Skip to main content

The Pathogenesis of Endometriosis: Are Endometrial Stem/Progenitor Cells Involved?

  • Chapter
  • First Online:
Stem Cells in Reproductive Tissues and Organs

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 70))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABCG2:

ATP Binding cassette subfamily G member 2 (Junior Blood Group)

AMH:

Anti-Müllerian hormone

ARID1A:

AT-rich interaction domain 1A

CAM:

Cell adhesion molecule

CD:

Cluster of differentiation

CD133:

Prominin 1

CD146:

Melanoma cell adhesion molecule (MCAM)

C-MYC:

MYC proto-oncogene, BHLH transcription factor

CXCR-4:

C-X-C motif chemokine receptor 4

CXCL-12:

C-X-C motif chemokine ligand 12

DDX4:

DEAD-box helicase 4

DNA:

Deoxyribonucleic acid

EpCAM:

Epithelial cell adhesion molecule

ER:

Estrogen receptor

HOXA9:

Homeobox A9

HOXA10:

Homeobox A10

HOXA11:

Homeobox A11

HOXA13:

Homeobox A13

IFITM3:

Interferon induced transmembrane protein 3

K-RAS:

KRAS proto-oncogene, GTPase

LGR5:

Leucine-rich-repeat-containing G-protein-coupled-receptor 5

MEIS:

Myeloid ecotropic viral integration site

MMP9:

Matrix metalloproteinase 9

miRNA:

MicroRNA

MSI1:

Musashi RNA binding protein 1

NANOG:

Nanog homeobox

NGS:

Next-generation sequencing

NOTCH1:

Notch receptor 1

OCT4:

Octamer-binding transcription factor 4 (POU5F1)

PBX1:

Pre-B-cell leukemia homebox-1

PCNA:

Proliferating cell nuclear antigen

PIK3CA:

Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

POU5F1:

POU class 5 homeobox 1

PR:

Progesterone receptor

PTEN:

Phosphatase and tensin homolog

REX1:

REX1 transcription factor

RNA:

Ribonucleic acid

SALL4:

Spalt like transcription factor 4

SF1:

Steroidogenesis factor 1

SOX2:

SRY-box transcription factor 2

SOX9:

SRY-box transcription factor 9

SSEA-1:

Stage-specific embryonic antigen-1

SUD2:

Sushi domain containing-2

SYR:

Sex determining region

TIAR:

Tissue injury and repair

VEGF:

Vascular endothelial growth factor

References

  1. Meuleman C, Vandenabeele B, Fieuws S, Spiessens C, Timmerman D, D’Hooghe T (2009) High prevalence of endometriosis in infertile women with normal ovulation and normospermic partners. Fertil Steril 92:68–74. https://doi.org/10.1016/j.fertnstert.2008.04.056

    Article  PubMed  Google Scholar 

  2. Shafrir AL, Farland LV, Shah DK, Harris HR, Kvaskoff M, Zondervan K et al (2018) Risk for and consequences of endometriosis: a critical epidemiologic review. Best Pract Res Clin Obst Gynaecol 51:1–15. https://doi.org/10.1016/j.bpobgyn.2018.06.001

    Article  CAS  Google Scholar 

  3. Hill CJ, Fakhreldin M, Maclean A, Dobson L, Nancarrow L, Bradfield A et al (2020) Endometriosis and the fallopian tubes: theories of origin and clinical implications. J Clin Med 9:1905. https://doi.org/10.3390/jcm9061905

    Article  PubMed Central  Google Scholar 

  4. Haas D, Chvatal R, Reichert B, Renner S, Shebl O, Binder H et al (2012) Endometriosis: a premenopausal disease? Age pattern in 42,079 patients with endometriosis. Arch Gynecol Obstet 286:667–760. https://doi.org/10.1007/s00404-012-2361-z

    Article  PubMed  Google Scholar 

  5. Naem A, Shamandi A, Al-Shiekh A, Alsaid B (2020) Free large sized intra-abdominal endometrioma in a postmenopausal woman: a case report. BMC Womens Health 20:190. https://doi.org/10.1186/s12905-020-01054-x

    Article  PubMed  PubMed Central  Google Scholar 

  6. Koninckx PR, Ussia A, Adamyan L, Wattiez A, Gomel V, Martin DC (2019) Pathogenesis of endometriosis: the genetic/epigenetic theory. Fertil Steril 111:327–340. https://doi.org/10.1016/j.fertnstert.2018.10.013

    Article  CAS  PubMed  Google Scholar 

  7. Simpson JL, Elias S, Malinak LR, Buttram VC Jr (1980) Heritable aspects of endometriosis. I. Genetic studies. Am J Obstet Gynecol 137:327–331. https://doi.org/10.1016/0002-9378(80)90917-5

    Article  CAS  PubMed  Google Scholar 

  8. Coxhead D, Thomas EJ (1993) Familial inheritance of endometriosis in a British population. A case control study. J Obstet Gynaecol 13:42–44

    Article  Google Scholar 

  9. Kennedy S (1998) The genetics of endometriosis. J Reprod Med 43(3 Suppl):263–268

    CAS  PubMed  Google Scholar 

  10. Kennedy S, Hadfield R, Westbrook C, Weeks DE, Barlow D, Golding S (1998) Magnetic resonance imaging to assess familial risk in relatives of women with endometriosis. Lancet (London, England) 352:1440–1441. https://doi.org/10.1016/s0140-6736(05)61262-7

    Article  CAS  Google Scholar 

  11. Carter JE (1994) Combined hysteroscopic and laparoscopic findings in patients with chronic pelvic pain. J Am Assoc Gynecol Laparosc 2:43–47. https://doi.org/10.1016/s1074-3804(05)80830-8

    Article  CAS  PubMed  Google Scholar 

  12. Sourial S, Tempest N, Hapangama DK (2014) Theories on the pathogenesis of endometriosis. Int J Reprod Med 2014:179515. https://doi.org/10.1155/2014/179515

    Article  PubMed  PubMed Central  Google Scholar 

  13. Koninckx PR, Zupi E, Martin DC (2018) Endometriosis and pregnancy outcome. Fertil Steril 110:406–407. https://doi.org/10.1016/j.fertnstert.2018.06.029

    Article  PubMed  Google Scholar 

  14. Lee HJ, Park YM, Jee BC, Kim YB, Suh CS (2015) Various anatomic locations of surgically proven endometriosis: a single-center experience. Obstet Gynecol Sci 58:53–58. https://doi.org/10.5468/ogs.2015.58.1.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nisolle M, Donnez J (2019) Reprint of: peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil Steril 112(4 Suppl1):e125–e36. https://doi.org/10.1016/j.fertnstert.2019.08.081

  16. Victory R, Diamond MP, Johns DA (2007) Villar’s nodule: a case report and systematic literature review of endometriosis externa of the umbilicus. J Min Invas Gynecol 14:23–32. https://doi.org/10.1016/j.jmig.2006.07.014

    Article  Google Scholar 

  17. Gates J, Sharma A, Kumar A (2018) Rare case of thoracic endometriosis presenting with lung nodules and pneumothorax. BMJ Case Rep. https://doi.org/10.1136/bcr-2018-224181

  18. Maniglio P, Ricciardi E, Meli F, Tomao F, Peiretti M, Caserta D (2018) Complete remission of cerebral endometriosis with dienogest: a case report. Gynecol Endocrinol 34:837–839. https://doi.org/10.1080/09513590.2018.1463362

    Article  PubMed  Google Scholar 

  19. Wang Y, Nicholes K, Shih IM (2020) The origin and pathogenesis of endometriosis. Annu Rev Pathol 15:71–95. https://doi.org/10.1146/annurev-pathmechdis-012419-032654

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y, Zhang Z, Yang F, Wang H, Liang S, Wang H et al (2020) The role of endometrial stem cells in the pathogenesis of endometriosis and their application to its early diagnosis†. Biol Reprod 102:1153–1159. https://doi.org/10.1093/biolre/ioaa011

    Article  PubMed  Google Scholar 

  21. Sampson JA (1927) Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol 14:422–469

    Article  Google Scholar 

  22. D’Hooghe TM, Debrock S (2003) Evidence that endometriosis results from the dislocation of basal endometrium? Hum Reprod (Oxford, England) 18:1130; author reply-1. https://doi.org/10.1093/humrep/deg182

  23. Klemmt PAB, Starzinski-Powitz A (2018) Molecular and cellular pathogenesis of endometriosis. Curr Womens Health Rev 14:106–116. https://doi.org/10.2174/1573404813666170306163448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brosens I, Benagiano G (2013) Is neonatal uterine bleeding involved in the pathogenesis of endometriosis as a source of stem cells? Fertil Steril 100:622–623. https://doi.org/10.1016/j.fertnstert.2013.04.046

    Article  PubMed  Google Scholar 

  25. Giannarini G, Scott CA, Moro U, Grossetti B, Pomara G, Selli C (2006) Cystic endometriosis of the epididymis. Urology 68:203.e1–3. https://doi.org/10.1016/j.urology.2006.01.017

  26. Zanatta A, Rocha AM, Carvalho FM, Pereira RM, Taylor HS, Motta EL et al (2010) The role of the Hoxa10/HOXA10 gene in the etiology of endometriosis and its related infertility: a review. J Assist Reprod Genet 27:701–710. https://doi.org/10.1007/s10815-010-9471-y

    Article  PubMed  PubMed Central  Google Scholar 

  27. Laganà AS, Vitale SG, Salmeri FM, Triolo O, Ban Frangež H, Vrtačnik-Bokal E et al (2017) Unus pro omnibus, omnes pro uno: a novel, evidence-based, unifying theory for the pathogenesis of endometriosis. Med Hypotheses 103:10–20. https://doi.org/10.1016/j.mehy.2017.03.032

    Article  CAS  PubMed  Google Scholar 

  28. Makiyan Z (2017) Endometriosis origin from primordial germ cells. Organogenesis 13:95–102. https://doi.org/10.1080/15476278.2017.1323162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Taylor HS (2004) Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA 292:81–85. https://doi.org/10.1001/jama.292.1.81

    Article  CAS  PubMed  Google Scholar 

  30. Mints M, Jansson M, Sadeghi B, Westgren M, Uzunel M, Hassan M et al (2008) Endometrial endothelial cells are derived from donor stem cells in a bone marrow transplant recipient. Hum Reprod (Oxford, England) 23:139–143. https://doi.org/10.1093/humrep/dem342

    Article  CAS  Google Scholar 

  31. Ikoma T, Kyo S, Maida Y, Ozaki S, Takakura M, Nakao S et al (2009) Bone marrow-derived cells from male donors can compose endometrial glands in female transplant recipients. Am J Obstet Gynecol 201:608.e1–8. https://doi.org/10.1016/j.ajog.2009.07.026

    Article  CAS  Google Scholar 

  32. Ponandai-Srinivasan S, Andersson KL, Nister M, Saare M, Hassan HA, Varghese SJ et al (2018) Aberrant expression of genes associated with stemness and cancer in endometria and endometrioma in a subset of women with endometriosis. Hum Reprod (Oxford, England) 33:1924–1938. https://doi.org/10.1093/humrep/dey241

    Article  CAS  Google Scholar 

  33. Song Y, Xiao L, Fu J, Huang W, Wang Q, Zhang X et al (2014) Increased expression of the pluripotency markers sex-determining region Y-box 2 and Nanog homeobox in ovarian endometriosis. Reprod Biol Endocrinol 12:42. https://doi.org/10.1186/1477-7827-12-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shariati F, Favaedi R, Ramazanali F, Ghoraeian P, Afsharian P, Aflatoonian B et al (2018) Increased expression of stemness genes REX-1, OCT-4, NANOG, and SOX-2 in women with ovarian endometriosis versus normal endometrium: a case-control study. Int J Reprod Biomed 2016. https://doi.org/10.18502/ijrm.v16i12.3684

  35. Silveira CG, Abrão MS, Dias JA Jr, Coudry RA, Soares FA, Drigo SA et al (2012) Common chromosomal imbalances and stemness-related protein expression markers in endometriotic lesions from different anatomical sites: the potential role of stem cells. Hum Reprod (Oxford, England) 27:3187–3197. https://doi.org/10.1093/humrep/des282

    Article  CAS  Google Scholar 

  36. Kyo S, Sato S, Nakayama K (2020) Cancer-associated mutations in normal human endometrium: surprise or expected? Cancer Sci 111:3458–3467. https://doi.org/10.1111/cas.14571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mashayekhi P, Noruzinia M, Zeinali S, Khodaverdi S (2019) Endometriotic mesenchymal stem cells epigenetic pathogenesis: deregulation of miR-200b, miR-145, and let7b in A functional imbalanced epigenetic disease. Cell J 21:179–185. https://doi.org/10.22074/cellj.2019.5903

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu XJ, Bai XG, Teng YL, Song L, Lu N, Yang RQ (2016) miRNA-15a-5p regulates VEGFA in endometrial mesenchymal stem cells and contributes to the pathogenesis of endometriosis. Eur Rev Medical Pharmacol Sci 20:3319–3326

    Google Scholar 

  39. Sadler TW, Langman’s medical embryology. Lippincott Williams & Wilkins Philadelphia

    Google Scholar 

  40. LaRonde-LeBlanc NA, Wolberger C, Structure of HoxA9 and Pbx1 bound to DNA: hox hexapeptide and DNA recognition anterior to posterior. Genes Dev 17:2060–2072. https://doi.org/10.1101/gad.1103303

  41. McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68:283–302. https://doi.org/10.1016/0092-8674(92)90471-n

    Article  CAS  PubMed  Google Scholar 

  42. Capellini TD, Zewdu R, Di Giacomo G, Asciutti S, Kugler JE, Di Gregorio A et al (2008) Pbx1/Pbx2 govern axial skeletal development by controlling Polycomb and Hox in mesoderm and Pax1/Pax9 in sclerotome. Dev Biol 321:500–514. https://doi.org/10.1016/j.ydbio.2008.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schnabel CA, Godin RE, Cleary ML (2003) Pbx1 regulates nephrogenesis and ureteric branching in the developing kidney. Dev Biol 254:262–276. https://doi.org/10.1016/s0012-1606(02)00038-6

    Article  CAS  PubMed  Google Scholar 

  44. Schnabel CA, Selleri L, Jacobs Y, Warnke R, Cleary ML (2001) Expression of Pbx1b during mammalian organogenesis. Mech Dev 100:131–135. https://doi.org/10.1016/s0925-4773(00)00516-5

    Article  CAS  PubMed  Google Scholar 

  45. Schnabel CA, Selleri L, Cleary ML (2003) Pbx1 is essential for adrenal development and urogenital differentiation. Genesis (New York, NY: 2000) 37:123–130. https://doi.org/10.1002/gene.10235

  46. Taylor HS, Vanden Heuvel GB, Igarashi P (1997) A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod 57:1338–1345. https://doi.org/10.1095/biolreprod57.6.1338

    Article  CAS  PubMed  Google Scholar 

  47. Cunha GR (1976) Stromal induction and specification of morphogenesis and cytodifferentiation of the epithelia of the Mullerian ducts and urogenital sinus during development of the uterus and vagina in mice. J Exp Zool 196:361–370. https://doi.org/10.1002/jez.1401960310

    Article  CAS  PubMed  Google Scholar 

  48. Branford WW, Benson GV, Ma L, Maas RL, Potter SS (2000) Characterization of Hoxa-10/Hoxa-11 transheterozygotes reveals functional redundancy and regulatory interactions. Dev Biol 224:373–387. https://doi.org/10.1006/dbio.2000.9809

    Article  CAS  PubMed  Google Scholar 

  49. Warot X, Fromental-Ramain C, Fraulob V, Chambon P, Dollé P (1997) Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development (Cambridge, England) 124:4781–4791

    Article  CAS  Google Scholar 

  50. Vainio S, Heikkilä M, Kispert A, Chin N, McMahon AP (1999) Female development in mammals is regulated by Wnt-4 signalling. Nature 397:405–409. https://doi.org/10.1038/17068

    Article  CAS  PubMed  Google Scholar 

  51. Miller C, Sassoon DA (1998) Wnt-7a maintains appropriate uterine patterning during the development of the mouse female reproductive tract. Development (Cambridge, England) 125:3201–3211

    Article  CAS  Google Scholar 

  52. Mericskay M, Kitajewski J, Sassoon D (2004) Wnt5a is required for proper epithelial-mesenchymal interactions in the uterus. Development (Cambridge, England) 131:2061–2072. https://doi.org/10.1242/dev.01090

    Article  CAS  Google Scholar 

  53. Selleri L, Depew MJ, Jacobs Y, Chanda SK, Tsang KY, Cheah KS et al (2001) Requirement for Pbx1 in skeletal patterning and programming chondrocyte proliferation and differentiation. Development (Cambridge, England) 128:3543–3557

    Article  CAS  Google Scholar 

  54. Hayashi K, Yoshioka S, Reardon SN, Rucker EB 3rd, Spencer TE, DeMayo FJ et al (2011) WNTs in the neonatal mouse uterus: potential regulation of endometrial gland development. Bio Reprod 84:308–319. https://doi.org/10.1095/biolreprod.110.088161

    Article  CAS  Google Scholar 

  55. Serrano-Gomez SJ, Maziveyi M, Alahari SK (2016) Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer 15:18. https://doi.org/10.1186/s12943-016-0502-x

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gargett CE (2007) Uterine stem cells: what is the evidence? Hum Reprod Update 13:87–101. https://doi.org/10.1093/humupd/dml045

    Article  CAS  PubMed  Google Scholar 

  57. Makiyan Z (2016) New theory of uterovaginal embryogenesis. Organogenesis 12:33–41. https://doi.org/10.1080/15476278.2016.1145317

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dabi Y, Canel V, Skalli D, Paniel BJ, Haddad B, Touboul C (2020) Postoperative evaluation of chronic pain in patients with Mayer - Rokitansky - Küster - Hauser (MRKH) syndrome and uterine horn remnant: experience of a tertiary referring gynaecological department. J Gynecol Obstet Hum Reprod 49:101655. https://doi.org/10.1016/j.jogoh.2019.101655

    Article  CAS  PubMed  Google Scholar 

  59. Signorile PG, Baldi F, Bussani R, D’Armiento MR, De Falco M, Boccellino M et al (2010) New evidence sustaining the presence of endometriosis in the human foetus. Reprod Biomed Online 21:142–147

    Article  PubMed  Google Scholar 

  60. Signorile PG, Baldi A, Endometriosis: new concepts in the pathogenesis. Int J Bioch Cell Biol 42:778–870. https://doi.org/10.1016/j.biocel.2010.03.008

  61. Browne H, Taylor H (2006) HOXA10 expression in ectopic endometrial tissue. Fertil Steril 85:1386–1390. https://doi.org/10.1016/j.fertnstert.2005.10.072

    Article  CAS  PubMed  Google Scholar 

  62. Matsuzaki S, Canis M, Darcha C, Pouly JL, Mage G (2009) HOXA-10 expression in the mid-secretory endometrium of infertile patients with either endometriosis, uterine fibromas or unexplained infertility. Hum Reprod (Oxford, England) 24:3180–3187. https://doi.org/10.1093/humrep/dep306

    Article  CAS  Google Scholar 

  63. Gaetje R, Holtrich U, Engels K, Kissler S, Rody A, Karn T et al (2007) Endometriosis may be generated by mimicking the ontogenetic development of the female genital tract. Fertil Steril 87:651–656. https://doi.org/10.1016/j.fertnstert.2006.07.1533

    Article  CAS  PubMed  Google Scholar 

  64. Gaetje R, Holtrich U, Karn T, Cikrit E, Engels K, Rody A et al (2007) Characterization of WNT7A expression in human endometrium and endometriotic lesions. Fertil Steril 88:1534–1540. https://doi.org/10.1016/j.fertnstert.2007.01.128

    Article  CAS  PubMed  Google Scholar 

  65. de Mattos RM, Pereira PR, Barros EG, da Silva JH, Palmero CY, da Costa NM et al (2016) Aberrant levels of Wnt/β-catenin pathway components in a rat model of endometriosis. Histol Histopathol 31:933–942. https://doi.org/10.14670/hh-11-730

    Article  CAS  PubMed  Google Scholar 

  66. Xiong W, Zhang L, Yu L, Xie W, Man Y, Xiong Y et al (2015) Estradiol promotes cells invasion by activating β-catenin signaling pathway in endometriosis. Reproduction (Cambridge, England) 150:507–516. https://doi.org/10.1530/rep-15-0371

    Article  CAS  Google Scholar 

  67. Zhang L, Xiong W, Xiong Y, Liu H, Liu Y (2016) 17 β-Estradiol promotes vascular endothelial growth factor expression via the Wnt/β-catenin pathway during the pathogenesis of endometriosis. Mol Hum Reprod 22:235–526. https://doi.org/10.1093/molehr/gaw025

    Article  CAS  Google Scholar 

  68. Stewart B, Reddington C, Cameron M (2020) Laparoscopic hemihysterectomy for obstructive uterine didelphys with unilateral vaginal hypoplasia. J Minim Invasive Gynecol 27:1225–1227. https://doi.org/10.1016/j.jmig.2019.12.019

    Article  PubMed  Google Scholar 

  69. Fraunhoffer NA, Meilerman Abuelafia A, Stella I, Galliano S, Barrios M, Vitullo AD (2015) Identification of germ cell-specific VASA and IFITM3 proteins in human ovarian endometriosis. J Ovarian Res 8:66. https://doi.org/10.1186/s13048-015-0193-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Simsek G, Bulus H, Tas A, Koklu S, Yilmaz SB, Coskun A (2012) An unusual cause of inguinal hernia in a male patient: endometriosis. Gut Liver 6:284–285. https://doi.org/10.5009/gnl.2012.6.2.284

    Article  PubMed  PubMed Central  Google Scholar 

  71. Noë M, Ayhan A, Wang TL, Shih IM (2018) Independent development of endometrial epithelium and stroma within the same endometriosis. J Pathol 245:265–269. https://doi.org/10.1002/path.5082

    Article  PubMed  Google Scholar 

  72. Suda K, Nakaoka H, Yoshihara K, Ishiguro T, Tamura R, Mori Y et al (2018) Clonal expansion and diversification of cancer-associated mutations in endometriosis and normal endometrium. Cell Rep 24:1777–1789. https://doi.org/10.1016/j.celrep.2018.07.037

    Article  CAS  PubMed  Google Scholar 

  73. Jabbour HN, Kelly RW, Fraser HM, Critchley HO (2006) Endocrine regulation of menstruation. Endocr Rev 27:17–46. https://doi.org/10.1210/er.2004-0021

    Article  CAS  PubMed  Google Scholar 

  74. Tresserra F, Grases P, Ubeda A, Pascual MA, Grases PJ, Labastida R (1999) Morphological changes in hysterectomies after endometrial ablation. Hum Reprod (Oxford, England) 14:1473–1477. https://doi.org/10.1093/humrep/14.6.1473

    Article  CAS  Google Scholar 

  75. Muller I, van der Palen J, Massop-Helmink D, Vos-de Bruin R, Sikkema JM (2015) Patient satisfaction and amenorrhea rate after endometrial ablation by ThermaChoice III or NovaSure: a retrospective cohort study. J Gynecol Surg 12:81–87

    Article  Google Scholar 

  76. Cousins FL, Gargett CE (2018) Endometrial stem/progenitor cells and their role in the pathogenesis of endometriosis. Best Pract Res Clin Obstet Gynaecol 50:27–38. https://doi.org/10.1016/j.bpobgyn.2018.01.011

  77. Tempest N, Maclean A, Hapangama DK (2018) Endometrial stem cell markers: current concepts and unresolved questions. Int J Mol Sci 19:3240. https://doi.org/10.3390/ijms19103240

    Article  CAS  PubMed Central  Google Scholar 

  78. Gargett CE, Masuda H (2010) Adult stem cells in the endometrium. Mol Hum Reprod 16:818–834. https://doi.org/10.1093/molehr/gaq061

    Article  CAS  PubMed  Google Scholar 

  79. Schwab KE, Gargett CE (2007) Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod (Oxford, England). 22:2903–2911. https://doi.org/10.1093/humrep/dem265

    Article  CAS  Google Scholar 

  80. Masuda H, Anwar SS, Bühring HJ, Rao JR, Gargett CE (2012) A novel marker of human endometrial mesenchymal stem-like cells. Cell Transplant 21:2201–2214. https://doi.org/10.3727/096368911x637362

    Article  PubMed  Google Scholar 

  81. Chan RW, Schwab KE, Gargett CE (2004) Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod 70:1738–1750. https://doi.org/10.1095/biolreprod.103.024109

    Article  CAS  PubMed  Google Scholar 

  82. Nguyen HPT, Xiao L, Deane JA, Tan KS, Cousins FL, Masuda H et al (2017) N-cadherin identifies human endometrial epithelial progenitor cells by in vitro stem cell assays. Hum Reprod (Oxford, England). 32:2254–2268. https://doi.org/10.1093/humrep/dex289

    Article  CAS  Google Scholar 

  83. Masuda H, Matsuzaki Y, Hiratsu E, Ono M, Nagashima T, Kajitani T et al (2010) Stem cell-like properties of the endometrial side population: implication in endometrial regeneration. PLoS ONE 5:e10387. https://doi.org/10.1371/journal.pone.0010387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Miyazaki K, Maruyama T, Masuda H, Yamasaki A, Uchida S, Oda H et al (2012) Stem cell-like differentiation potentials of endometrial side population cells as revealed by a newly developed in vivo endometrial stem cell assay. PLoS ONE 7:e50749. https://doi.org/10.1371/journal.pone.0050749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G et al (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3:1337–1345. https://doi.org/10.1038/nm1297-1337

    Article  CAS  PubMed  Google Scholar 

  86. Gurung S, Deane JA, Masuda H, Maruyama T, Gargett CE (2015) Stem cells in endometrial physiology. Semin Reprod Med 33:326–332. https://doi.org/10.1055/s-0035-1558405

    Article  CAS  PubMed  Google Scholar 

  87. Cervelló I, Mas A, Gil-Sanchis C, Peris L, Faus A, Saunders PT et al (2011) Reconstruction of endometrium from human endometrial side population cell lines. PLoS ONE 6:e21221. https://doi.org/10.1371/journal.pone.0021221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Leyendecker G, Herbertz M, Kunz G, Mall G (2002) Endometriosis results from the dislocation of basal endometrium. Hum Reprod (Oxford, England) 17:2725–2736. https://doi.org/10.1093/humrep/17.10.2725

    Article  CAS  Google Scholar 

  89. Hapangama DK, Drury J, Da Silva L, Al-Lamee H, Earp A, Valentijn AJ et al (2019) Abnormally located SSEA1+/SOX9+ endometrial epithelial cells with a basalis-like phenotype in the eutopic functionalis layer may play a role in the pathogenesis of endometriosis. Hum Reprod (Oxford, England) 34:56–68. https://doi.org/10.1093/humrep/dey336

    Article  CAS  Google Scholar 

  90. Valentijn AJ, Palial K, Al-Lamee H, Tempest N, Drury J, Von Zglinicki T et al (2013) SSEA-1 isolates human endometrial basal glandular epithelial cells: phenotypic and functional characterization and implications in the pathogenesis of endometriosis. Hum Reprod (Oxford, England) 28:2695–2708. https://doi.org/10.1093/humrep/det285

    Article  CAS  Google Scholar 

  91. Kao AP, Wang KH, Chang CC, Lee JN, Long CY, Chen HS et al (2011) Comparative study of human eutopic and ectopic endometrial mesenchymal stem cells and the development of an in vivo endometriotic invasion model. Fertil Steril 95:1308–1315.e1. https://doi.org/10.1016/j.fertnstert.2010.09.064

    Article  CAS  PubMed  Google Scholar 

  92. Tempest N, Baker AM, Wright NA, Hapangama DK (2018) Does human endometrial LGR5 gene expression suggest the existence of another hormonally regulated epithelial stem cell niche? Hum Reprod (Oxford, England) 33:1052–1062. https://doi.org/10.1093/humrep/dey083

    Article  CAS  Google Scholar 

  93. Leyendecker G, Kunz G, Herbertz M, Beil D, Huppert P, Mall G et al (2004) Uterine peristaltic activity and the development of endometriosis. Ann N Y Acad Sci 1034:338–355. https://doi.org/10.1196/annals.1335.036

    Article  PubMed  Google Scholar 

  94. Vercellini P, Viganò P, Somigliana E, Fedele L (2014) Endometriosis: pathogenesis and treatment. Nat Rev Endocrinol 10:261–275. https://doi.org/10.1038/nrendo.2013.255

    Article  CAS  PubMed  Google Scholar 

  95. Guo SW (2009) Recurrence of endometriosis and its control. Hum Reprod Update 15:441–461. https://doi.org/10.1093/humupd/dmp007

    Article  PubMed  Google Scholar 

  96. Gordts S, Koninckx P, Brosens I (2017) Pathogenesis of deep endometriosis. Fertil Steril 108:285–872.e1. https://doi.org/10.1016/j.fertnstert.2017.08.036

  97. Chan RW, Ng EH, Yeung WS (2011) Identification of cells with colony-forming activity, self-renewal capacity, and multipotency in ovarian endometriosis. Am J Pathol 178:2832–2844. https://doi.org/10.1016/j.ajpath.2011.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu Y, Liang S, Yang F, Sun Y, Niu L, Ren Y et al (2020) Biological characteristics of endometriotic mesenchymal stem cells isolated from ectopic lesions of patients with endometriosis. Stem Cell Res Ther 11:346. https://doi.org/10.1186/s13287-020-01856-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chang JH, Au HK, Lee WC, Chi CC, Ling TY, Wang LM et al (2013) Expression of the pluripotent transcription factor OCT4 promotes cell migration in endometriosis. Fertil Steril 99:1332–1339.e5. https://doi.org/10.1016/j.fertnstert.2012.11.033

    Article  CAS  PubMed  Google Scholar 

  100. Zhang Y, Eades G, Yao Y, Li Q, Zhou Q (2012) Estrogen receptor α signaling regulates breast tumor-initiating cells by down-regulating miR-140 which targets the transcription factor SOX2. J Biol Chem 287:41514–41522. https://doi.org/10.1074/jbc.M112.404871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang L, Luo L, Ji W, Gong C, Wu D, Huang H et al (2013) Effect of low dose bisphenol A on the early differentiation of human embryonic stem cells into mammary epithelial cells. Toxicol Lett 218:187–193. https://doi.org/10.1016/j.toxlet.2013.01.026

    Article  CAS  PubMed  Google Scholar 

  102. Banerjee P, Fazleabas AT (2010) Endometrial responses to embryonic signals in the primate. Int J Dev Biol 54:295–302. https://doi.org/10.1387/ijdb.082829pb

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nature Rev Mol Cell Biol 7:678–689. https://doi.org/10.1038/nrm2009

    Article  CAS  Google Scholar 

  104. He H, Liu R, Xiong W, Pu D, Wang S, Li T (2016) Lentiviral vector-mediated down-regulation of Notch1 in endometrial stem cells results in proliferation and migration in endometriosis. Mol Cell Endocrinol 434:210–218. https://doi.org/10.1016/j.mce.2016.07.004

    Article  CAS  PubMed  Google Scholar 

  105. Götte M, Wolf M, Staebler A, Buchweitz O, Kelsch R, Schüring AN et al (2008) Increased expression of the adult stem cell marker Musashi-1 in endometriosis and endometrial carcinoma. J Pathol 215:317–329. https://doi.org/10.1002/path.2364

    Article  PubMed  Google Scholar 

  106. Li X, Gong X, Zhu L, Leng J, Fan Q, Sun D et al (2012) Stretch magnitude- and frequency-dependent cyclooxygenase 2 and prostaglandin E2 up-regulation in human endometrial stromal cells: possible implications in endometriosis. Exp Biol Med (Maywood, NJ) 237:1350–1358. https://doi.org/10.1258/ebm.2012.012060

    Article  CAS  Google Scholar 

  107. Sha G, Zhang Y, Zhang C, Wan Y, Zhao Z, Li C et al (2009) Elevated levels of gremlin-1 in eutopic endometrium and peripheral serum in patients with endometriosis. Fertil Sterilit 91:350–358. https://doi.org/10.1016/j.fertnstert.2007.12.007

    Article  CAS  Google Scholar 

  108. Treloar SA, O’Connor DT, O’Connor VM, Martin NG (1999) Genetic influences on endometriosis in an Australian twin sample. Fertil Steril 71:701–710. https://doi.org/10.1016/s0015-0282(98)00540-8

    Article  CAS  PubMed  Google Scholar 

  109. Guo SW (2020) Cancer-associated mutations in endometriosis: shedding light on the pathogenesis and pathophysiology. Hum Reprod Update 26:423–449. https://doi.org/10.1093/humupd/dmz047

    Article  CAS  PubMed  Google Scholar 

  110. Lac V, Nazeran TM, Tessier-Cloutier B, Aguirre-Hernandez R, Albert A, Lum A et al (2019) Oncogenic mutations in histologically normal endometrium: the new normal? J Pathol 249:173–181. https://doi.org/10.1002/path.5314

    Article  CAS  PubMed  Google Scholar 

  111. Araten DJ, Golde DW, Zhang RH, Thaler HT, Gargiulo L, Notaro R et al (2005) A quantitative measurement of the human somatic mutation rate. Cancer Res 65:8111–8117. https://doi.org/10.1158/0008-5472.can-04-1198

    Article  CAS  PubMed  Google Scholar 

  112. Nachman MW, Crowell SL (2000) Estimate of the mutation rate per nucleotide in humans. Genetics 156:297–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rozhok AI, DeGregori J (2016) The evolution of lifespan and age-dependent cancer risk. Trends Cancer 2:552–560. https://doi.org/10.1016/j.trecan.2016.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  114. Moore L, Leongamornlert D, Coorens THH, Sanders MA, Ellis P, Dentro SC et al (2020) The mutational landscape of normal human endometrial epithelium. Nature 580:640–646. https://doi.org/10.1038/s41586-020-2214-z

    Article  CAS  PubMed  Google Scholar 

  115. Cheng CW, Licence D, Cook E, Luo F, Arends MJ, Smith SK et al (2011) Activation of mutated K-ras in donor endometrial epithelium and stroma promotes lesion growth in an intact immunocompetent murine model of endometriosis. J Pathol 224:261–269. https://doi.org/10.1002/path.2852

    Article  CAS  PubMed  Google Scholar 

  116. Wu RC, Wang TL, Shih Ie M (2014) The emerging roles of ARID1A in tumor suppression. Cancer Biol Ther 15:655–664. https://doi.org/10.4161/cbt.28411

    Article  PubMed  PubMed Central  Google Scholar 

  117. Anglesio MS, Papadopoulos N, Ayhan A, Nazeran TM, Noë M, Horlings HM et al (2017) Cancer-associated mutations in endometriosis without cancer. N Engl J Med 376:1835–1848. https://doi.org/10.1056/NEJMoa1614814

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H et al (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497:67–73. https://doi.org/10.1038/nature12113

    Article  CAS  PubMed  Google Scholar 

  119. Ma Y, Huang YX, Chen YY (2017) miRNA-34a-5p downregulation of VEGFA in endometrial stem cells contributes to the pathogenesis of endometriosis. Mol Med Rep 16:8259–8264. https://doi.org/10.3892/mmr.2017.7677

    Article  CAS  PubMed  Google Scholar 

  120. Lai CY, Yamazaki S, Okabe M, Suzuki S, Maeyama Y, Iimura Y et al (2014) Stage-specific roles for CXCR4 signaling in murine hematopoietic stem/progenitor cells in the process of bone marrow repopulation. Stem Cells (Dayton, Ohio) 32:1929–1942. https://doi.org/10.1002/stem.1670

    Article  CAS  Google Scholar 

  121. Hattori K, Heissig B, Rafii S (2003) The regulation of hematopoietic stem cell and progenitor mobilization by chemokine SDF-1. Leuk Lymphoma 44:575–582. https://doi.org/10.1080/1042819021000037985

    Article  CAS  PubMed  Google Scholar 

  122. Leconte M, Chouzenoux S, Nicco C, Chéreau C, Arkwright S, Santulli P et al (2014) Role of the CXCL12-CXCR4 axis in the development of deep rectal endometriosis. J Reprod Immunol 103:45–52. https://doi.org/10.1016/j.jri.2013.12.121

    Article  CAS  PubMed  Google Scholar 

  123. Moridi I, Mamillapalli R, Cosar E, Ersoy GS, Taylor HS (2017) Bone marrow stem cell chemotactic activity is induced by elevated CXCl12 in endometriosis. Reprod Sci (Thousand Oaks, Calif). 24:526–533. https://doi.org/10.1177/1933719116672587

    Article  CAS  Google Scholar 

  124. Pospisilova E, Kiss I, Souckova H, Tomes P, Spicka J, Matkowski R et al (2019) Circulating endometrial cells: a new source of information on endometriosis dynamics. J Clin Med 8:1938. https://doi.org/10.3390/jcm8111938

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Bayan Alsaid for assisting in designing Fig. 9.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Simone Laganà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laganà, A.S., Naem, A. (2022). The Pathogenesis of Endometriosis: Are Endometrial Stem/Progenitor Cells Involved?. In: Virant-Klun, I. (eds) Stem Cells in Reproductive Tissues and Organs. Stem Cell Biology and Regenerative Medicine, vol 70. Humana, Cham. https://doi.org/10.1007/978-3-030-90111-0_9

Download citation

Publish with us

Policies and ethics