spine J. 2007;7(4):507–8.

    Article  Google Scholar 

  265. Wen YD, Jiang WM, Yang HL, Shi JH. Exploratory meta-analysis on dose-related efficacy and complications of rhBMP-2 in anterior cervical discectomy and fusion: 1,539,021 cases from 2003 to 2017 studies. J Orthop Translat. 2020;24(February):166–74.

    Article  PubMed  PubMed Central  Google Scholar 

  266. Lanman TH, Hopkins TJ. Early findings in a pilot study of anterior cervical interbody fusion in which recombinant human bone morphogenetic protein-2 was used with poly(L-lactide-co-D,L-lactide) bioabsorbable implants. Neurosurg Focus. 2004;16(3):2–6.

    Google Scholar 

  267. Vaidya R, Carp J, Sethi A, Bartol S, Craig J, Les CM. Complications of anterior cervical discectomy and fusion using recombinant human bone morphogenetic protein-2. Eur Spine J. 2007;16(8):1257–65.

    Article  PubMed  PubMed Central  Google Scholar 

  268. Vaidya R, Weir R, Sethi A, Meisterling S, Hakeos W, Wybo CD. Interbody fusion with allograft and rhBMP-2 leads to consistent fusion but early subsidence. J Bone Joint Surg Br. 2007;89(3):342–5.

    Article  CAS  PubMed  Google Scholar 

  269. Albanese A, Licata ME, Polizzi B, Campisi G. Platelet-rich plasma (PRP) in dental and oral surgery: from the wound healing to bone regeneration. Immun Ageing. 2013;10(1):1.

    Article  Google Scholar 

  270. Nikolidakis D, Jansen JA. The biology of platelet-rich plasma and its application in oral surgery: literature review. Tissue Eng B Rev. 2008;14(3):249–58.

    Article  CAS  Google Scholar 

  271. El-Sharkawy H, et al. Platelet-rich plasma: growth factors and pro- and anti-inflammatory properties. J Periodontol. 2007;78(4):661–9.

    Article  CAS  PubMed  Google Scholar 

  272. Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost. 2004;91(1):4–15.

    Article  CAS  PubMed  Google Scholar 

  273. Sánchez AR, Sheridan DDSPJ, Kupp MSLI. Is platelet-rich plasma the perfect enhancement factor? A current review. J Prosthet Dent. 2003;90(2):204.

    Article  Google Scholar 

  274. Özdemir B, Ökte E. Treatment of intrabony defects with beta-tricalciumphosphate alone and in combination with platelet-rich plasma. J Biomed Mater Res B Appl Biomater. 2012;100 B(4):976–83.

    Article  CAS  Google Scholar 

  275. Cabbar F, Güler N, Kürkcü M, Işeri U, Şençift K. The effect of bovine bone graft with or without platelet-rich plasma on maxillary sinus floor augmentation. J Oral Maxillofac Surg. 2011;69(10):2537–47.

    Article  PubMed  Google Scholar 

  276. Arenaz-Búa J, et al. A comparative study of platelet-rich plasma, hydroxyapatite, demineralized bone matrix and autologous bone to promote bone regeneration after mandibular impacted third molar extraction. Med Oral Patol Oral Cir Bucal. 2010;15(3):483–9.

    Article  Google Scholar 

  277. Kamoda H, et al. Platelet-rich plasma combined with hydroxyapatite for lumbar interbody fusion promoted bone formation and decreased an inflammatory pain neuropeptide in rats. Spine (Phila Pa 1976). 2012;37(20):1727–33.

    Article  Google Scholar 

  278. Kubota G, et al. Platelet-rich plasma enhances bone union in posterolateral lumbar fusion: a prospective randomized controlled trial. Spine J. 2019;19(2):e34–40.

    Article  PubMed  Google Scholar 

  279. Tarantino R, et al. Posterolateral arthrodesis in lumbar spine surgery using autologous platelet-rich plasma and cancellous bone substitute: an osteoinductive and osteoconductive effect. Glob Spine J. 2014;4(3):137–41.

    Article  Google Scholar 

  280. Hartmann EK, Heintel T, Morrison RH, Weckbach A. Influence of platelet-rich plasma on the anterior fusion in spinal injuries: a qualitative and quantitative analysis using computer tomography. Arch Orthop Trauma Surg. 2010;130(7):909–14.

    Article  PubMed  Google Scholar 

  281. Feiz-Erfan I, Harrigan M, Sonntag VKH, Harrington TR. Effect of autologous platelet gel on early and late graft fusion in anterior cervical spine surgery. J Neurosurg Spine. 2007;7(5):496–502.

    Article  PubMed  Google Scholar 

  282. Carreon LY, Glassman SD, Anekstein Y, Puno RM. Platelet gel (AGF) fails to increase fusion rates in instrumented posterolateral fusions. Spine (Phila Pa 1976). 2005;30(9):243–6.

    Article  Google Scholar 

  283. Jenis LG, Blanco RJ, Kwon B. A prospective study of Autologous Growth Factors (AGF) in lumbar interbody fusion. Spine J. 2006;6(1):14–20.

    Article  PubMed  Google Scholar 

  284. Elder BD, et al. A systematic assessment of the use of platelet-rich plasma in spinal fusion. Ann Biomed Eng. 2015;43(5):1057–70.

    Article  PubMed  Google Scholar 

  285. Blanch M, et al. The management of aortic stent-graft infection: endograft removal versus conservative treatment. Ann Vasc Surg. 2010;24(4):554.e1-5.

    Article  PubMed  Google Scholar 

  286. Manini DR, Shega FD, Guo C, Wang Y. Role of platelet-rich plasma in spinal fusion surgery: systematic review and meta-analysis. Adv Orthop. 2020;2020:8361798.

    Article  PubMed  PubMed Central  Google Scholar 

  287. Anderson KD, et al. Safety of autologous human schwann cell transplantation in subacute thoracic spinal cord injury. J Neurotrauma. 2017;34(21):2950–63.

    Article  PubMed  Google Scholar 

  288. Centeno CJ, Al-Sayegh H, Freeman MD, Smith J, Murrell WD, Bubnov R. A multi-center analysis of adverse events among two thousand, three hundred and seventy two adult patients undergoing adult autologous stem cell therapy for orthopaedic conditions. Int Orthop. 2016;40(8):1755–65.

    Article  PubMed  Google Scholar 

  289. Curtis E, et al. A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell. 2018;22(6):941–950.e6.

    Article  CAS  PubMed  Google Scholar 

  290. Henriksson HB, Brisby H. Development and regeneration potential of the mammalian intervertebral disc. Cells Tissues Organs. 2012;197(1):1–13.

    Article  PubMed  Google Scholar 

  291. Niemansburg SL, Van Delden JJM, Öner FC, Dhert WJA, Bredenoord AL. Ethical implications of regenerative medicine in orthopedics: an empirical study with surgeons and scientists in the field. Spine J. 2014;14(6):1029–35.

    Article  PubMed  Google Scholar 

  292. Sheyn D, et al. PTH induces systemically administered mesenchymal stem cells to migrate to and regenerate spine injuries. Mol Ther. 2016;24(2):318–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Wang Z, et al. Efficacy of intervertebral disc regeneration with stem cells—a systematic review and meta-analysis of animal controlled trials. Gene. 2015;564(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  294. Risbud MV, et al. Osteogenic potential of adult human stem cells of the lumbar vertebral body and the iliac crest. Spine (Phila Pa 1976). 2006;31(1):83–9.

    Article  Google Scholar 

  295. Robbins MA, Haudenschild DR, Wegner AM, Klineberg EO. Stem cells in spinal fusion. Glob Spine J. 2017;7(8):801–10.

    Article  Google Scholar 

  296. Eltorai AEM, Susai CJ, Daniels AH. Mesenchymal stromal cells in spinal fusion: current and future applications. J Orthop. 2017;14(1):1–3.

    Article  PubMed  Google Scholar 

  297. Salamanna F, et al. Mesenchymal stem cells for the treatment of spinal arthrodesis: from preclinical research to clinical scenario. Stem Cells Int. 2017;2017:3537094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Alvarez-Viejo M, et al. Quantifying mesenchymal stem cells in the mononuclear cell fraction of bone marrow samples obtained for cell therapy. Transplant Proc. 2013;45(1):434–9.

    Article  CAS  PubMed  Google Scholar 

  299. Branko Skovrlj M, Guzman JZ, Al Maaieh M, Cho SK, Iatridis JC, Qureshi SA. Bone matrices: viable stem cell-containing bone graft substitutes access. Physiol Behav. 2019;176(1):139–48.

    Google Scholar 

  300. Minamide A, et al. The use of cultured bone marrow cells in type I collagen gel and porous hydroxyapatite for posterolateral lumbar spine fusion. Spine (Phila Pa 1976). 2005;30(10):1134–8.

    Article  Google Scholar 

  301. Hsieh PC, et al. Autologous stem cells in cervical spine fusion. Global Spine J. 2020;11(6):950–65.

    Article  PubMed  PubMed Central  Google Scholar 

  302. Acharya S, Kumar S, Srivastava A, Tandon R. Early results of one-level cervical discectomy and fusion with stand-alone cervical cage and bone marrow soaked tricalcium phosphate. Acta Orthop Belg. 2011;77(2):218–23.

    PubMed  Google Scholar 

  303. Chaput CD, et al. How stem cell composition in bone marrow aspirate relates to clinical outcomes when used for cervical spine fusion. PLoS One. 2018;13(9):e0203714.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  304. Ray WZ, Wright NM. Anterior cervical arthrodesis using an osteoconductive scaffold: the use of beta-tricalcium phosphate with local bone marrow aspirate in over 100 patients. SAS J. 2009;3(3):114–7.

    Article  PubMed  PubMed Central  Google Scholar 

  305. Khoueir P, Oh BC, DiRisio DJ, Wang MY. Multilevel anterior cervical fusion using a collagen-hydroxyapatite matrix with iliac crest bone marrow aspirate: an 18-month follow-up study. Neurosurgery. 2007;61(5):963–70.

    Article  PubMed  Google Scholar 

  306. Sudprasert W, Kunakornsawat S. A preliminary study of three and four levels degenerative cervical spondylosis treated with peek cages and anterior cervical plate. J Med Assoc Thail. 2012;95(7):909–16.

    Google Scholar 

  307. Barber SM, Radaideh M, Parrish R. Efficacy of autogenous bone marrow aspirate as a fusion-promoting adjunct to anterior cervical discectomy and fusion: a single center retrospective cohort study. Cureus. 2018;10(5):e2636.

    PubMed  PubMed Central  Google Scholar 

  308. Hsieh PC, et al. Allogenic stem cells in spinal fusion: a systematic review. Global Spine J. 2019;9(1):22S–38S.

    Article  PubMed  PubMed Central  Google Scholar 

  309. McAnany SJ, et al. Mesenchymal stem cell allograft as a fusion adjunct in one- and two-level anterior cervical discectomy and fusion: a matched cohort analysis. Spine J. 2016;16(2):163–7.

    Article  PubMed  Google Scholar 

  310. Eastlack RK, Garfin SR, Brown CR, Meyer SC. Osteocel plus cellular allograft in anterior cervical discectomy and fusion: evaluation of clinical and radiographic outcomes from a prospective multicenter study. Spine (Phila Pa 1976). 2014;39(22):E1331–7.

    Article  Google Scholar 

  311. Peppers TA, et al. Prospective clinical and radiographic evaluation of an allogeneic bone matrix containing stem cells (Trinity Evolution® Viable Cellular Bone Matrix) in patients undergoing two-level anterior cervical discectomy and fusion. J Orthop Surg Res. 2017;12(1):Apr.

    Article  Google Scholar 

  312. Vanichkachorn J, Peppers T, Bullard D, Stanley SK, Linovitz RJ, Ryaby JT. A prospective clinical and radiographic 12-month outcome study of patients undergoing single-level anterior cervical discectomy and fusion for symptomatic cervical degenerative disc disease utilizing a novel viable allogeneic, cancellous, bone matrix (trinity evolutionTM) with a comparison to historical controls. Eur Spine J. 2016;25(7):2233–8.

    Article  PubMed  Google Scholar 

  313. Divi SN, Mikhael MM. Use of allogenic mesenchymal cellular bone matrix in anterior and posterior cervical spinal fusion: a case series of 21 patients. Asian Spine J. 2017;11(3):454–62.

    Article  PubMed  PubMed Central  Google Scholar 

  314. Tuchman A, et al. Iliac crest bone graft versus local autograft or allograft for lumbar spinal fusion: a systematic review. Glob Spine J. 2016;6(6):592–606.

    Article  Google Scholar 

  315. Cunningham BW, et al. Ceramic granules enhanced with B2A peptide for lumbar interbody spine fusion: an experimental study using an instrumented model in sheep: laboratory investigation. J Neurosurg Spine. 2009;10(4):300–7.

    Article  PubMed  Google Scholar 

  316. Qian JJ, Bhatnagar RS. Enhanced cell attachment to anorganic bone mineral in the presence of a synthetic peptide related to collagen. J Biomed Mater Res. 1996;31(4):545–54.

    Article  CAS  PubMed  Google Scholar 

  317. Lauweryns P, Raskin Y. Prospective analysis of a new bone graft in lumbar interbody fusion: results of a 2- year prospective clinical and radiological study. Int J Spine Surg. 2015;9:2.

    Article  PubMed Central  Google Scholar 

  318. Bhatnagar RS, Qian JJ, Wedrychowska A, Smith N. Construction of biomimetic environments with a synthetic peptide analogue of collagen. Mater Res Soc Symp Proc. 1998;530:43–54.

    Article  CAS  Google Scholar 

  319. Arnold PM, et al. Efficacy of i-factor bone graft versus autograft in anterior cervical discectomy and fusion results of the prospective, randomized, single-blinded food and drug administration investigational device exemption study. Spine (Phila Pa 1976). 2016;41(13):1075–83.

    Article  Google Scholar 

  320. Arnold PM, et al. I-FactorTM Bone Graft vs autograft in anterior cervical discectomy and fusion: 2-year follow-up of the randomized single-blinded food and drug administration investigational device exemption study. Clin Neurosurg. 2018;83(3):377–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Doria, C., Muresu, F., Milia, F., Baioni, A. (2022). Role of Materials in Cervical Spine Fusion. In: Menchetti, P.P.M. (eds) Cervical Spine. Springer, Cham. https://doi.org/10.1007/978-3-030-94829-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94829-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94828-3

  • Online ISBN: 978-3-030-94829-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics