Skip to main content

Extracellular Phosphate, Inflammation and Cytotoxicity

  • Chapter
  • First Online:
Phosphate Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1362))

Abstract

Phosphorus is an essential nutrient that plays a crucial role in various biological processes, including cell membrane integrity, synthesis of nucleic acids, energy metabolism, intracellular signaling, and hard tissue mineralization. Therefore, the control of phosphorus balance is critical in all living organisms, and the fibroblast growth factor 23 (FGF23)-αKlotho system is central to maintain phosphate homeostasis in mammals. Although phosphate is indispensable for basic cellular functions, its excessive retention is toxic and can affect almost all organ systems’ functionality. In human patients, hyperphosphatemia has been implicated in an increase in morbidity and mortality. Also, mouse models with hyperphosphatemia generated by disruption of the FGF23-αKlotho system exhibit extensive tissue damage, premature aging, and a short lifespan. Experimental studies using cell and animal models suggest that cytotoxic and inflammatory effects of elevated phosphate are partly mediated by abnormal cell signaling and oxidative stress. This review provides an overview of our current understanding regarding the toxicity of phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasian N, Burton JO, Herbert KE, Tregunna BE, Brown JR, Ghaderi-Najafabadi M, Brunskill NJ, Goodall AH, Bevington A (2015) Hyperphosphatemia, phosphoprotein phosphatases, and microparticle release in vascular endothelial cells. J Am Soc Nephrol 26(9):2152–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. ADHR-CONSORTIUM (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26(3):345–348

    Article  CAS  Google Scholar 

  3. Araya K, Fukumoto S, Backenroth R, Takeuchi Y, Nakayama K, Ito N, Yoshii N, Yamazaki Y, Yamashita T, Silver J, Igarashi T, Fujita T (2005) A novel mutation in fibroblast growth factor 23 gene as a cause of tumoral calcinosis. J Clin Endocrinol Metab 90(10):5523–5527

    Article  CAS  PubMed  Google Scholar 

  4. Beck GR Jr, Knecht N (2003) Osteopontin regulation by inorganic phosphate is ERK1/2-, protein kinase C-, and proteasome-dependent. J Biol Chem 278(43):41921–41929

    Article  CAS  PubMed  Google Scholar 

  5. Beck GR Jr, Moran E, Knecht N (2003) Inorganic phosphate regulates multiple genes during osteoblast differentiation, including Nrf2. Exp Cell Res 288(2):288–300

    Article  CAS  PubMed  Google Scholar 

  6. Beck GR Jr, Zerler B, Moran E (2000) Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci USA 97(15):8352–8357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bell RR, Draper HH, Tzeng DY, Shin HK, Schmidt GR (1977) Physiological responses of human adults to foods containing phosphate additives. J Nutr 107(1):42–50

    Article  CAS  PubMed  Google Scholar 

  8. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, Silver J (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117(12):4003–4008

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Block GA, Hulbert-Shearon TE, Levin NW, Port FK (1998) Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis 31(4):607–617

    Article  CAS  PubMed  Google Scholar 

  10. Burton JO, Hamali HA, Singh R, Abbasian N, Parsons R, Patel AK, Goodall AH, Brunskill NJ (2013) Elevated levels of procoagulant plasma microvesicles in dialysis patients. PLoS One 8(8):e72663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Camalier CE, Yi M, Yu LR, Hood BL, Conrads KA, Lee YJ, Lin Y, Garneys LM, Bouloux GF, Young MR, Veenstra TD, Stephens RM, Colburn NH, Conrads TP, Beck GR Jr (2013) An integrated understanding of the physiological response to elevated extracellular phosphate. J Cell Physiol 228(7):1536–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Camalier CE, Young MR, Bobe G, Perella CM, Colburn NH, Beck GR Jr (2010) Elevated phosphate activates N-ras and promotes cell transformation and skin tumorigenesis. Cancer Prev Res (Phila) 3(3):359–370

    Article  CAS  Google Scholar 

  13. Carpenter TO, Whyte MP, Imel EA, Boot AM, Hogler W, Linglart A, Padidela R, Van't Hoff W, Mao M, Chen CY, Skrinar A, Kakkis E, San Martin J, Portale AA (2018) Burosumab therapy in children with X-linked hypophosphatemia. N Engl J Med 378(21):1987–1998

    Article  CAS  PubMed  Google Scholar 

  14. Chavkin NW, Chia JJ, Crouthamel MH, Giachelli CM (2015) Phosphate uptake-independent signaling functions of the type III sodium-dependent phosphate transporter, PiT-1, in vascular smooth muscle cells. Exp Cell Res 333(1):39–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen JH, Stoeber K, Kingsbury S, Ozanne SE, Williams GH, Hales CN (2004) Loss of proliferative capacity and induction of senescence in oxidatively stressed human fibroblasts. J Biol Chem 279(47):49439–49446

    Article  CAS  PubMed  Google Scholar 

  16. Chiba T, Matsuo H, Kawamura Y, Nagamori S, Nishiyama T, Wei L, Nakayama A, Nakamura T, Sakiyama M, Takada T, Taketani Y, Suma S, Naito M, Oda T, Kumagai H, Moriyama Y, Ichida K, Shimizu T, Kanai Y, Shinomiya N (2015) NPT1/SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout. Arthritis Rheumatol 67(1):281–287

    Article  CAS  PubMed  Google Scholar 

  17. Ciceri P, Elli F, Cappelletti L, Tosi D, Braidotti P, Bulfamante G, Cozzolino M (2015) A new in vitro model to delay high phosphate-induced vascular calcification progression. Mol Cell Biochem 410(1–2):197–206

    Article  CAS  PubMed  Google Scholar 

  18. Connolly GM, Cunningham R, McNamee PT, Young IS, Maxwell AP (2009) Elevated serum phosphate predicts mortality in renal transplant recipients. Transplantation 87(7):1040–1044

    Article  CAS  PubMed  Google Scholar 

  19. Conrads KA, Yi M, Simpson KA, Lucas DA, Camalier CE, Yu LR, Veenstra TD, Stephens RM, Conrads TP, Beck GR Jr (2005) A combined proteome and microarray investigation of inorganic phosphate-induced pre-osteoblast cells. Mol Cell Proteomics 4(9):1284–1296

    Article  CAS  PubMed  Google Scholar 

  20. Cozzolino M, Dusso AS, Slatopolsky E (2001) Role of calcium-phosphate product and bone-associated proteins on vascular calcification in renal failure. J Am Soc Nephrol 12(11):2511–2516

    Article  CAS  PubMed  Google Scholar 

  21. Dai XY, Zhao MM, Cai Y, Guan QC, Zhao Y, Guan Y, Kong W, Zhu WG, Xu MJ, Wang X (2013) Phosphate-induced autophagy counteracts vascular calcification by reducing matrix vesicle release. Kidney Int 83(6):1042–1051

    Article  CAS  PubMed  Google Scholar 

  22. Domico MB, Huynh V, Anand SK, Mink R (2006) Severe hyperphosphatemia and hypocalcemic tetany after oral laxative administration in a 3-month-old infant. Pediatrics 118(5):e1580–e1583

    Article  PubMed  Google Scholar 

  23. Eddington H, Hoefield R, Sinha S, Chrysochou C, Lane B, Foley RN, Hegarty J, New J, O'Donoghue DJ, Middleton RJ, Kalra PA (2010) Serum phosphate and mortality in patients with chronic kidney disease. Clin J Am Soc Nephrol 5(12):2251–2257

    Article  PubMed  PubMed Central  Google Scholar 

  24. Erem S, Razzaque MS (2018) Dietary phosphate toxicity: an emerging global health concern. Histochem Cell Biol 150(6):711–719

    Article  CAS  PubMed  Google Scholar 

  25. Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38(11):1310–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fukumoto S (2021) FGF23-related hypophosphatemic rickets/osteomalacia: diagnosis and new treatment. J Mol Endocrinol 66(2):R57–R65

    Article  CAS  PubMed  Google Scholar 

  27. Ganesh SK, Stack AG, Levin NW, Hulbert-Shearon T, Port FK (2001) Association of elevated serum PO(4), Ca x PO(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol 12(10):2131–2138

    Article  CAS  PubMed  Google Scholar 

  28. Goodson JM, Shi P, Razzaque MS (2019) Dietary phosphorus enhances inflammatory response: a study of human gingivitis. J Steroid Biochem Mol Biol 188:166–171

    Article  CAS  PubMed  Google Scholar 

  29. Grosskopf I, Graff E, Charach G, Binyamin G, Spinrad S, Blum I (1991) Hyperphosphataemia and hypocalcaemia induced by hypertonic phosphate enema—an experimental study and review of the literature. Hum Exp Toxicol 10(5):351–355

    Article  CAS  PubMed  Google Scholar 

  30. Hattenhauer O, Traebert M, Murer H, Biber J (1999) Regulation of small intestinal Na-P(i) type IIb cotransporter by dietary phosphate intake. Am J Phys 277(4 Pt 1):G756–G762

    CAS  Google Scholar 

  31. He P, Mann-Collura O, Fling J, Edara N, Hetz R, Razzaque MS (2021) High phosphate actively induces cytotoxicity by rewiring pro-survival and pro-apoptotic signaling networks in HEK293 and HeLa cells. FASEB J 35(1):e20997

    Article  CAS  PubMed  Google Scholar 

  32. Hernando N, Gagnon K, Lederer E (2021) Phosphate transport in epithelial and nonepithelial tissue. Physiol Rev 101(1):1–35

    Article  PubMed  Google Scholar 

  33. Hong SH, Minai-Tehrani A, Chang SH, Jiang HL, Lee S, Lee AY, Seo HW, Chae C, Beck GR Jr, Cho MH (2013) Knockdown of the sodium-dependent phosphate co-transporter 2b (NPT2b) suppresses lung tumorigenesis. PLoS One 8(10):e77121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. HYP-CONSORTIUM (1995) A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet 11(2):130–136

    Article  Google Scholar 

  35. Ichikawa S, Imel EA, Kreiter ML, Yu X, Mackenzie DS, Sorenson AH, Goetz R, Mohammadi M, White KE, Econs MJ (2007) A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest 117(9):2684–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ichikawa S, Sorenson AH, Austin AM, Mackenzie DS, Fritz TA, Moh A, Hui SL, Econs MJ (2009) Ablation of the Galnt3 gene leads to low-circulating intact fibroblast growth factor 23 (Fgf23) concentrations and hyperphosphatemia despite increased Fgf23 expression. Endocrinology 150(6):2543–2550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Imura A, Iwano A, Tohyama O, Tsuji Y, Nozaki K, Hashimoto N, Fujimori T, Nabeshima Y (2004) Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett 565(1–3):143–147

    Article  CAS  PubMed  Google Scholar 

  38. Jain N, Elsayed EF (2013) Dietary phosphate: what do we know about its toxicity. J Nephrol 26(5):856–864

    Article  PubMed  CAS  Google Scholar 

  39. Jin H, Chang SH, Xu CX, Shin JY, Chung YS, Park SJ, Lee YS, An GH, Lee KH, Cho MH (2007) High dietary inorganic phosphate affects lung through altering protein translation, cell cycle, and angiogenesis in developing mice. Toxicol Sci 100(1):215–223

    Article  CAS  PubMed  Google Scholar 

  40. Jono S, McKee MD, Murry CE, Shioi A, Nishizawa Y, Mori K, Morii H, Giachelli CM (2000) Phosphate regulation of vascular smooth muscle cell calcification. Circ Res 87(7):E10–E17

    Article  CAS  PubMed  Google Scholar 

  41. Julien M, Magne D, Masson M, Rolli-Derkinderen M, Chassande O, Cario-Toumaniantz C, Cherel Y, Weiss P, Guicheux J (2007) Phosphate stimulates matrix Gla protein expression in chondrocytes through the extracellular signal regulated kinase signaling pathway. Endocrinology 148(2):530–537

    Article  CAS  PubMed  Google Scholar 

  42. Kawai M, Kinoshita S, Ozono K, Michigami T (2016) Inorganic phosphate activates the AKT/mTORC1 pathway and shortens the life span of an alphaKlotho-deficient model. J Am Soc Nephrol 27(9):2810–2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kestenbaum B, Sampson JN, Rudser KD, Patterson DJ, Seliger SL, Young B, Sherrard DJ, Andress DL (2005) Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol 16(2):520–528

    Article  CAS  PubMed  Google Scholar 

  44. Kimata M, Michigami T, Tachikawa K, Okada T, Koshimizu T, Yamazaki M, Kogo M, Ozono K (2010) Signaling of extracellular inorganic phosphate up-regulates cyclin D1 expression in proliferating chondrocytes via the Na+/Pi cotransporter Pit-1 and Raf/MEK/ERK pathway. Bone 47(5):938–947

    Article  CAS  PubMed  Google Scholar 

  45. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51

    Article  CAS  PubMed  Google Scholar 

  46. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281(10):6120–6123

    Article  CAS  PubMed  Google Scholar 

  47. Li JW, Xu C, Fan Y, Wang Y, Xiao YB (2014) Can serum levels of alkaline phosphatase and phosphate predict cardiovascular diseases and total mortality in individuals with preserved renal function? A systemic review and meta-analysis. PLoS One 9(7):e102276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Lin ME, Chen T, Leaf EM, Speer MY, Giachelli CM (2015) Runx2 expression in smooth muscle cells is required for arterial medial calcification in mice. Am J Pathol 185(7):1958–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lorenz-Depiereux B, Bastepe M, Benet-Pages A, Amyere M, Wagenstaller J, Muller-Barth U, Badenhoop K, Kaiser SM, Rittmaster RS, Shlossberg AH, Olivares JL, Loris C, Ramos FJ, Glorieux F, Vikkula M, Juppner H, Strom TM (2006) DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 38(11):1248–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Loughnan P, Mullins GC (1977) Brain damage following a hypertonic phosphate enema. Am J Dis Child 131(9):1032

    CAS  PubMed  Google Scholar 

  51. Magne D, Bluteau G, Faucheux C, Palmer G, Vignes-Colombeix C, Pilet P, Rouillon T, Caverzasio J, Weiss P, Daculsi G, Guicheux J (2003) Phosphate is a specific signal for ATDC5 chondrocyte maturation and apoptosis-associated mineralization: possible implication of apoptosis in the regulation of endochondral ossification. J Bone Miner Res 18(8):1430–1442

    Article  CAS  PubMed  Google Scholar 

  52. Mansfield K, Rajpurohit R, Shapiro IM (1999) Extracellular phosphate ions cause apoptosis of terminally differentiated epiphyseal chondrocytes. J Cell Physiol 179(3):276–286

    Article  CAS  PubMed  Google Scholar 

  53. Masuzawa M, Fujimura T, Hamada Y, Fujita Y, Hara H, Nishiyama S, Katsuoka K, Tamauchi H, Sakurai Y (1999) Establishment of a human hemangiosarcoma cell line (ISO-HAS). Int J Cancer 81(2):305–308

    Article  CAS  PubMed  Google Scholar 

  54. Michigami T (2013) Extracellular phosphate as a signaling molecule. Contrib Nephrol 180:14–24

    Article  CAS  PubMed  Google Scholar 

  55. Michigami T, Kawai M, Yamazaki M, Ozono K (2018) Phosphate as a signaling molecule and its sensing mechanism. Physiol Rev 98(4):2317–2348

    Article  CAS  PubMed  Google Scholar 

  56. Nakatani T, Sarraj B, Ohnishi M, Densmore MJ, Taguchi T, Goetz R, Mohammadi M, Lanske B, Razzaque MS (2009) In vivo genetic evidence for klotho-dependent, fibroblast growth factor 23 (Fgf23) -mediated regulation of systemic phosphate homeostasis. FASEB J 23(2):433–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Navarro-Gonzalez JF, Mora-Fernandez C, Muros M, Herrera H, Garcia J (2009) Mineral metabolism and inflammation in chronic kidney disease patients: a cross-sectional study. Clin J Am Soc Nephrol 4(10):1646–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nguyen TT, Quan X, Hwang KH, Xu S, Das R, Choi SK, Wiederkehr A, Wollheim CB, Cha SK, Park KS (2015) Mitochondrial oxidative stress mediates high phosphate-induced secretory defects and apoptosis in insulin-secreting cells. Am J Physiol Endocrinol Metab: ajpendo 00009:02015

    Google Scholar 

  59. Nishino J, Yamazaki M, Kawai M, Tachikawa K, Yamamoto K, Miyagawa K, Kogo M, Ozono K, Michigami T (2017) Extracellular phosphate induces the expression of dentin matrix protein 1 through the FGF receptor in osteoblasts. J Cell Biochem 118(5):1151–1163

    Article  CAS  PubMed  Google Scholar 

  60. Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA, Himmelfarb J (2004) Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int 65(3):1009–1016

    Article  PubMed  Google Scholar 

  61. Ohata Y, Arahori H, Namba N, Kitaoka T, Hirai H, Wada K, Nakayama M, Michigami T, Imura A, Nabeshima Y, Yamazaki Y, Ozono K (2011) Circulating levels of soluble alpha-Klotho are markedly elevated in human umbilical cord blood. J Clin Endocrinol Metab 96(6):E943–E947

    Article  CAS  PubMed  Google Scholar 

  62. Ohata Y, Yamazaki M, Kawai M, Tsugawa N, Tachikawa K, Koinuma T, Miyagawa K, Kimoto A, Nakayama M, Namba N, Yamamoto H, Okano T, Ozono K, Michigami T (2014) Elevated fibroblast growth factor 23 exerts its effects on placenta and regulates vitamin D metabolism in pregnancy of Hyp mice. J Bone Miner Res 29(7):1627–1638

    Article  CAS  PubMed  Google Scholar 

  63. Ohnishi M, Nakatani T, Lanske B, Razzaque MS (2009) In vivo genetic evidence for suppressing vascular and soft-tissue calcification through the reduction of serum phosphate levels, even in the presence of high serum calcium and 1,25-dihydroxyvitamin d levels. Circ Cardiovasc Genet 2(6):583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ohnishi M, Razzaque MS (2010) Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J 24(9):3562–3571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Palmer SC, Hayen A, Macaskill P, Pellegrini F, Craig JC, Elder GJ, Strippoli GF (2011) Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis. JAMA 305(11):1119–1127

    Article  CAS  PubMed  Google Scholar 

  66. Quarles LD (2008) Endocrine functions of bone in mineral metabolism regulation. J Clin Invest 118(12):3820–3828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Razzaque MS (2009) The FGF23-Klotho axis: endocrine regulation of phosphate homeostasis. Nat Rev Endocrinol 5(11):611–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Razzaque MS (2011) Phosphate toxicity: new insights into an old problem. Clin Sci (Lond) 120(3):91–97

    Article  CAS  Google Scholar 

  69. Razzaque MS (2013) Phosphate toxicity and vascular mineralization. Contrib Nephrol 180:74–85

    Article  CAS  PubMed  Google Scholar 

  70. Razzaque MS, Lanske B (2006) Hypervitaminosis D and premature aging: lessons learned from Fgf23 and Klotho mutant mice. Trends Mol Med 12(7):298–305

    Article  CAS  PubMed  Google Scholar 

  71. Rendenbach C, Yorgan TA, Heckt T, Otto B, Baldauf C, Jeschke A, Streichert T, David JP, Amling M, Schinke T (2014) Effects of extracellular phosphate on gene expression in murine osteoblasts. Calcif Tissue Int 94(5):474–483

    Article  CAS  PubMed  Google Scholar 

  72. Reynolds JL, Joannides AJ, Skepper JN, McNair R, Schurgers LJ, Proudfoot D, Jahnen-Dechent W, Weissberg PL, Shanahan CM (2004) Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol 15(11):2857–2867

    Article  CAS  PubMed  Google Scholar 

  73. Ribeiro S, Ramos A, Brandao A, Rebelo JR, Guerra A, Resina C, Vila-Lobos A, Carvalho F, Remedio F, Ribeiro F (1998) Cardiac valve calcification in haemodialysis patients: role of calcium-phosphate metabolism. Nephrol Dial Transplant 13(8):2037–2040

    Article  CAS  PubMed  Google Scholar 

  74. Richter B, Faul C (2018) FGF23 actions on target tissues-with and without Klotho. Front Endocrinol (Lausanne) 9:189

    Article  Google Scholar 

  75. Sabbagh Y, Carpenter TO, Demay MB (2005) Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci USA 102(27):9637–9642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sabbagh Y, O'Brien SP, Song W, Boulanger JH, Stockmann A, Arbeeny C, Schiavi SC (2009) Intestinal npt2b plays a major role in phosphate absorption and homeostasis. J Am Soc Nephrol 20(11):2348–2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113(4):561–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T (2001) Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 98(11):6500–6505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shuto E, Taketani Y, Tanaka R, Harada N, Isshiki M, Sato M, Nashiki K, Amo K, Yamamoto H, Higashi Y, Nakaya Y, Takeda E (2009) Dietary phosphorus acutely impairs endothelial function. J Am Soc Nephrol 20(7):1504–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sotos JF, Cutler EA, Finkel MA, Doody D (1977) Hypocalcemic coma following two pediatric phosphate enemas. Pediatrics 60(3):305–307

    Article  CAS  PubMed  Google Scholar 

  81. Stevens LA, Djurdjev O, Cardew S, Cameron EC, Levin A (2004) Calcium, phosphate, and parathyroid hormone levels in combination and as a function of dialysis duration predict mortality: evidence for the complexity of the association between mineral metabolism and outcomes. J Am Soc Nephrol 15(3):770–779

    Article  CAS  PubMed  Google Scholar 

  82. Stubbs JR, Liu S, Tang W, Zhou J, Wang Y, Yao X, Quarles LD (2007) Role of hyperphosphatemia and 1,25-dihydroxyvitamin D in vascular calcification and mortality in fibroblastic growth factor 23 null mice. J Am Soc Nephrol 18(7):2116–2124

    Article  CAS  PubMed  Google Scholar 

  83. Sullivan C, Sayre SS, Leon JB, Machekano R, Love TE, Porter D, Marbury M, Sehgal AR (2009) Effect of food additives on hyperphosphatemia among patients with end-stage renal disease: a randomized controlled trial. JAMA 301(6):629–635

    Article  CAS  PubMed  Google Scholar 

  84. Takeyari S, Yamamoto T, Kinoshita Y, Fukumoto S, Glorieux FH, Michigami T, Hasegawa K, Kitaoka T, Kubota T, Imanishi Y, Shimotsuji T, Ozono K (2014) Hypophosphatemic osteomalacia and bone sclerosis caused by a novel homozygous mutation of the FAM20C gene in an elderly man with a mild variant of Raine syndrome. Bone 67:56–62

    Article  CAS  PubMed  Google Scholar 

  85. Tonelli M, Curhan G, Pfeffer M, Sacks F, Thadhani R, Melamed ML, Wiebe N, Muntner P (2009) Relation between alkaline phosphatase, serum phosphate, and all-cause or cardiovascular mortality. Circulation 120(18):1784–1792

    Article  CAS  PubMed  Google Scholar 

  86. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444(7120):770–774

    Article  CAS  PubMed  Google Scholar 

  87. Virkki LV, Biber J, Murer H, Forster IC (2007) Phosphate transporters: a tale of two solute carrier families. Am J Physiol Renal Physiol 293(3):F643–F654

    Article  CAS  PubMed  Google Scholar 

  88. Voelkl J, Egli-Spichtig D, Alesutan I, Wagner CA (2021) Inflammation: a putative link between phosphate metabolism and cardiovascular disease. Clin Sci (Lond) 135(1):201–227

    Article  CAS  Google Scholar 

  89. Wada E, Yoshida M, Kojima Y, Nonaka I, Ohashi K, Nagata Y, Shiozuka M, Date M, Higashi T, Nishino I, Matsuda R (2014) Dietary phosphorus overload aggravates the phenotype of the dystrophin-deficient mdx mouse. Am J Pathol 184(11):3094–3104

    Article  CAS  PubMed  Google Scholar 

  90. Wulaningsih W, Michaelsson K, Garmo H, Hammar N, Jungner I, Walldius G, Holmberg L, Van Hemelrijck M (2013) Inorganic phosphate and the risk of cancer in the Swedish AMORIS study. BMC Cancer 13:257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yamada S, Tokumoto M, Tatsumoto N, Taniguchi M, Noguchi H, Nakano T, Masutani K, Ooboshi H, Tsuruya K, Kitazono T (2014) Phosphate overload directly induces systemic inflammation and malnutrition as well as vascular calcification in uremia. Am J Physiol Renal Physiol 306(12):F1418–F1428

    Article  CAS  PubMed  Google Scholar 

  92. Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu H, Miyoshi M, Ogawa Y, Castrillon DH, Rosenblatt KP, Kuro-o M (2005) Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 280(45):38029–38034

    Article  CAS  PubMed  Google Scholar 

  93. Yamazaki M, Ozono K, Okada T, Tachikawa K, Kondou H, Ohata Y, Michigami T (2010a) Both FGF23 and extracellular phosphate activate Raf/MEK/ERK pathway via FGF receptors in HEK293 cells. J Cell Biochem 111(5):1210–1221

    Article  CAS  PubMed  Google Scholar 

  94. Yamazaki Y, Imura A, Urakawa I, Shimada T, Murakami J, Aono Y, Hasegawa H, Yamashita T, Nakatani K, Saito Y, Okamoto N, Kurumatani N, Namba N, Kitaoka T, Ozono K, Sakai T, Hataya H, Ichikawa S, Imel EA, Econs MJ, Nabeshima Y (2010b) Establishment of sandwich ELISA for soluble alpha-Klotho measurement: age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun 398(3):513–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhao MM, Xu MJ, Cai Y, Zhao G, Guan Y, Kong W, Tang C, Wang X (2011) Mitochondrial reactive oxygen species promote p65 nuclear translocation mediating high-phosphate-induced vascular calcification in vitro and in vivo. Kidney Int 79(10):1071–1079

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimi Michigami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Michigami, T., Yamazaki, M., Razzaque, M.S. (2022). Extracellular Phosphate, Inflammation and Cytotoxicity. In: Razzaque, M.S. (eds) Phosphate Metabolism . Advances in Experimental Medicine and Biology, vol 1362. Springer, Cham. https://doi.org/10.1007/978-3-030-91623-7_3

Download citation

Publish with us

Policies and ethics