Skip to main content

Taurine Deficiency in Tissues Aggravates Radiation-Induced Gastrointestinal Syndrome

  • Chapter
  • First Online:
Taurine 12

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1370))

Abstract

Ionizing radiation administered for cancer treatment or from nuclear plant accidents are two common causes of radiation exposure. Ionizing radiation exposure generates reactive oxygen species and free radicals, which cause oxidative stress. We previously reported that taurine contributes to the recovery from radiation-induced injuries, suggesting its potential as a radioprotector and radiation mitigator. However, the effect of taurine on radiation-induced gastrointestinal syndrome remains poorly understood. The aim of this study was to examine the effect of taurine tissue depletion on radiation-induced gastrointestinal syndrome. Mouse models of radiation-induced gastrointestinal syndrome were established in TauT+/+ and TauT−/− mice by whole-body X-irradiation. We examined the 30-day survival rate, as well as the crypt-villus structure and proliferation of proliferating cell nuclear antigen (PCNA) + cells in the small intestine. The survival rate of TauT−/− mice was significantly lower than that of TauT+/+ mice. The villi in the small intestine of TauT−/− mice were significantly shorter than those in TauT+/+ mice. Additionally, there were significantly fewer PCNA+ cells in TauT−/− mice than in TauT+/+ mice. These data demonstrate that taurine is a key regulator of crypt stem cells and plays an important regulatory role in intestinal cell survival, proliferation, and fate. Therefore, taurine may reduce radiation-induced gastrointestinal syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PCNA:

Proliferating cell nuclear antigen

ROS:

Reactive oxygen species

TauT:

Taurine transporter

References

  • Chen YR, Wang X, Templeton D, Davis RJ, Tan TH (1996) The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J Biol Chem 271(50):31929–31936

    Article  CAS  Google Scholar 

  • Chen X, Guo C, Kong J (2012) Oxidative stress in neurodegenerative diseases. Neural Regen Res 7(5):376–385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das J, Ghosh J, Manna P, Sil PC (2010) Protective role of taurine against arsenic-induced mitochondria-dependent hepatic apoptosis via the inhibition of PKCdelta-JNK pathway. PLoS One 5(9):e12602

    Article  Google Scholar 

  • Dayang W, Dongbo P (2017) Taurine protects lens epithelial cells against ultraviolet B-induced apoptosis. Curr Eye Res 42(10):1407–1411

    Article  Google Scholar 

  • Driák D, Osterreicher J, Vávrová J, Reháková Z, Vilasová Z (2008) Morphological changes of rat jejunum after whole body gamma-irradiation and their impact in biodosimetry. Physiol Res 57:475–479

    Article  Google Scholar 

  • Duan Y, Yao X, Zhu J, Li Y, Zhang J, Zhou X, Qiao Y, Yang M, Li X (2017) Effects of yak-activated protein on hematopoiesis and related cytokines in radiation-induced injury in mice. Exp Ther Med 14(6):5297–5304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh J, Das J, Manna P, Sil PC (2009) Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: role of NF-kappa B, p38 and JNK MAPK pathway. Toxicol Appl Pharmacol 240(1):73–87

    Article  CAS  Google Scholar 

  • Ghosh SP, Kulkarni S, Perkins MW, Hieber K, Pessu RL, Gambles K, Maniar M, Kao TC, Seed TM, Kumar KS (2012) Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD(R) in mice. J Radiat Res 53(4):526–536

    Article  CAS  Google Scholar 

  • Gururajan M, Chui R, Karuppannan AK, Ke J, Jennings CD, Bondada S (2005) c-Jun N-terminal kinase (JNK) is required for survival and proliferation of B-lymphoma cells. Blood 106(4):1382–1391

    Article  CAS  Google Scholar 

  • Heller-Stilb B, van Roeyen C, Rascher K, Hartwig HG, Huth A, Seeliger MW, Warskulat U, Häussinger D (2002) Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. FASEB J 16(2):231–233

    Article  CAS  Google Scholar 

  • Ito T, Kimura Y, Uozumi Y, Takai M, Muraoka S, Matsuda T, Ueki K, Yoshiyama M, Ikawa M, Okabe M, Schaffer SW, Fujio Y, Azuma J (2008) Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J Mol Cell Cardiol 44(5):927–937

    Article  CAS  Google Scholar 

  • Ito T, Oishi S, Takai M, Kimura Y, Uozumi Y, Fujio Y, Schaffer SW, Azuma J (2010) Cardiac and skeletal muscle abnormality in taurine transporter-knockout mice. J Biomed Sci 17:S20

    Article  Google Scholar 

  • Johnson CH, Patterson AD, Krausz KW, Kalinich JF, Tyburski JB, Kang DW, Luecke H, Gonzalez FJ, Blakely WF, Idle JR (2012) Radiation metabolomics. 5. Identification of urinary biomarkers of ionizing radiation exposure in nonhuman primates by mass spectrometry-based metabolomics. Radiat Res 178:328–340

    Article  CAS  Google Scholar 

  • Jong CJ, Ito T, Prentice H, Wu JY, Schaffer SW (2017) Role of mitochondria and endoplasmic reticulum in taurine-deficiency-mediated apoptosis. Nutrients 9(8):795

    Article  Google Scholar 

  • Kato T, Okita S, Wang S, Tsunekawa M, Ma N (2015) The effects of taurine administration against inflammation in heavily exercised skeletal muscle of rats. Adv Exp Med Biol 803:773–784

    Article  CAS  Google Scholar 

  • Kwon HM, Handler JS (1995) Cell volume regulated transporters of compatible osmolytes. Curr Opin Cell Biol 7:465–471

    Article  CAS  Google Scholar 

  • Labéjof LP, Galle P, Mangabeira PA, de Oliveira AH, Severo MI (2002) Histological changes in rat duodenum mucosa after whole-body gamma irradiation. Cell Mol Biol 48:537–545

    PubMed  Google Scholar 

  • Li M, Gu Y, Ma YC, Shang ZF, Wang C, Liu FJ, Cao JP, Wan HJ, Zhang XG (2015) Krüppel-Like Factor 5 promotes epithelial proliferation and DNA damage repair in the intestine of irradiated mice. Int J Biol Sci 11:1458–1468

    Article  CAS  Google Scholar 

  • Li Y, Kong S, Yang F, Xu W (2018) Protective effects of 2-amino-5,6-dihydro-4H-1,3-thiazine and its derivative against radiation-induced hematopoietic and intestinal injury in mice. Int J Mol Sci 19(5):E1530

    Article  Google Scholar 

  • Ma N, Aoki E, Semba R (1994) An immunohistochemical study of aspartate, glutamate, and taurine in rat kidney. J Histochem Cytochem 42:621–626

    Article  CAS  Google Scholar 

  • Ma N, Sasoh M, Kawanishi S, Sugiura H, Piao F (2010) Protection effect of taurine on nitrosative stress in the mice brain with chronic exposure to arsenic. J Biomed Sci 17:S7

    Article  Google Scholar 

  • Nagai K, Fukuno S, Oda A, Konishi H (2016) Protective effects of taurine on doxorubicin-induced acute hepatotoxicity through suppression of oxidative stress and apoptotic responses. Anti-Cancer Drugs 27(1):17–23

    Article  CAS  Google Scholar 

  • Oliveira MW, Minotto JB, de Oliveira MR, Zanotto-Filho A, Behr GA, Rocha RF, Moreira JC, Klamt F (2010) Scavenging and antioxidant potential of physiological taurine concentrations against different reactive oxygen/nitrogen species. Pharmacol Rep 62:185–193

    Article  CAS  Google Scholar 

  • Poggi MM, Coleman CN, Mitchell JB (2001) Sensitizers and protectors of radiation and chemotherapy. Curr Probl Cancer 25:334–411

    Article  CAS  Google Scholar 

  • Qiu W, Carson-Walter EB, Liu H, Epperly M, Greenberger JS, Zambetti GP, Zhang L, Yu J (2008) PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell 2(6):576–583

    Article  CAS  Google Scholar 

  • Rosen EM, Day R, Singh VK (2015) New approaches to radiation protection. Front Oncol 4:381

    Article  Google Scholar 

  • Schaffer SW, Azuma J, Mozaffari M (2009) Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 87(2):91–99

    Article  CAS  Google Scholar 

  • Shivaraj MC, Marcy G, Low G, Ryu JR, Zhao X, Rosales FJ, Goh EL (2012) Taurine induces proliferation of neural stem cells and synapse development in the developing mouse brain. PLoS One 7(8):e42935

    Article  CAS  Google Scholar 

  • Smith TA, Kirkpatrick DR, Smith S, Smith TK, Pearson T, Kailasam A, Herrmann KZ, Schubert J, Agrawal DK (2017) Radioprotective agents to prevent cellular damage due to ionizing radiation. J Transl Med 15(1):232

    Article  Google Scholar 

  • Sugahara T, Nagata H, Tanaka T (1969) Experimental studies on radiation protection by taurine. Nihon Igaku Hoshasen Gakkai Zasshi 29:156–161

    CAS  PubMed  Google Scholar 

  • Suman S, Maniar M, Fornace AJ Jr, Datta K (2012) Administration of ON 01210.Na after exposure to ionizing radiation protects bone marrow cells by attenuating DNA damage response. Radiat Oncol 7:6

    Article  CAS  Google Scholar 

  • Weiss JF, Landauer MR (2009) History and development of radiation-protective agents. Int J Radiat Biol 85:539–573

    Article  CAS  Google Scholar 

  • Yamashita T, Kato T, Tunekawa M, Gu Y, Wang S, Ma N (2017) Effect of radiation on the expression of taurine transporter in the intestine of mouse. Adv Exp Med Biol 975:729–740

    Article  CAS  Google Scholar 

  • Yamashita T, Kato T, Isogai T, Gu Y, Ma N (2019) Protective effects of taurine on the radiation exposure induced cellular damages in the mouse intestine. Adv Exp Med Biol 1155:443–450

    Article  CAS  Google Scholar 

  • Yang W, Huang J, Xiao B, Liu Y, Zhu Y, Wang F, Sun S (2017) Taurine protects mouse spermatocytes from ionizing radiation-induced damage through activation of Nrf2/HO-1 signaling. Cell Physiol Biochem 44(4):1629–1639

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Rina Funaki and Aoi Mashimo for the handling of the animals of this work. This work was supported by JSPS KAKENHI Grant Number JP 20K08120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamashita, T., Kato, T., Isogai, T., Gu, Y., Ito, T., Ma, N. (2022). Taurine Deficiency in Tissues Aggravates Radiation-Induced Gastrointestinal Syndrome. In: Schaffer, S.W., El Idrissi, A., Murakami, S. (eds) Taurine 12. Advances in Experimental Medicine and Biology, vol 1370. Springer, Cham. https://doi.org/10.1007/978-3-030-93337-1_10

Download citation

Publish with us

Policies and ethics