Skip to main content

Circulating Tumor Cells and ctDNA in Sarcomas

  • Chapter
  • First Online:
  • 1013 Accesses

Abstract

Sarcomas are clustered in two oncological entities named bone and soft tissue sarcomas. Both are rare cancers originating from the mesenchyme, characterized by their propensity to induce the development of lung metastases. Sarcoma cells escaping from the primary tumor site spread to the pulmonary tissue through the bloodstream where they found a favorable microenvironment to establish metastatic foci. The low number of patients, the high histological, genetic, and molecular heterogeneity of sarcomas combined with the absence of specific markers expressed by cancer cells make the detection and follow-up of the minimal residual disease challenging. Over the last decade, tremendous technological progress has been made towards the detection of recurrent diseases. The literature is now enriched of information describing the use of liquid biopsies in clinical care of sarcoma patients. This chapter aims to give a brief overview of the most recent data available on the detection of circulating tumor cells and circulating tumor DNA in sarcomas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. WHO Classification of Tumours Editorial Board. Soft tissue and bone tumours, WHO classification of tumours series, vol. 3. 5th ed. Lyon: International Agency for Research on Cancer; 2020.

    Google Scholar 

  2. Grünewald TG, Alonso M, Avnet S, Banito A, Burdach S, Cidre-Aranaz F, Di Pompo G, Distel M, Dorado-Garcia H, Garcia-Castro J, González-González L, Grigoriadis AE, Kasan M, Koelsche C, Krumbholz M, Lecanda F, Lemma S, Longo DL, Madrigal-Esquivel C, Morales-Molina Á, Musa J, Ohmura S, Ory B, Pereira-Silva M, Perut F, Rodriguez R, Seeling C, Al Shaaili N, Shaabani S, Shiavone K, Sinha S, Tomazou EM, Trautmann M, Vela M, Versleijen-Jonkers YM, Visgauss J, Zalacain M, Schober SJ, Lissat A, English WR, Baldini N, Heymann D. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med. 2020;12:e11131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Brown HK, Schiavone K, Gouin F, Heymann MF, Heymann D. Biology of bone sarcomas and new therapeutic developments. Calcif Tissue Int. 2018;102(2):174–95.

    Article  CAS  PubMed  Google Scholar 

  4. Pennacchioli E, Tosti G, Barberis M, De Pas TM, Verrecchia F, Menicanti C, Testori A, Mazzarol G. Sarcoma spreads primarily through the vascular system: are there biomarkers associated with vascular spread? Clin Exp Metastasis. 2012;29(7):757–73.

    Article  CAS  PubMed  Google Scholar 

  5. Nicolini A, Rossi G, Ferrari P, Carpi A. Minimal residual disease in advanced or metastatic solid cancers: The G0-G1 state and immunotherapy are key to unwinding cancer complexity. Semin Cancer Biol. 2020;21:1054.

    Google Scholar 

  6. Vallette FM, Olivier C, Lézot F, Oliver L, Cochonneau D, Lalier L, Cartron PF, Heymann D. Dormant, quiescent, tolerant and persister cells: four synonyms for the same target in cancer. Biochem Pharmacol. 2019;162:169–76.

    Article  CAS  PubMed  Google Scholar 

  7. Alix-Panabières C, Schwarzenbach H, Pantel K. Circulating tumor cells and circulating tumor DNA. Annu Rev Med. 2012;63:199–215.

    Article  PubMed  CAS  Google Scholar 

  8. Cortés-Hernández LE, Eslami-S Z, Alix-Panabières C. Circulating tumor cells as the functional aspect of liquid biopsy to understand the metastatic cascade in solide cancer. Mol Asp Med. 2020;72:100816.

    Article  CAS  Google Scholar 

  9. Coombs CC, Dickherber T, Crompton BD. Chasing ctDNA in patients with sarcoma. Am Soc Clin Oncol Educ Book. 2020;40:e351–60.

    Article  PubMed  Google Scholar 

  10. Tellez-Gabriel M, Brown HK, Young R, Heymann MF, Heymann D. The challenges of detecting circulating tumor cells in sarcoma. Front Oncol. 2016;6:202.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gabriel MT, Calleja LR, Chalopin A, Ory B, Heymann D. Circulating tumor cells: a review of non-EpCam-based approaches for cell enrichment and isolation. Clin Chem. 2016;62(4):571–81.

    Article  CAS  PubMed  Google Scholar 

  12. Hayashi M, Zhu P, McCarty G, Meyer CF, Pratilas CA, Levin A, Morris CD, Albert CM, Jackson KW, Tang CM, Loeb DM. Size-based detection of sarcoma circulating tumor cells and cell clusters. Oncotarget. 2017;8(45):78,965–77.

    Article  Google Scholar 

  13. Li H, Meng QH, Noh H, Batth IS, Somaiah N, Torres KE, Xia X, Wang R, Li S. Detection of circulating tumor cells from cryopreserved human sarcoma peripheral blood mononuclear cells. Cancer Lett. 2017;403:216–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Benini S, Gamberi G, Cocchi S, Garbetta J, Alberti L, Righi A, Gambarotti M, Picci P, Ferrari S. Detection of circulating tumor cells in liquid biopsy from Ewing sarcoma patients. Cancer Manag Res. 2018;10:49–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chinen LTD, Mello CAL, Abdallah EA, Ocea LM, Buuim ME, Breve NM, Junior JLG, Fanelli MF, Paterlini-Brechot P. Isolation, detection, and immunomorphological characterization of circulating tumor cells (CTCs) from patients with different types of sarcoma using isolation by size of tumor cells: a window on sarcoma-cell invasion. Onco Targets Ther. 2014;7:1609–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Braun AC, de Mello CAL, Corassa M, Abdallah EA, Urvanegia AC, Alves VS, Flores BCTCP, Díaz M, Nicolau UR, Silva VSE, Calsavara V, Paterlini-Brechót P, Chinen LTD. EGFR expression in circulating tumor cells from high-grade metastatic soft tissue sarcomas. Cancer Biol Ther. 2018;19(6):454–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mihály D, Nagy N, Papp G, Pápai Z, Sápi Z. Release of circulating tumor cells and cell-free nucleic acids is an infrequent event in synovial sarcoma: liquid biopsy analysis of 15 patients diagnosed with synovial sarcoma. Diagn Pathol. 2018;13(1):81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Przybyl, van de Rijn M, Rutkowski P. Detection of SS18-SSX1/2 fusion transcripts in circulating tumor cells of patients with synovial sarcoma. Diagn Pathol. 2019;14(1):24.

    Article  PubMed  PubMed Central  Google Scholar 

  19. West DC, Grier HE, Swallow MM, Demetri GD, Granowetter L, Sklar J. Detection of circulating tumor cells in patients with Ewing's sarcoma and peripheral primitive neuroectodermal tumor. J Clin Oncol. 1997;15(2):583–8.

    Article  CAS  PubMed  Google Scholar 

  20. Schleiermacher G, Peter M, Oberlin O, Philip T, Rubie H, Mechinaud F, Sommelet-Olive D, Ladman-Parker J, Bours D, Michon J, Delattre O. Société Française de Pédiatrie. Increased risk of systemic relapses associated with bone marrow micrometastasis and circulating tumor cells in localized Ewing tumor. J Clin Oncol. 2003;21(1):85–91.

    Article  PubMed  Google Scholar 

  21. Avigad S, Cohen IJ, Ziberstein J, Liberzon E, Goshen Y, Ash S, Meller I, Kollender Y, Issakov J, Zaizov YI. The predictive potential of molecular detection in the nonmetastatic Ewing family of tumors. Cancer. 2004;100(5):1053–8.

    Article  PubMed  Google Scholar 

  22. Fagnou C, Michon J, Peter M, Bernoux A, Oberlin O, Zucker JM, Magdelenat H, Delattre O. Presence of tumor cells in bone marrow but not in blood is associated with adverse prognosis in patients with Ewing’s tumor. Société Française d'Oncologie Pédiatrique. J Clin Oncol. 1998;16(5):1707–11.

    Article  CAS  PubMed  Google Scholar 

  23. Peter M, Madgelenat H, Michon J, Melot T, Oberlin O, Zucker JM, Thomas G, Delattre O. Sensitive detection of occult Ewing’s cells by the reverse transcriptase-polymerase chain reaction. Br J Cancer. 1995;72(1):96–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zoubek A, Ladenstein R, Windhager R, Amann G, Fischmeister G, Kager L, Jugovic D, Ambros PF, Gadner H, Kovar H. Predictive potential of testing for bone marrow involvement in Ewing tumor patients by RT-PCR: a preliminary evaluation. Int J Cancer. 1998;79(1):56–60.

    Article  CAS  PubMed  Google Scholar 

  25. Satelli A, Mitra A, Cutrera JJ, Devarie M, Xia X, Ingram DR, Dibra D, Somaiah N, Torres KE, Ravi V, Ludwig JA, Kleinerman ES, Li S. Universal marker and detection tool for human sarcoma circulating tumor cells. Cancer Res. 2014;74(6):1645–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wong IH, Chan AT, Johnson PJ. Quantitative analysis of circulating tumor cells in peripheral blood of osteosarcoma patients using osteoblast-specific messenger RNA markers: a pilot study. Clin Cancer Res. 2000;6(6):2183–8.

    CAS  PubMed  Google Scholar 

  27. Hatano H, Kawashima H, Ogose A, Hotta T, endo N. A PCR-ELISA assay for the detection of disseminated osteosarcoma cells in a mouse metastatic model. J Orthop Sci. 2001;6(3):269–75.

    Article  CAS  PubMed  Google Scholar 

  28. Chalopin A, Tellez-Gabriel M, Brown HK, Vallette F, Heymann MF, Gouin F, Heymann D. Lsolation of circulating tumor cells in a preclinical model of osteosarcoma: effect of chemotherapy. J Bone Oncol. 2018;12:83–90.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hasegawa N, Nakamura IT, Ueno T, Kojima S, Kawazu M, Akaike K, Okubo T, Takagi T, Suehara Y, Hayashi T, Saito T, Kaneko K, Kohsaka S. Detection of circulating sarcoma tumor cells using a microfluidic chip-type cell sorter. Sci Rep. 2019;9(1):20047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoshino M, Ogose A, Kawasima H, Izumi T, Hotta T, Hatano H, Morita T, Otsuka H, Yanoma S, Tsukuda M, Endo N. Molecular analyses of cell origin and detection of circulating tumor cells in the peripheral blood in alveolar soft part sarcoma. Cancer Genet Cytogenet. 2009;190(2):75–80.

    Article  CAS  PubMed  Google Scholar 

  31. Balasubramanian P, Kinders RJ, Kummar S, Gupta V, Hasegawa D, Menachery A, Lawrence SM, Wang L, Ferry-Galow K, Davis D, Parchment RE, Tomaszewski JE, Doroshow JH. Antibody-independent capture of circulating tumor cells of non-epithelial origin with the ApoStream® system. PLoS One. 2017;12(4):e0175414.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kelly KM, Womer RB, Barr FG. Minimal disease detection in patients with alveolar rhabdomyosarcoma using a reverse transcriptase-polymerase chain reaction method. Cancer. 1996;78(6):1320–7.

    Article  CAS  PubMed  Google Scholar 

  33. Li H, Meng QH, Noh H, Somaiah N, Torres KE, Xia X, Batth IS, Joseph CP, Liu M, Wang R, Li S. Cell-surface vimentin-positive macrophage-like circulating tumor cells as a novel biomarker of metastatic gastrointestinal stromal tumors. Onco Targets Ther. 2018;7(5):e1420450.

    Google Scholar 

  34. Zheng Y, Zhang J, Huang M, Wang T, Qu X, Wu L, Song J, Wang W, Song Y, Yang C. selection of aptamers against vimentin for isolation and release of circulating tumor cells undergoing epithelial mesenchymal transition. Anal Chem. 2020;92(7):5178–84.

    Article  CAS  PubMed  Google Scholar 

  35. Martín-Broto J, Pousa AL, Brohl AS, Van Tine BA, Powers B, Stacchiotti S, Blay JY, Hu JS, Oakley GJ 3rd, Wang H, Szpurka AM, Levy DE, Mo G, Ceccarelli M, Jones RL. Circulating tumor cells and biomarker modulation with Olaratumab monotherapy followed by Olaratumab plus doxorubucin : phase Ib study in patients with soft-tissue sarcoma. Mol Cancer Ther. 2021;20:132–41.

    Article  PubMed  Google Scholar 

  36. Satelli A, Brownlee Z, Mitra A, Meng QH, Li S. Circulating tumor cell enumeration with a combination of epithelial cell adhesion molecule- and cell-surface vimentin-based methods for monitoring breast cancer therapeutic response. Clin Chem. 2015;61(1):259–66.

    Article  CAS  PubMed  Google Scholar 

  37. Chen M, Zhao H. Next-generation sequencing in liquid biopsy: cancer screening and early detection. Hum Genomics. 2019;13:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Volckmar AL, Sültmann H, Riediger A, Fioretos T, Schirmacher P, Endris V, Stenzinger A, Dietz S. A field guide for cancer diagnostics using cell-free DNA: from principles to practice and clinical applications. Genes Chromosomes Cancer. 2018;57:123–39.

    Article  CAS  PubMed  Google Scholar 

  39. Coombs CC, Dicherber T, Crompton BD. Chasing ctDNA in patients with sarcoma. Am Soc Clin Oncol Educ Book. 2020;40:e351–60.

    Article  PubMed  Google Scholar 

  40. Namlos HM, Boye K, Meza-Zepeda LA. Cell-free DNA in blood as a noninvasive insight into the sarcoma genome. Mol Aspect Med. 2020;72:100827.

    Article  CAS  Google Scholar 

  41. Barris DM, Weiner SB, Dubin RA, Fremed M, Zhang X, Piperdi S, Zhang W, Maqbool S, Gill J, Roth M, Hoang B, Geller D, Gorlick R, Weiser DA. Detection of circulating tumor DNA in patients with osteosarcoma. Oncotarget. 2018;9:12695–704.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gutteridge A, Rathbone VM, Gibbons R, Bi M, Archard N, Davies KEJ, Brown J, Plagnol V, Pillay N, Amary F, O’Donnell GM, Tirabisco R, Flanagan AM, Forshew T. Digital PCR analysis of circulating tumor DNA: a biomarker for chondrosarcoma diagnosis, prognostication, and residual disease detection. Cancer Med. 2017;6:2194–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shukla NN, Patel JA, Magnan H, Zehir A, You D, Tang J, Meng F, Samoila A, Slotkin EK, Ambati SR, Chou AJ, Wexler LH, Meyers PA, Peerschke EI, Viale A, Berger MF, Ladanyi M. Plasma DNA-based molecular diagnosis, prognostication, and monitoring of patients with EWSR1 fusion-positive sarcomas. JCO Precis Oncologia. 2017;2017:PO.16.00028.

    Google Scholar 

  44. Boonstra PA, Ter Elst A, Tibbesma M, Bosman LJ, Mathijssen R, Atrafi F, van Coevorden F, Steeghs N, Farag S, Gelderblom H, van der Graaf WTA, Desar OME, Maier J, Overbosch J, Suurmeijer AJH, Gitema J, Schuuring E, Reuners AKL. A single digital droplet PCR assay to detect multiple KIT exon 11 mutations in tumor and plasma from patients with gastrointestinal stromal tumors. Oncotarget. 2018;9:13870–83.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Eastley NC, Ottolini B, Neumann R, Luo JL, Hastings RK, Khan I, Moore DA, Esler CP, Shaw JA, Royle NJ, Ashford RU. Circulating tumour-derived DNA in metastatic soft tissue sarcoma. Oncotarget. 2018;9:10549–60.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Namløs HM, Boye K, Mishkin SJ, Barøy T, Lorenz S, Bjerkehagen B, Stratford EW, Munthe E, Kudlow BA, Myklebost O, Meza-Zepeda LA. Noninvasive detection of ctDNA reveals intratumor heterogeneity and is associated with tumor burden in gastrointestinal stromal tumor. Mol Cancer Ther. 2018;17:2473–80.

    Article  PubMed  Google Scholar 

  47. Ogino S, Konishi H, Ichikawa D, Hamada J, Shoda K, Arita T, Komatsu S, Shiozaki A, Okamoto K, Yamazaki S, Yaskuwa S, Konishi E, Otsuji E. Detection of fusion gene in cell-free DNA of a gastric synovial sarcoma. World J Gastroenterol. 2018;24:949–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shulman DS, Klega K, Imamovic-Tuco A, Clapp A, Nag A, Thorner AR, Van Allen E, Ha G, Lessnick SL, Gorlick R, et al. Detection of circulating tumour DNA is associated with inferior outcomes in Ewing sarcoma and osteosarcoma: a report from the Children’s Oncology Group. Br J Cancer. 2018;2018(119):615–21.

    Article  CAS  Google Scholar 

  49. Maier J, Lange T, Kerle I, Specht K, Bruegel M, Wickenhauser C, Jost P, Niederwieser D, Peschel C, Duyster J, von Bubnoff N. Detection of mutant free circulating tumor DNA in the plasma of patients with gastrointestinal stromal tumor harboring activating mutations of CKIT or PDGFRA. Clin Cancer Res. 2013;19:4854–67.

    Article  CAS  PubMed  Google Scholar 

  50. Yoo C, Ryu MH, Na YS, Ryoo BY, Park SR, Kang YK. Analysis of serum protein biomarkers, circulating tumor DNA, and dovitinib activity in patients with tyrosine kinase inhibitor-refractory gastrointestinal stromal tumors. Ann Oncol. 2014;25:2272–7.

    Article  CAS  PubMed  Google Scholar 

  51. Krumbholz M, Hellberg J, Steif B, Bäuerle T, Gillmann C, Fritscher T, Agaimy A, Frey B, Juengert J, Wardelmann E, Hartmann W, Juergens H, Dirksen U, Metzler M. Genomic EWSR1 fusion sequence as highly sensitive and dynamic plasma tumor marker in Ewing sarcoma. Clin Cancer Res. 2016;22:4356–65.

    Article  CAS  PubMed  Google Scholar 

  52. Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164:57–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ulz P, Auer M, Heitzer E. Detection of circulating tumor DNA in the blood of cancer patients: an important tool in cancer chemoprevention. Methods Mol Biol. 2016;1379:45–68.

    Article  CAS  PubMed  Google Scholar 

  54. Riggi N, Knoechel B, Gillespie SM, Rheinbay E, Boulay G, Suvà ML, Rossetti NE, Boonseng WE, Oksuz O, Cook EB, Formey A, Patel A, Gymrek M, Thapar V, Deshpande V, Ting DT, Hornicek FJ, Nielsen GP, Stamenkovic I, Aryee MJ, Bernstein BE, Rivera MN. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell. 2014;26(5):668–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sheffield NC, Pierron G, Klughammer J, Datlinger P, Schönegger A, Schuster M, Hadler J, Surdez D, Guillemot D, Lapouble E, Freneaux P, Champigneulle J, Bouvier R, Walder D, Ambros IM, Hutter C, Sorz E, Amaral AT, de Alava E, Schallmoser K, Strunk D, Rinner B, Liegl-Atzwanger B, Huppertz B, Leithner A, de Pinieux G, Terrier P, Laurence V, Michon J, Ladenstein R, Holter W, Windhager R, Dirksen U, Ambros PF, Delattre O, Kover H, Bock C, Tomazou EM. DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma. Nat Med. 2017;23:386–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tomazou EM, Sheffield NC, Schmidl C, Schuster M, Schönegger A, Datlinger P, Kubicek S, Bock C, Kovar H. Epigenome mapping reveals distinct modes of gene regulation and widespread enhancer reprogramming by the oncogenic fusion protein EWS-FLI1. Cell Rep. 2015;10:1082–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Keller L, Pantel K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat Rev Cancer. 2019;19(10):553–67.

    Article  CAS  PubMed  Google Scholar 

  58. Brown HK, Tellez-Gabriel M, Cartron PF, Vallette FM, Heymann MF, Heymann D. Characterization of circulating tumor cells as a reflection of the tumor heterogeneity: myth or reality? Drug Discov Today. 2019;24(3):763–72.

    Article  PubMed  Google Scholar 

  59. Paoletti C, Cani AK, Larios JM, Hovelson DH, Aung K, Darga EP, Cannell EM, Baratta PJ, Liu CJ, Chu D, Yazdani M, Blevins AR, Sero V, Tokudome N, Thomas DG, Gersch C, Schott AF, Wu YM, Lonigro R, Robinson DR, Chinnaiyan AM, Bischoff FZ, Johnson MD, Park BH, Hayes DF, Rae JM, Tomlins SA. Comprehensive mutation and copy number profiling in archived circulating breast cancer tumor cells. Cancer Res. 2018;78(4):1110–22.

    Article  CAS  PubMed  Google Scholar 

  60. Wu ZJ, Tan JC, Qin X, Liu B, Yuan ZC. Significance of circulating tumor cells in osteosarcoma patients treated by neoadjuvant chemotherapy and surgery. Cancer Manag Res. 2018;10(10):3333–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tellez-Gabriel M, Heymann MF, Heymann D. Circulating tumor cells as a tool for assessing tumor heterogenetity. Theranostics. 2019;9(16):4580–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tellez-Gabriel M, Cochonneau D, Cadé M, Jubellin C, Heymann MF, Heymann D. Circulating tumor cell-derived pre-clinical models for personalized medicine. Cancers (Basel). 2018;11(1):19.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are also grateful to M. Clément Heymann for reviewing the English style.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Heymann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jubelin, C., Cochonneau, D., Moranton, E., Muñoz-Garcia, J., Heymann, D. (2022). Circulating Tumor Cells and ctDNA in Sarcomas. In: Leong, S.P., Nathanson, S.D., Zager, J.S. (eds) Cancer Metastasis Through the Lymphovascular System. Springer, Cham. https://doi.org/10.1007/978-3-030-93084-4_12

Download citation

Publish with us

Policies and ethics