Skip to main content

Recovering Communities in Temporal Networks Using Persistent Edges

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13116))

Abstract

This article studies the recovery of static communities in a temporal network. We introduce a temporal stochastic block model where dynamic interaction patterns between node pairs follow a Markov chain. We render this model versatile by adding degree correction parameters, describing the tendency of each node to start new interactions. We show that in some cases the likelihood of this model is approximated by the regularized modularity of a time-aggregated graph. This time-aggregated graph involves a trade-off between new edges and persistent edges. A continuous relaxation reduces the regularized modularity maximization to a normalized spectral clustering. We illustrate by numerical experiments the importance of edge persistence, both on simulated and real data sets.

This work has been done within the project of Inria - Nokia Bell Labs “Distributed Learning and Control for Network Analysis” and was partially supported by COSTNET Cost Action CA15109.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/mdreveton/Spectral-clustering-with-persistent-edges.

References

  1. Avrachenkov, K., Dreveton, M., Leskelä, L.: Estimation of static community memberships from temporal network data. arXiv preprint arXiv:2008.04790 (2020)

  2. Bhattacharyya, S., Chatterjee, S.: General community detection with optimal recovery conditions for multi-relational sparse networks with dependent layers. arXiv preprint arXiv:2004.03480 (2020)

  3. Billingsley, P.: Statistical methods in Markov chains. Ann. Math. Stat. 32(1), 12–40 (1961)

    Article  MathSciNet  Google Scholar 

  4. Brandes, U., et al.: On finding graph clusterings with maximum modularity. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 121–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74839-7_12

    Chapter  Google Scholar 

  5. Chi, Y., Song, X., Zhou, D., Hino, K., Tseng, B.L.: Evolutionary spectral clustering by incorporating temporal smoothness. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2007, pp. 153–162. Association for Computing Machinery, New York (2007)

    Google Scholar 

  6. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  7. Fournet, J., Barrat, A.: Contact patterns among high school students. PLOS One 9(9), 1–17 (2014)

    Article  Google Scholar 

  8. Ghasemian, A., Zhang, P., Clauset, A., Moore, C., Peel, L.: Detectability thresholds and optimal algorithms for community structure in dynamic networks. Phys. Rev. X 6(3), 031005 (2016)

    Google Scholar 

  9. Holland, P., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps. Soc. Netw. 5, 109–137 (1983)

    Article  MathSciNet  Google Scholar 

  10. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012). Temporal Networks

    Article  Google Scholar 

  11. Karrer, B., Newman, M.E.J.: Stochastic blockmodels and community structure in networks. Phys. Rev. E 83, 016107 (2011)

    Article  MathSciNet  Google Scholar 

  12. Kumar, A., Kannan, R.: Clustering with spectral norm and the k-means algorithm. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pp. 299–308. IEEE (2010)

    Google Scholar 

  13. Liu, F., Choi, D., Xie, L., Roeder, K.: Global spectral clustering in dynamic networks. Proc. Natl. Acad. Sci. 115(5), 927–932 (2018)

    Article  MathSciNet  Google Scholar 

  14. Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PLOS One 10(9), 1–26 (2015)

    Article  Google Scholar 

  15. Matias, C., Miele, V.: Statistical clustering of temporal networks through a dynamic stochastic block model. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 79(4), 1119–1141 (2017)

    Article  MathSciNet  Google Scholar 

  16. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)

    Article  MathSciNet  Google Scholar 

  17. Newman, M.E.J.: Spectral methods for community detection and graph partitioning. Phys. Rev. E 88, 042822 (2013)

    Article  Google Scholar 

  18. Newman, M.E.: Equivalence between modularity optimization and maximum likelihood methods for community detection. Phys. Rev. E 94(5), 052315 (2016)

    Article  Google Scholar 

  19. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  20. Pamfil, A.R., Howison, S.D., Lambiotte, R., Porter, M.A.: Relating modularity maximization and stochastic block models in multilayer networks. SIAM J. Math. Data Sci. 1(4), 667–698 (2019)

    Article  MathSciNet  Google Scholar 

  21. Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys. Rev. E 74(1), 016110 (2006)

    Article  MathSciNet  Google Scholar 

  22. Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM Comput. Surv. 51(2), 1–37 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Avrachenkov .

Editor information

Editors and Affiliations

A Proofs of Main Statements

A Proofs of Main Statements

1.1 A.1 Maximum Likelihood Computations (Proposition 1)

Proof

(Proof of Proposition 1). By the temporal Markov property, the log-likelihood of the model can be written as \(\log \mathbb {P}(A \, | \,Z,\theta ) = \log \mathbb {P}(A^1 \, | \,Z,\theta ) + \sum _{t=2}^T \mathbb {P}(A^t \, | \,A^{t-1},Z,\theta )\). By denoting \(\rho _a^{\theta _i\theta _j} = \log \frac{\mu _a^{\theta _i\theta _j}}{\nu _a^{\theta _i\theta _j}}\), we find that

$$\begin{aligned} \log \mathbb {P}(A^1 \, | \,Z, \theta )&\ = \ \frac{1}{2} \sum _{i,j} \sum _a \delta (A_{ij}^1, a) \Big ( \delta (Z_i,Z_j) \rho _a^{\theta _i\theta _j} + \log \nu _a^{\theta _i\theta _j} \Big ) \\&\ = \ \frac{1}{2} \sum _{i,j} \delta (Z_i,Z_j) \sum _a \delta (A_{ij}^1, a) \rho _a^{\theta _i\theta _j} + c_1(A), \end{aligned}$$

where \(c_1(A) = \frac{1}{2} \sum _{i,j} \sum _a \delta (A_{ij}^1, a) \log \nu _a^{\theta _i\theta _j}\) does not depend on the community structure. Similarly, by denoting \(R^{\theta _i\theta _j}_{ab} = \log \frac{P_{ab}^{\theta _i\theta _j}}{Q_{ab}^{\theta _i\theta _j}}\) we find that

$$\begin{aligned} \log \mathbb {P}(A^t \, | \,A^{t-1}, Z, \theta )&\ = \ \frac{1}{2} \sum _{i,j} \sum _{a,b} \delta (A_{ij}^{t-1}, a) \delta (A_{ij}^t, b) \Big ( \delta (Z_i,Z_j) R_{ab}^{\theta _i\theta _j} + \log Q_{ab}^{\theta _i\theta _j} \Big ) \\&\ = \ \frac{1}{2} \sum _{i,j} \delta (Z_i,Z_j) \sum _{a,b} \delta (A_{ij}^{t-1}, a) \delta (A_{ij}^t, b) R_{ab}^{\theta _i\theta _j} + c_t(A), \end{aligned}$$

where \(c_t(A) = \frac{1}{2} \sum _{i,j} \sum _{a,b} \delta (A_{ij}^{t-1}, a) \delta (A_{ij}^t, b) \log Q_{ab}^{\theta _i\theta _j}\) does not depend on the community structure. Simple computations show that

$$ \sum _a \delta (A_{ij}^1, a) \rho _a^{\theta _i\theta _j} \ = \ A_{ij}^1 (\rho _1^{\theta _i\theta _j}-\rho _0^{\theta _i\theta _j}) + \rho _0^{\theta _i\theta _j} $$

and

$$\begin{aligned} \sum _{a,b} \delta (A_{ij}^{t-1}, a) \delta (A_{ij}^t, b) R_{ab}^{\theta _i\theta _j}&\ = \ R_{00}^{\theta _i\theta _j} + A_{ij}^{t-1} \big (R_{10}^{\theta _i\theta _j} - R_{00}^{\theta _i\theta _j} \big ) + A_{ij}^t \big (R_{01}^{\theta _i\theta _j} - R_{00}^{\theta _i\theta _j} \big ) \\&\qquad + A_{ij}^{t-1} A_{ij}^t \big ( R_{11}^{\theta _i\theta _j} - R_{01}^{\theta _i\theta _j} - R_{10}^{\theta _i\theta _j} + R_{00}^{\theta _i\theta _j} \big ) \\&\ = \ R_{00}^{\theta _i\theta _j} + A_{ij}^{t-1} \ell _{10}^{\theta _i\theta _j} + A_{ij}^{t} \ell _{01}^{\theta _i\theta _j} + A_{ij}^{t-1} A_{ij}^t \big ( \ell _{11}^{\theta _i\theta _j} - \ell _{01}^{\theta _i\theta _j} - \ell _{10}^{\theta _i\theta _j} \big ). \end{aligned}$$

By collecting the above observations, we now find that \(\log \mathbb {P}(A \, | \,Z, \theta )\) equals

$$\begin{aligned} c(A) +&\frac{1}{2}\sum _{i,j} \delta (Z_i,Z_j) \Bigg \{ A_{ij}^{1} (\rho _1^{\theta _i\theta _j} - \rho _0^{\theta _i\theta _j}) + \rho _0^{\theta _i\theta _j} + (A_{ij}^{1} - A_{ij}^{T}) \ell _{10}^{\theta _i\theta _j} \Bigg \} \\ +&\frac{1}{2} \sum _{i,j} \delta (Z_i,Z_j) \sum _{t=2}^{T} \Bigg \{ ( \ell _{01}^{\theta _i\theta _j} + \ell _{10}^{\theta _i\theta _j} ) \left( A_{ij}^{t} - A_{ij}^{t-1} A_{ij}^{t} \right) + \ell _{11}^{\theta _i\theta _j} A_{ij}^{t-1} A_{ij}^{t} - \log \frac{Q_{00}^{\theta _i\theta _j}}{P_{00}^{\theta _i\theta _j}} \Bigg \}, \end{aligned}$$

where \(c(A) = \sum _t c_t(A)\) does not depend on Z. Hence the claim follows.    \(\square \)

1.2 A.2 Approximation of the MLE

Recall the structural assumptions (3)–(4) about the degree correction parameters. Because \(P_{01}, Q_{01} = o(1)\), a first-order Taylor expansion yields

$$\begin{aligned} \log \frac{ 1 - \theta _i \theta _j Q_{01} }{ 1 - \theta _i \theta _j P_{01} } \ = \ \theta _i \theta _j \left( P_{01} - Q_{01} \right) + o\left( P_{01}^2 + Q_{01}^2 \right) \ = \ \frac{ \bar{d} _i \bar{d} _j }{2 \bar{m} } + o\left( P_{01}^2 + Q_{01}^2 \right) , \end{aligned}$$

as well as \( \ell _{01}^{\theta _i\theta _j} \approx \log \frac{P_{01}}{Q_{01}} \), \(\ell _{10}^{\theta _i\theta _j} \approx \log \frac{ 1 - P_{11} }{ 1 - Q_{11} }\) and \(\ell _{11}^{\theta _i\theta _j} \approx \log \frac{P_{11}}{Q_{11}} \). Using these approximations in the MLE expression leads to the maximisation of

$$\begin{aligned} \sum _{t=2}^{T} \sum _{ i,j :z_i = z_j } \left( \tilde{a}_{ij}^{t} - \theta _i \theta _j \left( P_{01} - Q_{01} \right) \right) . \end{aligned}$$

where \(\tilde{a}_{ij}^{t} = \alpha \left( A^t_{ \mathrm {new} } \right) _{ij} + \beta \left( A_{ \mathrm {pers} }^t \right) _{ij}\). Since \(\mu \) and \(\nu \) are stationary distributions,

$$\begin{aligned} \mathbb {E}\left( A_{ \mathrm {new} }^{t} \right) _{ij}&\ = \ {\left\{ \begin{array}{ll} \theta _i \theta _j \mu _1 (1-P_{11}) &{} \text { if } Z_i = Z_j \\ \theta _i \theta _j \nu _1(1-Q_{11} ) &{} \text { otherwise,} \end{array}\right. } \\ \mathbb {E}\left( A_{ \mathrm {pers} }^{t} \right) _{ij}&\ = \ {\left\{ \begin{array}{ll} \theta _i \theta _j \mu _1 P_{11} &{} \text { if } Z_i = Z_j \\ \theta _i \theta _j \nu _1Q_{11} &{} \text { otherwise.} \end{array}\right. } \end{aligned}$$

Therefore, using \(W_{ij} = \sum _{t=2}^T \tilde{a}_{ij}\) we have

$$\begin{aligned} \mathbb {E}W_{ij} \ = \ {\left\{ \begin{array}{ll} (T-1) \theta _i \theta _j \mu _1 \left( \alpha (1-P_{11}) + \beta P_{11} \right) &{} \text { if } Z_i = Z_j \\ (T-1) \theta _i \theta _j \nu _1 \left( \alpha (1-Q_{11}) + \beta Q_{11} \right) &{} \text { otherwise.} \end{array}\right. } \end{aligned}$$

Since the community labeling are sampled uniformly at random and using the normalization for the \(\theta _i\)’s, we have

$$\begin{aligned} \bar{d} _i \ = \ (T-1) \theta _i N \, \frac{ \mu _1 \left( \alpha (1-P_{11}) + \beta P_{11} \right) + (K-1) \nu _1 \left( \alpha (1-Q_{11}) + \beta Q_{11} \right) }{ K } \\ \end{aligned}$$

together with \( \bar{m} = \frac{N^2}{2} \frac{ \mu _1 \left( \alpha (1-P_{11}) + \beta P_{11} \right) + (K-1) \nu _1 \left( \alpha (1-Q_{11}) + \beta Q_{11} \right) }{ K }. \)    \(\square \)

1.3 A.3 Modularity and Normalized Spectral Clustering

The regularized modularity of a partition \(Z \in [K]^N\) of the graph A is defined as

$$\begin{aligned} \mathcal {M}\left( A, Z, \gamma \right) \ = \ \sum _{i,j} \delta \left( Z_{i}, Z_{j} \right) \left( A_{ij} - \gamma \frac{d_i d_j}{2m} \right) \end{aligned}$$

where \(d = A 1_n\) and \(\gamma \) is a resolution parameter. This can be rewritten as

$$\begin{aligned} \mathcal {M}\left( A, Z, \gamma \right) \ = \ \mathrm {Tr}\; \tilde{Z} ^T \left( A - \gamma \frac{d d^T}{2m} \right) \tilde{Z} \end{aligned}$$

where \( \tilde{Z} \in \{0,1\}^{N\times K}\) is the membership matrix associated to the vector Z, that is \( \tilde{Z} _{ik} = 1\) for \(k = Z_i\), and \( \tilde{Z} _{ik} = 0\) otherwise. As maximizing the modularity over \(Z \in \mathcal {Z}_{N,K}\) is in general NP-complete [4], it is convenient to perform a continuous relaxation. Following [17], we transform the problem into

$$\begin{aligned} \hat{X} \ = \ \mathop {\mathrm {arg\,max}}\limits _{ \begin{array}{c} X \in \mathbb {R}^{N\times K} \\ X^T D X = I_K \end{array} } \mathrm {Tr}\;X^T \left( A - \gamma \frac{d d^T}{2m} \right) X. \end{aligned}$$
(8)

The predicted membership matrix \( \hat{Z} \) is then recovered by performing an approximated solution to the following k-means problem (see [12])

$$\begin{aligned} \left( \hat{Z} , \hat{Y} \right) \ = \ \mathop {\mathrm {arg\,min}}\limits _{ Z \in \mathcal {Z}_{N,K}, Y \in \mathbb {R}^{K\times K} } \left\| Z Y - \hat{X} \right\| _F. \end{aligned}$$
(9)

The Lagrangian associated to the optimization problem (8) is

$$\begin{aligned} \mathrm {Tr}\;X^T \left( A - \gamma \frac{d d^T}{2m} \right) X - \mathrm {Tr}\;\left( \varLambda ^T \left( X^T D X - I_K\right) \right) \end{aligned}$$

where \(\varLambda \in \mathbb {R}^{K\times K}\) is a symmetric matrix of Lagrangian multipliers. Up to a change of basis, we can assume that \(\varLambda \) is diagonal. The solution of (8) verifies

$$\begin{aligned} \left( A - \gamma \frac{d d^T}{2m} \right) X \ = \ D X \varLambda \quad \text { and } \quad X^T D X \ = \ I_K, \end{aligned}$$

which is a generalized eigenvalue problem: the columns of X are the generalized eigenvectors, and the diagonal elements of \(\varLambda \) are the eigenvalues. In particular, since the constant vector \(1_n\) verifies \((A - \gamma \frac{d d^T}{2m} ) 1_n = (1-\gamma ) D 1_n\), we conclude that the eigenvalues should be larger than \(1-\gamma \) for the partition to be meaningful.

Multiplying the first equation by \(1_n^T\) leads to \((1-\gamma ) d^T X = d^T X \varLambda \), and therefore \(d^T X = 0\) (using the previous remark on \(\varLambda \)). The system then simplifies in

$$\begin{aligned} A X \ = \ D X \varLambda \quad \text { and } \quad X^T D X \ = \ I_K. \end{aligned}$$

Defining a re-scaled vector \(U = D^{-1/2}X\) shows that U verifies \(D^{-1/2}A D^{-1/2} U = U \varLambda \) and \(U^T U = I_K\). Thus, the columns of U are eigenvectors of \(D^{-1/2}A D^{-1/2}\) associated to the K largest eigenvalue (or equivalently, the eigenvectors of \(\mathcal {L}= I_N - D^{-1/2}A D^{-1/2}\) associated to the K smallest eigenvalues).

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avrachenkov, K., Dreveton, M., Leskelä, L. (2021). Recovering Communities in Temporal Networks Using Persistent Edges. In: Mohaisen, D., Jin, R. (eds) Computational Data and Social Networks. CSoNet 2021. Lecture Notes in Computer Science(), vol 13116. Springer, Cham. https://doi.org/10.1007/978-3-030-91434-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91434-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91433-2

  • Online ISBN: 978-3-030-91434-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics