Skip to main content

Self-supervised Bernoulli Autoencoders for Semi-supervised Hashing

  • Conference paper
  • First Online:
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIARP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12702))

Included in the following conference series:

Abstract

Semantic hashing is a technique to represent high-dimensional data using similarity-preserving binary codes for efficient indexing and search. Recently, variational autoencoders with Bernoulli latent representations achieved remarkable success in learning such codes in supervised and unsupervised scenarios, outperforming traditional methods thanks to their ability to handle the binary constraints architecturally.

In this paper, we propose a novel method for supervision (self-supervised) of variational autoencoders where the model uses its own predictions of the label distribution to implement the pairwise objective function. Also, we investigate the robustness of hashing methods based on variational autoencoders to the lack of supervision, focusing on two semi-supervised approaches currently in use. Our experiments on text and image retrieval tasks show that, as expected, both methods can significantly increase the quality of the hash codes as the number of labelled observations increases, but deteriorates when the amount of labelled samples decreases. In this scenario, the proposed self-supervised approach outperforms the classical approaches and yields similar performance in fully-supervised settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A high value in this function means that the objects are more similar.

  2. 2.

    Our code is made publicly available at https://github.com/amacaluso/SSB-VAE.

  3. 3.

    A draft version of this work is available on arXiv:2007.08799.

References

  1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM, New York (1999)

    Google Scholar 

  2. Carreira-Perpinán, M.A., Raziperchikolaei, R.: Hashing with binary autoencoders. In: Proceedings of the CVPR, pp. 557–566 (2015)

    Google Scholar 

  3. Chaidaroon, S., Fang, Y.: Variational deep semantic hashing for text documents. In: SIGIR, pp. 75–84 (2017)

    Google Scholar 

  4. Dadaneh, S.Z., Boluki, S., Yin, M., Zhou, M., Qian, X.: Pairwise supervised hashing with Bernoulli variational auto-encoder and self-control gradient estimator. In: Proceedings of the UAI (2020)

    Google Scholar 

  5. Do, T.-T., Doan, A.-D., Cheung, N.-M.: Learning to hash with binary deep neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part V. LNCS, vol. 9909, pp. 219–234. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_14

    Chapter  Google Scholar 

  6. Gong, Y., Lazebnik, S.: Iterative quantization: a procrustean approach to learning binary codes. In: Proceedings of the CVPR, pp. 817–824 (2011)

    Google Scholar 

  7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  8. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the ACM STOC, pp. 604–613 (1998)

    Google Scholar 

  9. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with Gumbel-softmax. In: Proceedings of the ICLR (2017)

    Google Scholar 

  10. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Proceedings of the ICLR (2014)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  12. Lai, H., Pan, Y., Liu, Y., Yan, S.: Simultaneous feature learning and hash coding with deep neural networks. In: Proceedings of the CVPR, pp. 3270–3278 (2015)

    Google Scholar 

  13. Lu, J., Liong, V.E., Zhou, J.: Deep hashing for scalable image search. IEEE Trans. Image Process. 26(5), 2352–2367 (2017)

    Article  MathSciNet  Google Scholar 

  14. Mena, F., \(\tilde{\text{N}}\)anculef, R.: A binary variational autoencoder for hashing. In: Nyström, I., Hernández Heredia, Y., Milián Núñez, V. (eds.) CIARP 2019. LNCS, vol. 11896, pp. 131–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33904-3_12

  15. Norouzi, M., Punjani, A., Fleet, D.J.: Fast exact search in Hamming space with multi-index hashing. IEEE Pattern Anal. Mach. Intell. 36(6), 1107–1119 (2014)

    Article  Google Scholar 

  16. Song, T., Cai, J., Zhang, T., Gao, C., Meng, F., Wu, Q.: Semi-supervised manifold-embedded hashing with joint feature representation and classifier learning. Pattern Recognit. 68, 99–110 (2017)

    Article  Google Scholar 

  17. Triguero, I., García, S., Herrera, F.: Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study. Knowl. Inf. Syst. 42(2), 245–284 (2015). https://doi.org/10.1007/s10115-013-0706-y

    Article  Google Scholar 

  18. Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for large-scale search. IEEE Pattern Anal. Mach. Intell. 34(12), 2393–2406 (2012)

    Article  Google Scholar 

  19. Wang, Q., Zhang, D., Si, L.: Semantic hashing using tags and topic modeling. In: Proceedings of the SIGIR, pp. 213–222. ACM (2013)

    Google Scholar 

  20. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS (2009)

    Google Scholar 

  21. Yang, H., Tu, C., Chen, C.: Adaptive labeling for hash code learning via neural networks. In: Proceedings of the ICIP, pp. 2244–2248 (2019)

    Google Scholar 

  22. Zhang, D., Wang, J., Cai, D., Lu, J.: Self-taught hashing for fast similarity search. In: Proceedings of the SIGIR, pp. 18–25 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Macaluso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ñanculef, R., Mena, F., Macaluso, A., Lodi, S., Sartori, C. (2021). Self-supervised Bernoulli Autoencoders for Semi-supervised Hashing. In: Tavares, J.M.R.S., Papa, J.P., González Hidalgo, M. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2021. Lecture Notes in Computer Science(), vol 12702. Springer, Cham. https://doi.org/10.1007/978-3-030-93420-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93420-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93419-4

  • Online ISBN: 978-3-030-93420-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics