Skip to main content

Partial Gathering of Mobile Agents in Dynamic Rings

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13046))

  • 590 Accesses

Abstract

In this paper, we consider the partial gathering problem of mobile agents in synchronous dynamic bidirectional rings. The partial gathering problem is a generalization of the (well-investigated) total gathering problem, which requires that all k agents distributed in the network terminate at a non-predetermined single node. The partial gathering problem requires, for a given positive integer \(g\,(< k)\), that agents terminate in a configuration such that either at least g agents or no agent exists at each node. The requirement for the partial gathering problem is strictly weaker than that for the total gathering problem, and thus it is interesting to clarify the difference in the move complexity between them. So far, partial gathering has been considered in static graphs. In this paper, we consider this problem in 1-interval connected rings, that is, one of the links in the ring may be missing at each time step. In such networks, we aim to clarify the solvability of the partial gathering problem and the move complexity, focusing on the relationship between values of k and g. First, we consider the case of \( 3g\le k\le 8g-2\). In this case, we show that our algorithm can solve the problem with the total number of O(kn) moves, where n is the number of nodes. Since \(k = O(g)\) holds when \(3g \le k \le 8g-2\), the move complexity O(kn) in this case can be represented also as O(gn). Next, we consider the case of \(k\ge 8g - 3\). In this case, we show that our algorithm can also solve the problem and its move complexity is O(gn). These results mean that, when \(k\ge 3g\), the partial gathering problem can be solved also in dynamic rings. In addition, agents require a total number of \(\varOmega (gn)\) (resp., \(\varOmega (kn)\)) moves to solve the partial (resp., total) gathering problem. Thus, the both proposed algorithms can solve the partial gathering problem with the asymptotically optimal total number of O(gn) moves, which is strictly smaller than that for the total gathering problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The knowledge of k is used for agents to decide which proposed algorithm they apply by comparing it with the value of g.

References

  1. Baba, D., Izumi, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Linear time and space gathering of anonymous mobile agents in asynchronous trees. Theoret. Comput. Sci. 478, 118–126 (2013)

    Article  MathSciNet  Google Scholar 

  2. Das, S., Luna, D.G., Mazzei, D., Prencipe, G.: Compacting oblivious agents on dynamic rings. PeerJ Comput. Sci. 7, 1–29 (2021)

    Article  Google Scholar 

  3. Dieudonné, Y., Pelc, A.: Anonymous meeting in networks. Algorithmica 74(2), 908–946 (2016). https://doi.org/10.1007/s00453-015-9982-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple mobile agent rendezvous in a ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 599–608. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24698-5_62

    Chapter  Google Scholar 

  5. Gotoh, T., Sudo, Y., Ooshita, F., Kakugawa, H., Masuzawa, T.: Group exploration of dynamic tori. In: ICDCS, pp. 775–785 (2018)

    Google Scholar 

  6. Gray, R.S., Kotz, D., Cybenko, G., Rus, D.: D’agents: applications and performance of a mobile-agent system. Softw. Pract. Exper. 32(6), 543–573 (2002)

    Article  Google Scholar 

  7. Kranakis, E., Krizanc, D., Markou, E.: Mobile agent rendezvous in a synchronous torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 653–664. Springer, Heidelberg (2006). https://doi.org/10.1007/11682462_60

    Chapter  Google Scholar 

  8. Kranakis, E., Krozanc, D., Markou, E.: The mobile agent rendezvous problem in the ring. Syn. Lect. Distrib. Comput. Theory 1, 1–122 (2010)

    Google Scholar 

  9. Kranakis, E., Santoro, N., Sawchuk, C., Krizanc, D.: Mobile agent rendezvous in a ring. In: ICDCS, pp. 592–599 (2003)

    Google Scholar 

  10. Lange, D., Oshima, M.: Seven good reasons for mobile agents. CACM 42(3), 88–89 (1999)

    Article  Google Scholar 

  11. Di Luna, G., Dobrev, S., Flocchini, P., Santoro, N.: Distributed exploration of dynamic rings. Distrib. Comput. 33(1), 41–67 (2018). https://doi.org/10.1007/s00446-018-0339-1

    Article  MathSciNet  MATH  Google Scholar 

  12. Luna, D.G., Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Viglietta, G.: Gathering in dynamic rings. Theoret. Comput. Sci. 811, 79–98 (2018)

    Article  MathSciNet  Google Scholar 

  13. Shibata, M., Kawai, S., Ooshita, F., Kakugawa, H., Masuzawa, T.: Partial gathering of mobile agents in asynchronous unidirectional rings. Theoret. Comput. Sci. 617, 1–11 (2016)

    Article  MathSciNet  Google Scholar 

  14. Shibata, M., Kawata, N., Sudo, Y., Ooshita, F., Kakugawa, H., Masuzawa, T.: Move-optimal partial gathering of mobile agents without identifiers or global knowledge in asynchronous unidirectional rings. Theoret. Comput. Sci. 822, 92–109 (2020)

    Article  MathSciNet  Google Scholar 

  15. Shibata, M., Nakamura, D., Ooshita, F., Kakugawa, H., Masuzawa, T.: Partial gathering of mobile agents in arbitrary networks. IEICE Trans. Inf. Syst. 102(3), 444–453 (2019)

    Article  Google Scholar 

  16. Shibata, M., Ooshita, F., Kakugawa, H., Masuzawa, T.: Move-optimal partial gathering of mobile agents in asynchronous trees. Theoret. Comput. Sci. 705, 9–30 (2018)

    Article  MathSciNet  Google Scholar 

  17. Shibata, M., Sudo, Y., Nakamura, J., Kim, Y.: Uniform deployment of mobile agents in dynamic rings. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol. 12514, pp. 248–263. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64348-5_20

    Chapter  Google Scholar 

  18. Shibata, M., Tixeuil, S.: Partial gathering of mobile robots from multiplicity-allowed configurations in rings. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol. 12514, pp. 264–279. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64348-5_21

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was partially supported by JSPS KAKENHI Grant Number 18K18029, 18K18031, 20H04140, 20KK0232, and 21K17706; the Hibi Science Foundation; and Foundation of Public Interest of Tatematsu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Shibata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shibata, M., Sudo, Y., Nakamura, J., Kim, Y. (2021). Partial Gathering of Mobile Agents in Dynamic Rings. In: Johnen, C., Schiller, E.M., Schmid, S. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2021. Lecture Notes in Computer Science(), vol 13046. Springer, Cham. https://doi.org/10.1007/978-3-030-91081-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91081-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91080-8

  • Online ISBN: 978-3-030-91081-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics