Skip to main content

Consistent Simplification of Polyline Tree Bundles

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13025))

Abstract

The Polyline Bundle Simplification (PBS) problem is a generalization of the classical polyline simplification problem. Given a set of polylines, which may share line segments and points, PBS asks for the smallest consistent simplification of these polylines with respect to a given distance threshold. Here, consistent means that each point is either kept in or discarded from all polylines containing it. In previous work, it was proven that PBS is NP-hard to approximate within a factor of \(n^{\frac{1}{3}-\varepsilon }\) for any \(\varepsilon > 0\) where n denotes the number of points in the input. This hardness result holds even for two polylines. In this paper we first study the practically relevant setting of planar inputs. While for many combinatorial optimization problems the restriction to planar settings makes the problem substantially easier, we show that the inapproximability bound known for general inputs continues to hold even for planar inputs. We proceed with the interesting special case of PBS where the polylines form a rooted tree. Such tree bundles naturally arise in the context of movement data visualization. We prove that optimal simplifications of these tree bundles can be computed in \(\mathcal {O}(n^3)\) for the Fréchet distance and in \(\mathcal {O}(n^2)\) for the Hausdorff distance (which both match the computation time for single polylines). Furthermore, we present a greedy heuristic that allows to decompose polyline bundles into tree bundles in order to make our exact algorithm for trees useful on general inputs. The applicability of our approaches is demonstrated in an experimental evaluation on real-world data.

P. Schäfer—Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 50974019 – TRR 161.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bereg, S., Jiang, M., Wang, W., Yang, B., Zhu, B.: Simplifying 3D polygonal chains under the discrete Fréchet distance. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 630–641. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78773-0_54

    Chapter  Google Scholar 

  2. Bosch, Y., Schäfer, P., Spoerhase, J., Storandt, S., Zink, J.: Consistent simplification of polyline tree bundles. CoRR abs/2008.10583 (2021). arXiv:2108.10790

  3. Buchin, M., Kilgus, B., Kölzsch, A.: Group diagrams for representing trajectories. In: Proceedings of the 11th ACM SIGSPATIAL International Workshop on Computational Transportation Science, pp. 1–10 (2018). https://doi.org/10.1145/3283207.3283208

  4. Chan, W.S., Chin, F.: Approximation of polygonal curves with minimum number of line segments or minimum error. Int. J. Comput. Geom. Appl. 6(1), 59–77 (1996). https://doi.org/10.1142/s0218195996000058

  5. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica 10(2), 112–122 (1973). https://doi.org/10.3138/fm57-6770-u75u-7727

    Article  Google Scholar 

  6. Fan, C., Filtser, O., Katz, M.J., Wylie, T., Zhu, B.: On the chain pair simplification problem. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 351–362. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21840-3_29

    Chapter  Google Scholar 

  7. Fan, C., Filtser, O., Katz, M.J., Zhu, B.: On the general chain pair simplification problem. In: 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.MFCS.2016.37

  8. Halldórsson, M.M.: Approximating the minimum maximal independence number. Inf. Process. Lett. 46(4), 169–172 (1993). https://doi.org/10.1016/0020-0190(93)90022-2

    Article  MathSciNet  MATH  Google Scholar 

  9. He, S., et al.: RoadRunner: improving the precision of road network inference from GPS trajectories. In: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 3–12 (2018). https://doi.org/10.1145/3274895.3274974

  10. Hershberger, J., Snoeyink, J.: Speeding up the Douglas-Peucker line-simplification algorithm. In: Proceedings of the 5th International Symposium on Spatial Data Handling (SDH 1992), pp. 134–143 (1992)

    Google Scholar 

  11. Imai, H., Iri, M.: Polygonal approximations of a curve-formulations and algorithms. In: Machine Intelligence and Pattern Recognition, vol. 6, pp. 71–86. Elsevier (1988). https://doi.org/10.1016/b978-0-444-70467-2.50011-4

  12. MobilityData IO: OpenMobilityData. https://transitfeeds.com/

  13. OpenStreetMap contributors: Planet dump retrieved from https://planet.osm.org (2017)

  14. Spoerhase, J., Storandt, S., Zink, J.: Simplification of polyline bundles. In: Proceedings of the 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020) (2020). https://doi.org/10.4230/LIPIcs.SWAT.2020.35

  15. Visvalingam, M., Whyatt, J.D.: Line generalisation by repeated elimination of points. Cartogr. J. 30(1), 46–51 (1993). https://doi.org/10.1179/000870493786962263

    Article  Google Scholar 

  16. Wylie, T., Zhu, B.: Protein chain pair simplification under the discrete Fréchet distance. IEEE/ACM Trans. Comput. Biol. Bioinfom. 10(6), 1372–1383 (2013). https://doi.org/10.1109/tcbb.2013.17

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Zink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bosch, Y., Schäfer, P., Spoerhase, J., Storandt, S., Zink, J. (2021). Consistent Simplification of Polyline Tree Bundles. In: Chen, CY., Hon, WK., Hung, LJ., Lee, CW. (eds) Computing and Combinatorics. COCOON 2021. Lecture Notes in Computer Science(), vol 13025. Springer, Cham. https://doi.org/10.1007/978-3-030-89543-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89543-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89542-6

  • Online ISBN: 978-3-030-89543-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics