Skip to main content

Chemical Ecology of the North American Newt Genera Taricha and Notophthalmus

  • Chapter
  • First Online:
Progress in the Chemistry of Organic Natural Products 118

Abstract

The North American newt genera Taricha and Notophthalmus (order Caudata) are well known for the combination of potent toxicity, aposematic coloration, and striking defense postures that protects these animals from predation. This suite of traits is centered around the neurotoxin tetrodotoxin, which causes paralysis and death in metazoans by disrupting the initiation and propagation of electrical signals in the nerves and muscles. Tetrodotoxin defends newts from predation across multiple life history stages and its role in generating arms-race coevolution between Taricha newts and garter snake (genus Thamnophis) predators is well studied. However, understanding the broader picture of chemical defenses in Taricha and Notophthalmus requires an expanded comprehension of the defensive chemical ecology of tetrodotoxin that includes possible coevolutionary interactions with insect egg predators, protection against parasites, as well as mimicry complexes associated with tetrodotoxin and aposematic coloration in both genera. Herein the authors review what is known about the structure, function, and pharmacology of tetrodotoxin to explore its evolution and chemical ecology in the North American newt. Focus is made specifically on the origin and possible biosynthesis of tetrodotoxin in these taxa as well as providing an expanded picture of the web of interactions that contribute to landscape level patterns of toxicity and defense in Taricha and Notophthalmus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duellman WE, Trueb L (1994) Biology of amphibians. Johns Hopkins University Press, Baltimore, MD, USA and London, UK

    Google Scholar 

  2. Brodie ED Jr (1983) Antipredator adaptations of salamanders: evolution and convergence among terrestrial species. In: Margaris NS, Arianoutsou-Faraggitaki M, Reiter RJ (eds) Adaptations to terrestrial environments. Springer, Boston, MA, USA, p 109

    Chapter  Google Scholar 

  3. Daly JW (1998) The nature and origin of amphibian alkaloids. In: Cordell GA (ed) The alkaloids: chemistry and biology. Academic Press, San Diego, CA, USA, p 141

    Chapter  Google Scholar 

  4. Gunzburger MS, Travis J (2005) Critical literature review of the evidence for unpalatability of amphibian eggs and larvae. J Herpetol 39:547

    Article  Google Scholar 

  5. Hanifin CT (2010) The chemical and evolutionary ecology of tetrodotoxin (TTX) toxicity in terrestrial vertebrates. Mar Drugs 8:577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nicolas P, Mor A (1995) Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu Rev Microbiol 49:277

    Article  CAS  PubMed  Google Scholar 

  7. Santos JC, Tarvin RD, O’Connell LA (2016) A review of chemical defense in poison frogs (Dendrobatidae): ecology, pharmacokinetics, and autoresistance. Chem Sign Vertebrates 13:305

    Article  Google Scholar 

  8. Saporito RA, Donnelly MA, Spande TF, Garraffo HM (2011) A review of chemical ecology in poison frogs. Chemoecology 22:159

    Article  CAS  Google Scholar 

  9. Cott HB (1940) Adaptive coloration in animals. Methuen and Co., Ltd, London, UK

    Google Scholar 

  10. Daly JW (1995) The chemistry of poisons in amphibian skin. Proc Natl Acad Sci USA 92:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Darst CR, Cummings ME, Cannatella DC (2006) A mechanism for diversity in warning signals: conspicuousness versus toxicity in poison frogs. Proc Natl Acad Sci USA 103:5852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruxton GD, Allen WL, Sherratt TN, Speed MP (2019) Avoiding attack: the evolutionary ecology of crypsis, aposematism, and mimicry. Oxford University Press, Oxford, UK

    Google Scholar 

  13. Johnson PTJ, Calhoun DM, Stokes AN, Susbilla CB, McDevitt-Galles T, Briggs CJ, Hoverman JT, TchachVV, de Rode JC (2018) Of poisons and parasites—the defensive role of tetrodotoxin against infections in newts. J Anim Ecol 87:1192

    Google Scholar 

  14. Macfoy C, Danosus D, Sandit R, Jones TH, Garraffo HM, Spande TF, Daly JW (2005) Alkaloids of anuran skin: antimicrobial function? Z Naturforsch C J Biosci 60:932

    Article  CAS  PubMed  Google Scholar 

  15. Mina AE, Ponti AK, Woodcraft NL, Johnson EE, Saporito RA (2015) Variation in alkaloid-based microbial defenses of the dendrobatid poison frog Oophaga pumilio. Chemoecology 25:169

    Article  CAS  Google Scholar 

  16. Daly JW, Spande TF, Garraffo HM (2005) Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. J Nat Prod 68:1556

    Article  CAS  PubMed  Google Scholar 

  17. Clarke BT (1997) The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol Rev 72:365

    Article  CAS  PubMed  Google Scholar 

  18. Mebs D (2002) Venomous and poisonous animals. MedPharm, Stuttgart, Germany

    Google Scholar 

  19. Evans CM, Brodie ED Jr (1994) Adhesive strength of amphibian skin secretions. J Herpetol 28:499

    Article  Google Scholar 

  20. Kellaway CH (1939) Animal poisons. Annu Rev Biochem 8:541

    Article  CAS  Google Scholar 

  21. Rodriguez C, Rollins-Smith L, Ibanez R, Durant-Archibold AA, Gutierrez M (2017) Toxins and pharmacologically active compounds from species of the family Bufonidae (Amphibia, Anura). J Ethnopharmacol 198:235

    Article  CAS  PubMed  Google Scholar 

  22. Comeault AA, Noonan BP (2011) Spatial variation in the fitness of divergent aposematic phenotypes of the poison frog Dendrobates tinctorius. J Evol Biol 24:1374

    Article  CAS  PubMed  Google Scholar 

  23. Johnson JA, Brodie ED Jr (1975) The selective advantage of the defensive posture of the newt, Taricha granulosa. Am Midl Nat 93:139

    Article  Google Scholar 

  24. Spicer MM, Stokes AN, Chapman TL, Brodie ED Jr, Brodie ED III, Gall BG (2018) An investigation into tetrodotoxin (TTX) levels associated with the red dorsal spots in Eastern newt (Notophthalmus viridescens) efts and adults. J Toxicol 2018:9196865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mochida K (2009) A parallel geographical mosaic of morphological and behavioural aposematic traits of the newt, Cynops pyrrhogaster (Urodela: Salamandridae). Biol J Linn Soc Lond 97:613

    Article  Google Scholar 

  26. Brodie ED Jr (1968) Investigations on the skin toxin of the adult rough-skinned newt, Taricha granulosa. Copeia:307

    Google Scholar 

  27. Brodie ED Jr, Hensel JL Jr, Johnson JA (1974) Toxicity of the urodele amphibians Taricha, Notophthalmus, Cynops and Paramesotriton (Salamandridae). Copeia:506

    Google Scholar 

  28. Brown MS, Mosher HS (1963) Tarichatoxin: isolation and purification. Science 140:295

    Article  CAS  PubMed  Google Scholar 

  29. Buchwald HD, Durham L, Fischer HG, Harada R, Mosher HS, Kao CY, Fuhrman FA (1964) Identity of tarichatoxin and tetrodotoxin. Science 143:474

    Article  CAS  PubMed  Google Scholar 

  30. Catterall WA (1980) Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol 20:15

    Article  CAS  PubMed  Google Scholar 

  31. Catterall WA, Cestele S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T (2007) Voltage-gated ion channels and gating modifier toxins. Toxicon 49:124

    Article  CAS  PubMed  Google Scholar 

  32. Cestele S, Catterall WA (2000) Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82:883

    Article  CAS  PubMed  Google Scholar 

  33. Wakely JF, Fuhrman GJ, Fuhrman FA, Fischer HG, Mosher HS (1966) The occurrence of tetrodotoxin (tarichatoxin) in amphibia and the distribution of the toxin in the organs of newts (Taricha). Toxicon 3:195

    Article  CAS  PubMed  Google Scholar 

  34. Lüddecke T, Schulz S, Steinfartz S, Vences M (2018) A salamander’s toxic arsenal: review of skin poison diversity and function in true salamanders, genus Salamandra. Naturwissenschaften 105:56

    Article  CAS  PubMed  Google Scholar 

  35. Yotsu-Yamashita M, Toennes SW, Mebs D (2017) Tetrodotoxin in Asian newts (Salamandridae). Toxicon 134:14

    Article  CAS  PubMed  Google Scholar 

  36. Brodie ED Jr, Smatresk NJ (1990) The antipredator arsenal of fire salamanders: spraying of secretions from highly pressurized dorsal skin glands. Herpetologica 46:1

    Google Scholar 

  37. Fuhrman FA, Kao CY, Mosher HS, Brown MS (1963) Tarichatoxin—a potent neurotoxin from the California newt. Proc West Pharmacol Soc 6:31

    CAS  PubMed  Google Scholar 

  38. Kao CY, Fuhrman FA (1963) Pharmacological studies on tarichatoxin, a potent neurotoxin. J Pharmacol Exp Ther 140:31

    CAS  PubMed  Google Scholar 

  39. Knepper J, Luddecke T, Preissler K, Vences M, Schulz S (2019) Isolation and identification of alkaloids from poisons of fire salamanders (Salamandra salamandra). J Nat Prod 82:1319

    Article  CAS  PubMed  Google Scholar 

  40. Habermehl G (1967) The steroid alkaloids: the salamandra group. In: Manske RHF (ed) The alkaloids: chemistry and physiology, Supplement to volume V. Academic Press, San Diego, CA, USA, p 427

    Google Scholar 

  41. Mebs D, Pogoda W (2005) Variability of alkaloids in the skin secretion of the European fire salamander (Salamandra salamadra terrestris). Toxicon 45:603

    Article  CAS  PubMed  Google Scholar 

  42. Phisalix M (1922) Animaux venimeus el venins: la fonetion venimense chez tous les animaux: les appareils venimeux; les venins et leurs propriétés; les fonetions et usages des venins; lénvenimation et son traitement. Masson & Co, Paris, France

    Google Scholar 

  43. Heiss E, Natchev N, Salaberger D, Gumpenberger M, Rabanser A, Weisgram J (2010) Hurt yourself to hurt your enemy: new insights on the function of the bizarre antipredator mechanism in the salamandrid Pleurodeles waltl. J Zool 280:156

    Article  Google Scholar 

  44. Nowak RT, Brodie ED Jr (1978) Rib penetration and associated antipredator adaptations in the salamander Pleurodeles waltl (Salamandridae). Copeia:424

    Google Scholar 

  45. Brodie ED Jr, Nussbaum RA, Marianne D (1990) Antipredator adaptations of Asian salamanders (Salamandridae). Herpetologica 40:56

    Google Scholar 

  46. Brodie ED Jr, Nussbaum RA, Yang D-T (1990) Antipredator behavior of Chinese salamanders (Salamandridae). Zool Res 11:7

    Google Scholar 

  47. Jiang W-B, Hakim M, Luo L, Li B-W, Yang S-L, Song Y-Z, Lai R, Lu Q-M (2015) Purification and characterization of cholecystokinin from the skin of salamander Tylototriton verrucosus. Dongwuxue Yanjiu 36:174

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wanninger M, Schwaha T, Heiss E (2018) Form and function of the skin glands in the Himalayan newt Tylototriton verrucosus. Zool Lett:449

    Google Scholar 

  49. Berlinck RGS, Bernardi DI, Fill T, Fernandes AAG, Jurberg ID (2021) The chemistry and biology of guanidine secondary metabolites. Nat Prod Rep 38:586

    Article  CAS  PubMed  Google Scholar 

  50. Brodie ED Jr (1968) Investigations on the skin toxin of the red-spotted newt, Notophthalmus viridescens viridescens. Am Midl Nat 80:276

    Article  Google Scholar 

  51. Bucciarelli GM, Shaffer HB, Green DB, Kats LB (2017) An amphibian chemical defense phenotype is inducible across life history stages. Sci Rep 7:8185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hanifin CT, Brodie ED III, Brodie ED Jr (2003) Tetrodotoxin levels in eggs of the rough-skin newt, Taricha granulosa, are correlated with female toxicity. J Chem Ecol 29:1729

    Article  CAS  PubMed  Google Scholar 

  53. Marion ZH, Hay ME (2011) Chemical defense of the eastern newt (Notophthalmus viridescens): variation in efficiency against different consumers and in different habitats. PLoS One 6:e27581

    Google Scholar 

  54. Zimmer RK, Ferrer RP (2007) Neuroecology, chemical defense, and the keystone species concept. Biol Bull 213:208

    Article  CAS  PubMed  Google Scholar 

  55. Hanifin CT, Gilly WF (2015) Evolutionary history of a complex adaptation: tetrodotoxin resistance in salamanders. Evolution 69:232

    Article  CAS  PubMed  Google Scholar 

  56. Levenson CH, Woodhull AM (1979) The occurrence of a tetrodotoxin-like substance in the red-spotted newt, Notophthalmus viridescens. Toxicon 17:184

    Article  CAS  PubMed  Google Scholar 

  57. Gendreau KL, Hornsby AD, Hague MTJ, McGlothlin JW (2021) Gene conversion facilitates the adaptive evolution of self-resistance in highly toxic newts. Mol Biol Evol 38:4077

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gall BG, Brodie ED III, Brodie ED Jr (2011) Survival and growth of the caddisfly Limnephilus flavastellus after predation on toxic eggs of the rough-skinned newt (Taricha granulosa). Can J Zool 89:483

    Article  Google Scholar 

  59. Hague MTJ, Stokes AN, Feldman CR, Brodie ED Jr, Brodie ED III (2020) The geographic mosaic of arms race coevolution is closely matched to prey population structure. Evol Lett 4:317

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hanifin CT, Brodie ED Jr, Brodie ED III (2008) Phenotypic mismatches reveal escape from arms-race coevolution. PLoS Biol 6:e60

    Google Scholar 

  61. Reimche JS, Brodie ED Jr, Stokes AN, Ely EJ, Moniz HA, Thill VL, Hallas JM, Pfrender ME, Brodie ED III, Feldman CR (2020) The geographic mosaic in parallel: matching patterns of newt tetrodotoxin levels and snake resistance in multiple predator–prey pairs. J Anim Ecol 89:1645

    Article  PubMed  Google Scholar 

  62. Mailho-Fontana PL, Jared C, Antoniazzi MM, Sciani JM, Pimenta DC, Stokes AN, Grant T, Brodie ED III, Brodie ED Jr (2019) Variations in tetrodotoxin levels in populations of Taricha granulosa are expressed in the morphology of their cutaneous glands. Sci Rep 9:18490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuchta SR (2007) Contact zones and species limits: hybridization between lineages of the California newt, Taricha torosa, in the southern Sierra Nevada. Herpetologica 63:332

    Article  Google Scholar 

  64. Rathke M, Eschscholtz F (1833) Fünftes Heft. Zoologischer Atlas, enthaltend Abbildungen und Beschreibungen neuer Thierarten, G Reimer, Berlin, Germany, i–viii, p 1

    Google Scholar 

  65. Skilton AJ (1849) Description of two new reptiles from Oregon. Am J Sci Arts Ser 2:202

    Google Scholar 

  66. Twitty VC (1935) Two new species of Triturus from California. Copeia:73

    Google Scholar 

  67. Petranka JW (1998) Salamanders of the United States and Canada. Smithsonian Institution Press, Washington, DC, USA

    Google Scholar 

  68. Stebbins RC, McGinnis SM (2018) Peterson field guide to western reptiles & amphibians. Houghton Mifflin Harcourt, Boston, MA, USA

    Google Scholar 

  69. Powell R, Conant R, Collins JT (2016) Peterson field guide to reptiles and amphibians of eastern and central North America. Houghton Mifflin Harcourt, Boston, MA, USA

    Google Scholar 

  70. Kudo Y, Hanifin CT, Kotaki Y, Yotsu-Yamashita M (2020) Structures of N-hydroxy-type tetrodotoxin analogues and bicyclic guanidinium compounds found in toxic newts. J Nat Prod 83:2706

    Article  CAS  PubMed  Google Scholar 

  71. Ueyama N, Sugimoto K, Kudo Y, Onodera K, Cho Y, Konoki K, Nishikawa T, Yotsu-Yamashita M (2018) Spiro bicyclic guanidino compounds from pufferfish: possible biosynthetic intermediates of tetrodotoxin in marine environments. Chem Eur J 24:7250

    Article  CAS  PubMed  Google Scholar 

  72. Yotsu-Yamashita M, Abe Y, Kudo Y, Ritson-Williams R, Paul VJ, Konoki K, Cho Y, Adachi M, Imazu T, Nishikawa T, Isobe M (2013) First identification of 5,11-dideoxytetrodotoxin in marine animals, and characterization of major fragment ions of tetrodotoxin and its analogs by high resolution ESI-MS/MS. Mar Drugs 11:2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kudo Y, Hanifin CT, Yotsu-Yamashita M (2021) Identification of tricyclic guanidino compounds from the tetrodotoxin-bearing newt Taricha granulosa. Org Lett 23:3513

    Article  CAS  PubMed  Google Scholar 

  74. Kudo Y, Yasumoto T, Mebs D, Cho Y, Konoki K, Yotsu-Yamashita M (2016) Cyclic guanidine compounds from toxic newts support the hypothesis that tetrodotoxin is derived from a monoterpene. Angew Chem Int Ed Engl 55:8728

    Article  CAS  PubMed  Google Scholar 

  75. Yasumoto T, Yotsu-Yamashita M (1996) Chemical and etiological studies on tetrodotoxin and its analogs. J Toxicol Toxin Rev 15:81

    Article  CAS  Google Scholar 

  76. Yotsu-Yamashita M (2001) Chemistry of puffer fish toxin. J Toxicol Toxin Rev 20:51

    Article  CAS  Google Scholar 

  77. Hanifin CT, Yotsu-Yamashita M, Yasumoto T, Brodie ED III, Brodie ED Jr (1999) Toxicity of dangerous prey: variation of tetrodotoxin levels within and among populations of the newt Taricha granulosa. J Chem Ecol 25:2161

    Article  CAS  Google Scholar 

  78. Yasumoto T, Yotsu M, Murata M, Naoki H (1988) New tetrodotoxin analogs from the newt Cynops ensicauda. J Am Chem Soc 110:2344

    Article  CAS  Google Scholar 

  79. Yotsu M, Iorizzi M, Yasumoto T (1990) Distribution of tetrodotoxin, 6-epitetrodotoxin, and 11-deoxytetrodotoxin in newts. Toxicon 28:238

    Article  CAS  PubMed  Google Scholar 

  80. Yotsu-Yamashita M, Gilhen J, Russell RW, Krysko KL, Melaun C, Kurz A, Kauferstein S, Kordis D, Mebs D (2012) Variability of tetrodotoxin and of its analogues in the red-spotted newt, Notophthalmus viridescens (Amphibia: Urodela: Salamandridae). Toxicon 59:257

    Article  CAS  PubMed  Google Scholar 

  81. Yotsu-Yamashita M, Mebs D (2001) The levels of tetrodotoxin and its analogue 6-epitetrodotoxin in the red-spotted newt, Notophthalmus viridescens. Toxicon 39:1261

    Article  CAS  PubMed  Google Scholar 

  82. Yotsu-Yamashita M, Mebs D (2003) Occurrence of 11-oxotetrodotoxin in the red-spotted newt, Notophthalmus viridescens, and further studies on the levels of tetrodotoxin and its analogues in the newt’s efts. Toxicon 41:893

    Article  CAS  PubMed  Google Scholar 

  83. Yotsu-Yamashita M, Mebs D, Kwet A, Schneider M (2007) Tetrodotoxin and its analogue 6-epitetrodotoxin in newts (Triturus spp.; Urodela, Salamandridae) from southern Germany. Toxicon 50:306

    Google Scholar 

  84. Kotaki Y, Shimizu Y (1993) 1-Hydroxy-5,11-dideoxytetrodotoxin, the first N-hydroxy and ring-deoxy derivative of tetrodotoxin found in the newt Taricha granulosa. J Am Chem Soc 115:827

    Article  CAS  Google Scholar 

  85. Kudo Y, Yamashita Y, Mebs D, Cho Y, Konoki K, Yasumoto T, Yotsu-Yamashita M (2014) C5–C10 directly bonded tetrodotoxin analogues: possible biosynthetic precursors of tetrodotoxin from newts. Angew Chem Int Ed Engl 53:14546

    Article  CAS  PubMed  Google Scholar 

  86. Kudo Y, Yasumoto T, Konoki K, Cho Y, Yotsu-Yamashita M (2012) Isolation and structural determination of the first 8-epi-type tetrodotoxin analogs from the newt, Cynops ensicauda popei, and comparison of tetrodotoxin analogs profiles of this newt and the puffer fish Fugu poecilonotus. Mar Drugs 10:655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kudo Y, Yotsu-Yamashita M (2019) Isolation and biological activity of 8-epitetrodotoxin and the structure of a possible biosynthetic shunt product of tetrodotoxin, Cep-226A, from the newt Cynops ensicauda popei. J Nat Prod 82:1656

    Article  CAS  PubMed  Google Scholar 

  88. Choudhary G, Yotsu-Yamashita M, Shang L, Yasumoto T, Dudley SC Jr (2003) Interactions of the C-11 hydroxyl of tetrodotoxin with the sodium channel outer vestibule. Biophys J 84:287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Narahashi T (2008) Tetrodotoxin: a brief history. Proc Jpn Acad Ser B Phys Biol Sci 84:147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Catterall WA (2012) Voltage-gated sodium channels at 60: structure, function and pathophysiology. J Physiol 590:2577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Narahashi T, Moore JW, Scott WR (1964) Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J Gen Physiol 47:965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bradley SG, Klika LJ (1981) A fatal poisoning from the Oregon rough-skinned newt (Taricha granulosa). J Am Med Assoc 246:247

    Article  CAS  Google Scholar 

  94. Mobley JA, Stidham TA (2000) Great horned owl death from predation of a toxic California newt. Wilson J Ornithol 112:563

    Google Scholar 

  95. Williams BL, Hanifin CT, Brodie ED Jr, Brodie ED III (2010) Tetrodotoxin affects survival probability of rough-skinned newts (Taricha granulosa) faced with TTX-resistant garter snake predators (Thamnophis sirtalis). Chemoecology 20:285

    Article  CAS  Google Scholar 

  96. Zhang P, Papenfuss TJ, Wake MH, Qu L, Wake DB (2008) Phylogeny and biogeography of the family Salamandridae (Amphibia: Caudata) inferred from complete mitochondrial genomes. Mol Phylogenet Evol 49:586

    Article  CAS  PubMed  Google Scholar 

  97. Zhang P, Wake DB (2009) Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes. Mol Phylogenet Evol 53:492

    Article  CAS  PubMed  Google Scholar 

  98. Vaelli PM, Theis KR, Williams JE, O’Connell LA, Foster JA, Eisthen HL (2020) The skin microbiome facilitates adaptive tetrodotoxin production in poisonous newts. eLife 9:e53898

    Google Scholar 

  99. Noguchi T, Arakawa O (2008) Tetrodotoxin—distribution and accumulation in aquatic organisms, and cases of human intoxication. Mar Drugs 6:220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Williams BL (2010) Behavioral and chemical ecology of marine organisms with respect to tetrodotoxin. Mar Drugs 8:381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mebs D, Yotsu-Yamashita M (2021) Acquiring toxicity of a newt, Cynops orientalis. Toxicon 198:32

    Article  CAS  PubMed  Google Scholar 

  102. Lehman EM, Brodie ED Jr, Brodie ED III (2004) No evidence for an endosymbiotic bacterial origin of tetrodotoxin in the newt Taricha granulosa. Toxicon 44:243

    Article  CAS  PubMed  Google Scholar 

  103. Cardall BL, Brodie ED Jr, Brodie ED III, Hanifin CT (2004) Secretion and regeneration of tetrodotoxin in the rough-skin newt (Taricha granulosa). Toxicon 44:933

    Article  CAS  PubMed  Google Scholar 

  104. Hanifin CT, Brodie ED III, Brodie ED Jr (2002) Tetrodotoxin levels of the rough-skin newt, Taricha granulosa, increase in long-term captivity. Toxicon 40:1149

    Article  CAS  PubMed  Google Scholar 

  105. Toledo RD, Jared C (1995) Cutaneous granular glands and amphibian venoms. Comp Biochem Phys A 111:1

    Article  Google Scholar 

  106. Mebs D, Arakawa O, Yotsu-Yamashita M (2010) Tissue distribution of tetrodotoxin in the red-spotted newt Notophthalmus viridescens. Toxicon 55:1353

    Article  CAS  PubMed  Google Scholar 

  107. Stokes AN, Cook DG, Hanifin CT, Brodie ED III, Brodie ED Jr (2011) Sex-biased predation on newts of the genus Taricha by a novel predator and its relationship with tetrodotoxin toxicity. Am Midl Nat 165:389

    Article  Google Scholar 

  108. Tsuruda K, Arakawa O, Noguchi T (2001) Toxicity and toxin profiles of the newt, Cynops pyrrhogaster from western Japan. J Nat Toxins 10:79

    CAS  PubMed  Google Scholar 

  109. Feldman CR, Durso AM, Hanifin CT, Pfrender ME, Ducey PK, Stokes AN, Barnett KE, Brodie ED III, Brodie ED Jr (2016) Is there more than one way to skin a newt? Convergent toxin resistance in snakes is not due to a common genetic mechanism. Heredity 116:84

    Article  CAS  PubMed  Google Scholar 

  110. Mebs D, Yotsu-Yamashita M, Toennes SW (2019) Tetrodotoxin content of rough-skinned newts, Taricha granulosa (Salamandridae), from their northern distribution range, British Columbia, Canada, and Southeast-Alaska, USA. Salamandra 55:82

    Google Scholar 

  111. Yotsu-Yamashita M, Sugimoto A, Takai A, Yasumoto T (1999) Effects of specific modifications of several hydroxyls of tetrodotoxin on its affinity to rat brain membrane. J Pharmacol Exp Ther 289:1688

    CAS  PubMed  Google Scholar 

  112. Twitty V, Johnson H (1934) Motor inhibition in Amblystoma produced by Triturus transplants. Science 80:78

    Article  CAS  PubMed  Google Scholar 

  113. Twitty VC (1937) Experiments on the phenomenon of paralysis produced by a toxin occurring in Triturus embryos. J Exp Zool 76:67

    Article  CAS  Google Scholar 

  114. Twitty VC (1959) Migration and speciation in newts. Science 130:1735

    Article  CAS  PubMed  Google Scholar 

  115. Twitty VC, Elliott HA (1934) The relative growth of the amphibian eye, studied by means of transplantation. J Exp Zool 68:247

    Article  Google Scholar 

  116. Fuhrman FA, Fuhrman GJ, Dull DL, Mosher HS (1969) Toxins from eggs of fishes and amphibia. J Agric Food Chem 17:417

    Article  CAS  Google Scholar 

  117. Mosher H, Fuhrman F, Buchwald H, Fischer H (1964) Tarichatoxin-tetrodotoxin: a potent neurotoxin. Science 144:1100

    Article  CAS  PubMed  Google Scholar 

  118. Brandon RA, Labanick GM, Huheey JE (1979) Relative palatability, defensive behavior, and mimetic relationships of red salamanders (Pseudotriton ruber), mud salamanders (Pseudotriton montanus), and red efts (Notophthalmus viridescens). Herpetologica 35:289

    Google Scholar 

  119. Brandon RA, Labanick GM, Huheey JE (1979) Learned avoidance of brown efts, Notophthalmus viridescens louisianensis (Amphibia, Urodela, Salamandridae), by chickens. J Herpetol 13:171

    Article  Google Scholar 

  120. Brodie ED III, Brodie ED Jr (1991) Evolutionary response of predators to dangerous prey: reduction of toxicity of newts and resistance of garter snakes in island populations. Evolution 45:221

    PubMed  Google Scholar 

  121. Brodie ED III, Feldman CR, Hanifin CT, Motychak JE, Mulcahy DG, Williams BL, Brodie ED Jr (2005) Parallel arms races between garter snakes and newts involving tetrodotoxin as the phenotypic interface of coevolution. J Chem Ecol 31:343

    Article  CAS  PubMed  Google Scholar 

  122. Brodie ED Jr, Ridenhour BJ, Brodie ED III (2002) The evolutionary response of predators to dangerous prey: hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution 56:2067

    Article  PubMed  Google Scholar 

  123. Gall BG, Stokes AN, French SS, Brodie ED Jr (2012) Predatory caddisfly larvae sequester tetrodotoxin from their prey, eggs of the rough-skinned newt (Taricha granulosa). J Chem Ecol 38:1351

    Article  CAS  PubMed  Google Scholar 

  124. Gall BG, Stokes AN, French SS, Brodie ED III, Brodie ED Jr (2012) Female newts (Taricha granulosa) produce tetrodotoxin laden eggs after long term captivity. Toxicon 60:1057

    Article  CAS  PubMed  Google Scholar 

  125. Gall BG, Stokes AN, Pett JJ, Spivey KL, French SS, Brodie ED III, Brodie ED Jr (2014) Tetrodotoxin concentrations within a clutch and across embryonic development in eggs of the rough-skinned newts (Taricha granulosa). Toxicon 90:249

    Article  CAS  PubMed  Google Scholar 

  126. Bucciarelli GM, Green DB, Shaffer HB, Kats LB (2016) Individual fluctuations in toxin levels affect breeding site fidelity in a chemically defended amphibian. Proc R Soc B: Biol Sci 283:20160468

    Article  CAS  Google Scholar 

  127. Ferrer RP, Zimmer RK (2007) The scent of danger: arginine as an olfactory cue of reduced predation risk. J Exp Biol 210:1768

    Article  CAS  PubMed  Google Scholar 

  128. Zimmer RK, Schar DW, Ferrer RP, Krug PJ, Kats LB, Michel WC (2006) The scent of danger: tetrodotoxin (TTX) as an olfactory cue of predation risk. Ecol Monogr 76:585

    Article  Google Scholar 

  129. Chapman TL, Spivey KL, Lundergan JM, Schmitz AL, Bast DL, Sehr EK, Gall BG (2017) Only fear the fatal foe: predation risk assessment by eastern newts (Notophthalmus viridescens) in response to common snapping turtles and other potential predators. Ethol Ecol Evol 29:218

    Article  Google Scholar 

  130. Hurlbert SH (1970) Predator responses to the vermilion-spotted newt (Notophthalmus viridescens). J Herpetol 4:47

    Article  Google Scholar 

  131. Mebs D, Yotsu-Yamashita M, Arakawa O (2016) The praying mantis (Mantodea) as predator of the poisonous red-spotted newt Notophthalmus viridescens (Amphibia: Urodela: Salamandridae). Chemoecology 26:121

    Article  Google Scholar 

  132. Shure DJ, Wilson LA, Hochwender C (1989) Predation on aposematic efts of Notophthalmus viridescens. J Herpetol 23:437

    Article  Google Scholar 

  133. Wrynn TE, Gall BG (2019) Palatability and defense of eastern newt (Notophthalmus viridescens) larvae and metamorphic juveniles against predatory dragonfly nymphs. Northeast Nat (Steuben) 26:849

    Article  Google Scholar 

  134. Brodie ED III, Brodie ED Jr (1980) Differential avoidance of mimetic salamanders by free-ranging birds. Science 208:181

    Article  PubMed  Google Scholar 

  135. Howard RR, Brodie ED Jr (1971) Experimental study of mimicry in salamanders involving Notophthalmus viridescens viridescens and Pseudotriton ruber Schencki. Nature 233:277

    Article  CAS  PubMed  Google Scholar 

  136. Howard RR, Brodie ED Jr (1973) A batesian mimetic complex in salamanders: responses of avian predators. Herpetologica 29:33

    Google Scholar 

  137. Kuchta SR (2005) Experimental support for aposematic coloration in the salamander Ensatina eschscholtzii xanthoptica: implications for mimicry of Pacific newts. Copeia:265

    Google Scholar 

  138. Kuchta SR, Krakauer AH, Sinervo B (2008) Why does the yellow-eyed ensatina have yellow eyes? Batesian mimicry of Pacific newts (genus Taricha) by the salamander Ensatina eschscholtzii xanthoptica. Evolution 62:984

    Article  PubMed  Google Scholar 

  139. McAllister K, Skriletz J, Hall B, Garner M (1997) Taricha granulosa (roughskin newt) toxicity. Herpetol Rev 28:82

    Google Scholar 

  140. Pimentel RA (1952) Studies on the biology of Salamandra (Triton) granulosa Skilton, 1849. A, J Sci Arts Ser 2(7):202

    Google Scholar 

  141. Zimmer C, Emlen DJ (2016) Evolution: making sense of life, 2nd edn. WH Freeman & Co, New York, NY, USA

    Google Scholar 

  142. Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago, IL, USA

    Book  Google Scholar 

  143. Brodie ED III, Brodie ED Jr (1990) Tetrodotoxin resistance in garter snakes: an evolutionary response of predators to dangerous prey. Evolution 44:651

    Article  PubMed  Google Scholar 

  144. Feldman CR, Brodie ED Jr, Brodie ED III, Pfrender ME (2009) The evolutionary origins of beneficial alleles during the repeated adaptation of garter snakes to deadly prey. Proc Natl Acad Sci USA 106:13415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gregory PT, Nelson KJ (1991) Predation on fish and intersite variation in the diet of common garter snakes, Thamnophis sirtalis, on Vancouver Island. Can J Zool 69:988

    Article  Google Scholar 

  146. Durso AM, Neuman-Lee LA, Hopkins GR, Brodie ED Jr (2021) Stable isotope analysis suggests that tetrodotoxin-resistant common garter snakes (Thamnophis sirtalis) rarely feed on newts in the wild. Can J Zool 99:331

    Article  CAS  Google Scholar 

  147. Wilson N, Stokes A, Hopkins G, Brodie ED Jr, Williams C (2014) Functional and physiological resistance of crayfish to amphibian toxins: tetrodotoxin resistance in the white river crayfish (Procambarus acutus). Can J Zool 92:939

    Article  CAS  Google Scholar 

  148. Twitty VC (1966) Of scientists and salamanders. WH Freeman & Co, New York, NY, USA

    Google Scholar 

  149. Lehman EM (2006) Egg toxicity and egg predation in rough-skinned newts, Taricha granulosa. Master’s thesis, Indiana University, Bloomington, IN, USA

    Google Scholar 

  150. Gall BG, Stokes AN, French SS, Schlepphorst EA, Brodie ED III, Brodie ED Jr (2011) Tetrodotoxin levels in larval and metamorphosed newts (Taricha granulosa) and palatability to predatory dragonflies. Toxicon 57:978

    Article  CAS  PubMed  Google Scholar 

  151. Jacisin JJ, Hopkins SSB (2018) A redescription and phylogenetic analysis based on new material of the fossil newts Taricha oligocenica Van Frank, 1955 and Taricha lindoei Naylor, 1979 (Amphibia, Salamandridae) from the Oligocene of Oregon. J Paleontol 92:713

    Article  Google Scholar 

  152. Thorp JH, Wallace JB, Georgian TJ Jr (1986) Untangling the web of caddisfly evolution and distribution. Oikos 47:253

    Article  Google Scholar 

  153. Mebs D, Yotsu-Yamashita M, Seitz HM, Arakawa O (2012) Tetrodotoxin does not protect red-spotted newts, Notophthalmus viridescens, from intestinal parasites. Toxicon 60:66

    Article  CAS  PubMed  Google Scholar 

  154. Mebs D, Yotsu-Yamashita M, Hartmann K, Elbert C, Zehner R, Toennes SW (2020) Revisited-failure of tetrodotoxin to protect red-spotted newts, Notophthalmus viridescens, from endoparasites. Toxicon 178:77

    Article  CAS  PubMed  Google Scholar 

  155. Schafer W (2016) Nematode nervous systems. Curr Biol 26:R955

    Article  CAS  PubMed  Google Scholar 

  156. Highton R (1998) Is Ensatina eschscholtzii a ring-species? Herpetologica 54:254

    Google Scholar 

  157. Kuchta SR, Parks DS, Mueller RL, Wake DB (2009) Closing the ring: historical biogeography of the salamander ring species Ensatina eschscholtzii. J Biogeogr 36:982

    Article  Google Scholar 

  158. Moritz C, Schneider CJ, Wake DB (1992) Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Syst Biol 41:273

    Article  Google Scholar 

  159. Williams BL, Brodie ED Jr (2004) A resistant predator and its toxic prey: persistence of newt toxin leads to poisonous (not venomous) snakes. J Chem Ecol 30:1901

    Article  CAS  PubMed  Google Scholar 

  160. Hutchinson DA, Mori A, Savitzky AH, Burghardt GM, Wu X, Meinwald J, Schroeder FC (2007) Dietary sequestration of defensive steroids in nuchal glands of the Asian snake Rhabdophis tigrinus. Proc Natl Acad Sci USA 104:2265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Sophia Hanifin provided original line illustrations for Fig. 1. Charles T. Hanifin would like to thank E. D. Brodie Jr. for extensive conversations and input associated with this chapter. In addition, he provided all photographs except the one of Ensatina eschscholtzii xanthoptica, which is due to R.W. Van Devender. Work associated with the biochemistry, pharmacology, and analysis of tetrodotoxin was funded (in part) by the Japan Society for the Promotion of Science (JSPS) through its KAKENHI Grant-in-Aid for Innovative Area, Frontier Research on Redesigning Biosynthetic Machineries (no. JP19H04636) (to Y.K.). Other support was from a Chemical Communications grant (no. JP17H06406), a grant for Scientific Research (no. JP20H02921), a grant for Exploratory Research (no. JP19K22266), grants-in-aid for Research Activity start-up (JP18H05997 and JP19K21141), and a grant for Young Scientists (JP20K15405) (all to Y.K.). This work was supported also by the Uehara Memorial Foundation (to M.Y.Y.) and the Naito Foundation (to Y.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles T. Hanifin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanifin, C.T., Kudo, Y., Yotsu-Yamashita, M. (2022). Chemical Ecology of the North American Newt Genera Taricha and Notophthalmus. In: Kinghorn, A.D., Falk, H., Gibbons, S., Asakawa, Y., Liu, JK., Dirsch, V.M. (eds) Progress in the Chemistry of Organic Natural Products 118. Progress in the Chemistry of Organic Natural Products, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-030-92030-2_3

Download citation

Publish with us

Policies and ethics