Skip to main content

Measurement of Cortical Bone Elasticity Tensor with Resonant Ultrasound Spectroscopy

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1364))

Abstract

Resonant Ultrasound Spectroscopy estimates the stiffness coefficients of a material from the free resonant frequencies of a single specimen. It is particularly suitable for complete stiffness characterization of anisotropic materials available only as small samples (typically a few mm), and it does not suffer from some limitations associated to quasi-static mechanical test and ultrasound wave velocity measurements. RUS has been used for decades on geological samples and single crystals, but was until recently not applied to mineralized tissues such as bone. The reason is the significant mechanical damping presents in these materials, which causes the resonant peaks to overlap and prevent a direct measurement of the resonant frequencies. This chapter describes the use of RUS for the elastic characterization of mineralized tissues, cortical bone in particular. All steps are described, from sample preparation and measurement setup to signal processing and data analysis, including the developments and adaptions necessary to overcome the difficulties linked to damping. Viscoelastic characterization, from the width of the resonant peaks, is also presented. Mostly technical aspects are developed in this chapter, while the data obtained from RUS on several collections of mineralized tissues specimens are presented and discussed in Chap. 13.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This is true if we neglect energy leakage due to coupling with air and losses at contact points with the transducers. In the case of highly attenuative materials such as bone (Q −1 ≈ 1∕30), this is perfectly acceptable. Dissipation due to coupling with air is of the order of Q −1 ≈ 10−4 (Yoneda, 2002). Dissipation due to contact with the transducers depends on the setup, but was measured to be as low as Q −1 ≈ 10−6 (Migliori & Maynard, 2005).

References

  • Bernard, S. (2014). Resonant Ultrasound Spectroscopy for the Viscoelastic Characterization of Cortical Bone. PhD thesis, Université Paris VI - Pierre et Marie Curie.

    Google Scholar 

  • Bernard, S., Grimal, Q., & Laugier, P. (2013). Accurate measurement of cortical bone elasticity tensor with resonant ultrasound spectroscopy. Journal of the Mechanical Behavior of Biomedical Materials, 18, 12–19.

    Article  PubMed  Google Scholar 

  • Bernard, S., Grimal, Q., & Laugier, P. (2014). Resonant ultrasound spectroscopy for viscoelastic characterization of anisotropic attenuative solid materials. Journal of the Acoustical Society of America, 135(5), 2601–2613.

    Article  PubMed  Google Scholar 

  • Bernard, S., Marrelec, G., Laugier, P., & Grimal, Q. (2015). Bayesian normal modes identification and estimation of elastic coefficients in resonant ultrasound spectroscopy. Inverse Problems, 31(6), 065010.

    Article  Google Scholar 

  • Bernard, S., Schneider, J., Varga, P., Laugier, P., Raum, K., & Grimal, Q. (2016). Elasticity–density and viscoelasticity–density relationships at the tibia mid-diaphysis assessed from resonant ultrasound spectroscopy measurements. Biomechanics and Modeling in Mechanobiology, 15(1), 97–109

    Article  PubMed  Google Scholar 

  • Bower, A. F. (2009). Applied mechanics of solids. Bocca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Cai, X., Brenner, R., Peralta, L., Olivier, C., Gouttenoire, P.-J., Chappard, C., Peyrin, F., Cassereau, D., Laugier, P., & Grimal, Q. (2019). Homogenization of cortical bone reveals that the organization and shape of pores marginally affect elasticity. Journal of the Royal Society Interface, 16(151), 20180911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, X., Peralta, L., Giron, A., Helfen, L., Olivier, C., Peyrin, F., Laugier, P., & Grimal, Q. (2017a). Cortical bone elasticity measured by resonant ultrasound spectroscopy is not altered by defatting and synchrotron X-ray imaging. Journal of the Mechanical Behavior of Biomedical Materials, 72, 241–245.

    Article  CAS  PubMed  Google Scholar 

  • Cai, X., Peralta, L., Gouttenoire, P.-J., Olivier, C., Peyrin, F., Laugier, P., & Grimal, Q. (2017b). Quantification of stiffness measurement errors in resonant ultrasound spectroscopy of human cortical bone. Journal of the Acoustical Society of America, 142(5), 2755–2765.

    Article  PubMed  Google Scholar 

  • Casella, G., & George, E. I. (1992). Explaining the gibbs sampler. The American Statistician, 46(3):167–174.

    Google Scholar 

  • Delaunay, T., Morvan, B., Guennou, M., Dammak, H., Thi, M. P., & Feuillard, G. (2008). Full tensorial characterization of PZN-12PT single crystal by resonant ultrasound spectroscopy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55(2), 476–488.

    Article  PubMed  Google Scholar 

  • Demarest, H. H. (1971). Cube resonance method to determine the elastic constants of solids. Journal of the Acoustical Society of America, 49(3B), 768–775.

    Article  Google Scholar 

  • Duda, G. N., Heller, M., Albinger, J., Schulz, O., Schneider, E., & Claes, L. (1998). Influence of muscle forces on femoral strain distribution. Journal of Biomechanics, 31(9), 841–846.

    Article  CAS  PubMed  Google Scholar 

  • Espinoza Orias, A. A., Deuerling, J. M., Landrigan, M. D., Renaud, J. E., & Roeder, R. K. (2008). Anatomic variation in the elastic anisotropy of cortical bone tissue in the human femur. Journal of the Mechanical Behavior of Biomedical Materials, 2, 255–263.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan, F., Cai, X., Follet, H., Peyrin, F., Laugier, P., Niu, H., Grimal, Q. (2021). Cortical bone viscoelastic damping assessed with resonant ultrasound spectroscopy reflects porosity and mineral content. Journal of the Mechanical Behavior of Biomedical Materials, 117, 104388.

    Article  CAS  PubMed  Google Scholar 

  • Fan, F., Feng, D., Wang, R., Zhang, Q., & Niu, H. (2017). The elasticity coefficients measurement of human dentin based on RUS. BioMed Research International, 2017, 7852971.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser, D. B., & LeCraw, R. C. (1964). Novel method of measuring elastic and anelastic properties of solids. Review of Scientific Instruments, 35(9), 1113–1115.

    Article  CAS  Google Scholar 

  • Fratzl, P. (2007). Biomimetic materials research: what can we really learn from nature’s structural materials? Journal of the Royal Society Interface, 4(15), 637–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd edn.) Boca Raton: CRC Press.

    Book  Google Scholar 

  • Geman, S., & Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.

    Article  CAS  PubMed  Google Scholar 

  • Gilks, W., Richardson, S., & Spiegelhalter, D. (1995). Markov Chain Monte Carlo in Practice. London, UK: Chapman & Hall.

    Book  Google Scholar 

  • Granke, M., Grimal, Q., Saïed, A., Nauleau, P., Peyrin, F., & Laugier, P. (2011). Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women. Bone, 49(5), 1020–1026.

    Article  PubMed  Google Scholar 

  • Grimal, Q., Haupert, S., Mitton, D., Vastel, L., & Laugier, P. (2009). Assessment of cortical bone elasticity and strength: Mechanical testing and ultrasound provide complementary data. Medical Engineering & Physics, 31(9), 1140–1147.

    Article  Google Scholar 

  • Grimal, Q., Raum, K., Gerisch, A., & Laugier, P. (2011). A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties. Biomechanics and Modeling in Mechanobiology, 10(6), 925–937.

    Article  PubMed  Google Scholar 

  • Haïat, G. (2011). Linear ultrasonic properties of cortical bone: In vitro studies. In P. laugier & G. Haïat (Ed.), Bone quantitative ultrasound (pp. 331–360). New York: Springer.

    Google Scholar 

  • Iyo, T., Maki, Y., Sasaki, N., & Nakata, M. (2004). Anisotropic viscoelastic properties of cortical bone. Journal of Biomechanics, 37(9), 1433–1437.

    Article  PubMed  Google Scholar 

  • Kang, Q., An, Y., & Friedman, R. (1997). Effects of multiple freezing-thawing cycles on ultimate indentation load and stiffness of bovine cancellous bone. American Journal of Veterinary Research, 58(10), 1171–1173.

    CAS  PubMed  Google Scholar 

  • Kinney, J. H., Gladden, J. R., Marshall, G. W., Marshall, S. J., So, J. H., & Maynard, J. D. (2004). Resonant ultrasound spectroscopy measurements of the elastic constants of human dentin. Journal of Biomechanics, 37(4), 437–441.

    Article  CAS  PubMed  Google Scholar 

  • Kroese, D. P., Taimre, T., & Botev, Z. I. (2011). Handbook of Monte Carlo Methods. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Kumaresan, R., & Tufts, D. (1982). Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing, 30(6), 833–840.

    Article  Google Scholar 

  • Lakes, R. (2009). Viscoelastic materials. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lakes, R., Yoon, H. S., & Katz, J. L. (1986). Ultrasonic wave propagation and attenuation in wet bone. Journal of Biomedical Engineering, 8(2), 143–148.

    Article  CAS  PubMed  Google Scholar 

  • Lakes, R. S., & Katz, J. L. (1979). Viscoelastic properties of wet cortical bone – II. Relaxation mechanisms. Journal of Biomechanics, 12(9), 679–687.

    Article  CAS  PubMed  Google Scholar 

  • Lamb, H. (1882). On the vibrations of an elatic sphere. Proceedings of the London Mathematical Society, 13, 189–212.

    Google Scholar 

  • Landa, M., Sedlák, P., Seiner, H., Heller, L., Bicanová, L., Šittner, P., & Novák, V. (2009). Modal resonant ultrasound spectroscopy for ferroelastics. Applied Physics A, 96, 557–567.

    Article  CAS  Google Scholar 

  • Laugier, P. (2008). Instrumentation for in vivo ultrasonic characterization of bone strength. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55(6), 1179–1196.

    Article  PubMed  Google Scholar 

  • Lebedev, A. V. (2002). Method of linear prediction in the ultrasonic spectroscopy of rock. Acoustical Physics, 48, 339–346.

    Article  Google Scholar 

  • Ledbetter, H., Fortunko, C., & Heyliger, P. (1995). Orthotropic elastic constants of a boron-aluminum fiber-reinforced composite: An acoustic-resonance-spectroscopy study. Journal of Applied Physics, 78(3), 1542–1546.

    Article  CAS  Google Scholar 

  • Ledbetter, H., Ogi, H., & Nakamura, N. (2004). Elastic, anelastic, piezoelectric coefficients of monocrystal lithium niobate. Mechanics of Materials, 36(10), 941–947.

    Article  Google Scholar 

  • Lee, T., Lakes, R. S., & Lal, A. (2002). Investigation of bovine bone by resonant ultrasound spectroscopy and transmission ultrasound. Biomechanics and Modeling in Mechanobiology, 1, 165–175.

    Article  CAS  PubMed  Google Scholar 

  • Leisure, R., Foster, K., Hightower, J., & Agosta, D. (2004). Internal friction studies by resonant ultrasound spectroscopy. Materials Science and Engineering A, 370, 34–40.

    Article  Google Scholar 

  • Li, G., & Gladden, J. R. (2010). High temperature resonant ultrasound spectroscopy: A review. International Journal of Spectroscopy, 2010. Article ID 206362

    Google Scholar 

  • Liu, G., & Maynard, J. (2012). Measuring elastic constants of arbitrarily shaped samples using resonant ultrasound spectroscopy. Journal of the Acoustical Society of America, 131(3), 2068–2078.

    Article  PubMed  Google Scholar 

  • Longo, R., Delaunay, T., Laux, D., El Mouridi, M., Arnould, O., & Le Clezio, E. (2012). Wood elastic characterization from a single sample by resonant ultrasound spectroscopy. Ultrasonics, 52(8), 971–974.

    Article  CAS  PubMed  Google Scholar 

  • Love, A. (1944). A treatise on the mathematical theory of elasticity. Mineola: Dover Pubilcations.

    Google Scholar 

  • MacKay, D. J. C. (2003). Information theory, inference, and learning algorithms. Cambridge: Cambridge University Press.

    Google Scholar 

  • Martin, R., & Sharkey, N. (2001). Mechanical effects of postmortem changes, preservation, and allograft bone treatments. In S. C. Cowin (Ed.), Bone mechanics handbook (2nd ed., pp. 20–1–20–24). Boca Raton: CRC Press.

    Google Scholar 

  • Maynard, J. D. (1992). The use of piezoelectric film and ultrasound resonance to determine the complete elastic tensor in one measurement. Journal of the Acoustical Society of America, 91(3), 1754–1762.

    Article  CAS  PubMed  Google Scholar 

  • Migliori, A., & Maynard, J. D. (2005). Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens. Review of Scientific Instruments, 76(12), 121301.

    Article  Google Scholar 

  • Migliori, A., & Sarrao, J. L. (1997). Resonant ultrasound spectroscopy: Applications to physics, materials measurements, and nondestructive evaluation. New York: Wiley.

    Google Scholar 

  • Migliori, A., Sarrao, J. L., Visscher, W. M., Bell, T. M., Lei, M., Fisk, Z., & Leisure, R. G. (1993). Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids. Physica B, 183(1–2), 1–24.

    Article  CAS  Google Scholar 

  • Migliori, A., Visscher, W. M., Brown, S. E., Fisk, Z., Cheong, S.-W., Alten, B., Ahrens, E. T., Kubat-Martin, K. A., Maynard, J. D., Huang, Y., Kirk, D. R., Gillis, K. A., Kim, H. K., and Chan, M. H. W. (1990). Elastic constants and specific-heat measurements on single crystals of La2CuO4. Physical Review B, 41, 2098–2102.

    Article  CAS  Google Scholar 

  • Mindlin, R. D. (1956). Simple modes of vibration of crystals. Journal of Applied Physics, 27(12), 1462–1466.

    Article  CAS  Google Scholar 

  • Niu, H., Fan, F., Wang, R., Zhang, Q., Shen, F., Ren, P., Liu, T., Fan, Y., & Laugier, P. (2019). Elastic properties measurement of human enamel based on resonant ultrasound spectroscopy. Journal of the Mechanical Behavior of Biomedical Materials, 89, 48–53.

    Article  PubMed  Google Scholar 

  • Ogi, H., Nakamura, N., Sato, K., Hirao, M., & Uda, S. (2003). Elastic, anelastic, and piezoelectric coefficients of langasite: Resonance ultrasound spectroscopy with laser-doppler interferometry. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50(5), 553–560.

    Article  Google Scholar 

  • Ogi, H., Sato, K., Asada, T., & Hirao, M. (2002). Complete mode identification for resonance ultrasound spectroscopy. Journal of the Acoustical Society of America, 112(6), 2553–2557.

    Article  PubMed  Google Scholar 

  • Ohno, I. (1976). Free vibration of a rectangular parallelepiped crystal and its application to determination of elastic constants of orthorhombic crystals. Journal of Physics of the Earth, 24, 355–379.

    Article  CAS  Google Scholar 

  • Ohno, I. (1990). Rectangular parallellepiped resonance method for piezoelectric crystals and elastic constants of alpha-quartz. Physics and Chemistry of Minerals, 17(5), 371–378.

    Article  CAS  Google Scholar 

  • Ohno, I., Yamamoto, S., Anderson, O. L., and Noda, J. (1986). Determination of elastic constants of trigonal crystals by the rectangular parallelepiped resonance method. Journal of Physics and Chemistry of Solids, 47(12), 1103–1108.

    Article  CAS  Google Scholar 

  • Peralta, L., Cai, X., Laugier, P., & Grimal, Q. (2017). A critical assessment of the in-vitro measurement of cortical bone stiffness with ultrasound. Ultrasonics, 80, 119–126.

    Article  CAS  PubMed  Google Scholar 

  • Peralta, L., Maeztu Redin, J. D., Fan, F., Cai, X., Laugier, P., Schneider, J., Raum, K., & Grimal, Q. (2021). Bulk wave velocities in cortical bone reflect porosity and compression strength. Ultrasound in Medicine and Biology, 47(3), 799–808.

    Article  PubMed  Google Scholar 

  • Plesek, J., Kolman, R., & Landa, M. (2004). Using finite element method for the determination of elastic moduli by resonant ultrasound spectroscopy. Journal of the Acoustical Society of America, 116(1), 282–287.

    Article  Google Scholar 

  • Remillieux, M. C., Ulrich, T., Payan, C., Rivière, J., Lake, C. R., & Le Bas, P.-Y. (2015). Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry. Journal of Geophysical Research: Solid Earth, 120(7), 4898–4916.

    Article  Google Scholar 

  • Rho, J.-Y. (1996). An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone. Ultrasonics, 34(8), 777–783.

    Article  CAS  PubMed  Google Scholar 

  • Rohrbach, D., Lakshmanan, S., Peyrin, F., Langer, M., Gerisch, A., Grimal, Q., Laugier, P., & Raum, K. (2012). Spatial distribution of tissue level properties in a human femoral cortical bone. Journal of Biomechanics, 45(13), 2264–2270.

    Article  PubMed  Google Scholar 

  • Rudy, D. J., Deuerling, J. M., Orias, A. A. E., & Roeder, R. K. (2011). Anatomic variation in the elastic inhomogeneity and anisotropy of human femoral cortical bone tissue is consistent across multiple donors. Journal of Biomechanics, 44(9), 1817–1820.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schreiber, E., & Anderson, O. L. (1970). Properties and composition of lunar materials: Earth analogies. Science, 168(3939), 1579–1580.

    Article  CAS  PubMed  Google Scholar 

  • Seiner, H., Sedlak, P., Bodnarova, L., Kruisova, A., Landa, M., de Pablos, A., & Belmonte, M. (2012). Sensitivity of the resonant ultrasound spectroscopy to weak gradients of elastic properties. Journal of the Acoustical Society of America, 131(5), 3775–3785.

    Article  PubMed  Google Scholar 

  • Semaan, M., Mora, P., Bernard, S., Launay, F., Payan, C., Lasaygues, P., Pithioux, M., & Baron, C. (2019). Assessment of elastic coefficients of child cortical bone using resonant ultrasound spectroscopy. Journal of the Mechanical Behavior of Biomedical Materials, 90, 40–44.

    Article  PubMed  Google Scholar 

  • Sievänen, H., Cheng, S., Ollikainen, S., & Uusi-Rasi, K. (2001). Ultrasound velocity and cortical bone characteristics in vivo. Osteoporosis International, 12(5), 399–405.

    Article  PubMed  Google Scholar 

  • Spoor, P. S., Maynard, J. D., & Kortan, A. R. (1995). Elastic isotropy and anisotropy in quasicrystalline and cubic AlCuLi. Physical Review Letters, 75, 3462–3465.

    Article  CAS  PubMed  Google Scholar 

  • Tarantola, A. (2005). Inverse Problem Theory and methods for model parameters estimation. New York: SIAM.

    Book  Google Scholar 

  • Ulrich, T., McCall, K. R., & Guyer, R. A. (2002). Determination of elastic moduli of rock samples using resonant ultrasound spectroscopy. Journal of the Acoustical Society of America, 111(4), 1667–1674.

    Article  CAS  PubMed  Google Scholar 

  • Visscher, W. M., Migliori, A., Bell, T. M., & Reinert, R. A. (1991). On the normal modes of free vibration of inhomogeneous and anisotropic elastic objects. Journal of the Acoustical Society of America, 90(4), 2154–2162

    Article  Google Scholar 

  • Wang, R., Fan, F., Zhang, Q., Li, X., Niu, H., & Laugier, P. (2019). Elastic constants identification of irregular hard biological tissue materials using fem-based resonant ultrasound spectroscopy. Journal of the Mechanical Behavior of Biomedical Materials, 96, 20–26.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. C., & Lakes, R. S. (2003). Resonant ultrasound spectroscopy in shear mode. Review of Scientific Instruments, 74(3), 1371–1373.

    Article  CAS  Google Scholar 

  • Xu, K., Marrelec, G., Bernard, S., & Grimal, Q. (2018). Lorentzian-model-based Bayesian analysis for automated estimation of attenuated resonance spectrum. IEEE Transactions on Signal Processing, 67(1), 4–16.

    Article  Google Scholar 

  • Yoneda, A. (2002). Intrinsic eigenvibration frequency in the resonant ultrasound spectroscopy: Evidence for a coupling vibration between a sample and transducers. Earth Planets Space, 54(7), 763–770.

    Article  Google Scholar 

  • Zhang, Q., Fan, F., Wang, R., Niu, H., & Laugier, P. (2019). A resonant frequency retrieving method for low q-factor materials based on resonant ultrasound spectroscopy. Ultrasonics, 99, 105971.

    Article  PubMed  Google Scholar 

  • Zhang, Q., Shen, F., Fan, F., Wang, R., Wang, Y., & Niu, H. (2020). A method for identifying false positive frequencies extracted from resonant ultrasound spectra for highly dissipative materials. Journal of Applied Physics, 128(15), 154902.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Bernard .

Editor information

Editors and Affiliations

Appendix: Anisotropic Elasticity

Appendix: Anisotropic Elasticity

Hooke’s law for continuum media is a tensorial relation between the stress tensor σ, the linear strain tensor 𝜖, and the fourth-order stiffness tensor \(\mathbb {C}\)

$$\displaystyle \begin{aligned} \sigma_{ij}=C_{ijkl}\epsilon_{kl}, {} \end{aligned} $$
(12.23)

where 𝜖 is related to the displacement u, in the Cartesian frame (x 1, x 2, x 3),

$$\displaystyle \begin{aligned} \epsilon_{kl}=\frac{1}{2}\left(\frac{\partial u_k}{\partial x_l}+ \frac{\partial u_l}{\partial x_k}\right). {} \end{aligned} $$
(12.24)

Due to the thermodynamics of reversible deformations and to symmetry of the stain and stress tensors, \(\mathbb {C}\) has at most 21 independent coefficients (Bower, 2009). In a reduced two index notation called Voigt notation, Hooke’s law (12.23) can be expressed as

(12.25)

where pairs of subscripts for the stiffness tensor in Hooke’s law (12.23) have been mapped to a single subscript: 1 ⇔ 11; 2 ⇔ 22; 3 ⇔ 33; 4 ⇔ 23; 5 ⇔ 13; 6 ⇔ 12.

If the material possesses symmetries, this relation further simplifies. For an orthotropic material (three orthogonal mirror symmetry planes) the stiffness tensor has only nine independent non-zero coefficients in the coordinate system defined by the symmetry directions

(12.26)

If the material is transversely isotropic (one axis of cylindrical symmetry) only five coefficients remains independent, as the following relations hold: C 11 = C 22, C 13 = C 23, C 44 = C 55, and C 12 = C 11 − 2C 44 (for symmetry around axis 3, which for bone is chosen to be aligned with the axial direction of long bones, and hence aligned with the main orientation of the pores). Finally, if the material is isotropic, only two coefficients remain independent as C 11 = C 22 = C 33, C 44 = C 55 = C 66, and C 12 = C 13 = C 23 = C 11 − 2C 44.

Hooke’s law (12.23) can be inverted to yield 𝜖 = C −1 : σ, where the inverse of the stiffness tensor is called the compliance tensor, and can be expressed using the engineering moduli (Young’s moduli E, shear moduli G, and Poisson’s ratios ν). For orthotropic materials (Bower, 2009)

$$\displaystyle \begin{aligned}{}[C_{ij}]^{-1}= \begin{bmatrix} \frac{1}{E_1}&-\frac{\nu_{12}}{E_2}&-\frac{\nu_{13}}{E_3}&0&0&0\\ -\frac{\nu_{21}}{E_1}&\frac{1}{E_2}&-\frac{\nu_{23}}{E_3}&0&0&0\\ -\frac{\nu_{31}}{E_1}&-\frac{\nu_{32}}{E_2}&\frac{1}{E_3}&0&0&0\\ 0&0&0&\frac{1}{G_{23}}&0&0\\ 0&0&0&0&\frac{1}{G_{13}}&0\\ 0&0&0&0&0&\frac{1}{G_{12}}\\ \end{bmatrix}. \end{aligned} $$
(12.27)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bernard, S., Cai, X., Grimal, Q. (2022). Measurement of Cortical Bone Elasticity Tensor with Resonant Ultrasound Spectroscopy. In: Laugier, P., Grimal, Q. (eds) Bone Quantitative Ultrasound. Advances in Experimental Medicine and Biology, vol 1364. Springer, Cham. https://doi.org/10.1007/978-3-030-91979-5_12

Download citation

Publish with us

Policies and ethics