Skip to main content

Bacteriospermia and Male Infertility: Role of Oxidative Stress

  • Chapter
  • First Online:
Oxidative Stress and Toxicity in Reproductive Biology and Medicine

Abstract

Male infertility is one of the major challenging and prevalent diseases having diverse etiologies of which bacteriospermia play a significant role. It has been estimated that approximately 15% of all infertility cases are due to infections caused by uropathogens and in most of the cases bacteria are involved in infection and inflammation leading to the development of bacteriospermia. In response to bacterial load, excess infiltration of leukocytes in the urogenital tract occurs and concomitantly generates oxidative stress (OS). Bacteria may induce infertility either by directly interacting with sperm or by generating reactive oxygen species (ROS) and impair sperm parameters such as motility, volume, capacitation, hyperactivation. They may also induce apoptosis leading to sperm death. Acute bacteriospermia is related with another clinical condition called leukocytospermia and both compromise male fertility potential by OS-mediated damage to sperm leading to male infertility. However, bacteriospermia as a clinical condition as well as the mechanism of action remains poorly understood, necessitating further research in order to understand the role of individual bacterial species and their impact in male infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inhorn MC, Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update. 2015;21(4):411–26.

    Article  PubMed  Google Scholar 

  2. Pellati D, Mylonakis I, Bertoloni G, Fiore C, Andrisani A, Ambrosini G, Armanini D. Genital tract infections and infertility. Eur J Obstetrics Gynecol Reproduct Biol. 2008;140(1):3–11.

    Article  Google Scholar 

  3. Diemer T, Huwe P, Ludwig M, Hauck EW, Weidner W. Urogenital infection and sperm motility. Andrologia. 2003;35(5):283–7.

    Article  CAS  PubMed  Google Scholar 

  4. Andrada JA, Von der Walde FE, Andrada EC. Immunologic studies of male infertility. Immunol Ser. 1990;52:345–78.

    CAS  PubMed  Google Scholar 

  5. Domes T, Lo KC, Grober ED, Mullen JB, Mazzulli T, Jarvi K. The incidence and effect of bacteriospermia and elevated seminal leukocytes on semen parameters. Fertil Steril. 2012;97(5):1050–5.

    Article  PubMed  Google Scholar 

  6. Sharma RK, Pasqualotto FF, Nelson DR, Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl. 2001;22(4):575–83.

    CAS  PubMed  Google Scholar 

  7. Keck C, Gerber-Schäfer C, Clad A, Wilhelm C, Breckwoldt M. Seminal tract infections: impact on male fertility and treatment options. Hum Reprod Update. 1998;4(6):891–903.

    Article  CAS  PubMed  Google Scholar 

  8. Askienazy-Elbhar M. Male genital tract infection: the point of view of the bacteriologist. Gynecol Obstetrique Fertilite. 2005;33(9):691–7.

    Article  CAS  Google Scholar 

  9. Brunner RJ, Demeter JH, Sindhwani P. Review of guidelines for the evaluation and treatment of leukocytospermia in male infertility. World J Men’s health. 2019;37(2):128–37.

    Article  Google Scholar 

  10. Vilvanathan S, Kandasamy B, Jayachandran AL, Sathiyanarayanan S, Tanjore Singaravelu V, Krishnamurthy V, Elangovan V. Bacteriospermia and its impact on basic semen parameters among infertile men. Interdiscip Perspect Infect Dis. 2016;6:2016.

    Google Scholar 

  11. Matousková I, Oborná I, Fingerová H, Kohnová I, Novotný J, Svobodová M, Brezinová J, Vyslouzilová J, Radová L. Bacteriospermia and the production of reactive oxygen species in the semen of males from infertile couples. Klinicka mikrobiologie a infekcni lekarstvi. 2009;15(6):192–5.

    PubMed  Google Scholar 

  12. Tiwana MS, Leslie SW.: Anatomy, Abdomen and Pelvis, Testicle. (2017)

    Google Scholar 

  13. Agarwal A, Roychoudhury S, Bjugstad KB, Cho CL. Oxidation-reduction potential of semen: what is its role in the treatment of male infertility? Ther Adv Urol. 2016;8(5):302–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gurung P, Yetiskul E Jialal I.: Physiology, male reproductive. (2020)

    Google Scholar 

  15. Barati E, Nikzad H, Karimian M. Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol Life Sci. 2020;77(1):93–113.

    Article  CAS  PubMed  Google Scholar 

  16. Kefer JC, Agarwal A, Sabanegh E. Role of antioxidants in the treatment of male infertility. Int J Urol. 2009;16(5):449–57.

    Article  CAS  PubMed  Google Scholar 

  17. Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reproduct Immunol. 2008;59:2–11. https://doi.org/10.1111/j.1600-0897.2007.00559.x.

    Article  CAS  Google Scholar 

  18. Agarwal A, Tvrda E, Sharma R. Relationship amongst teratozoospermia, seminal oxidative stress and male infertility. Reproduct Biol Endocrinol. 2014;12(1):1–8. https://doi.org/10.1186/1477-7827-12-45.

    Article  CAS  Google Scholar 

  19. Henkel RR. Leukocytes and oxidative stress: dilemma for sperm function and male fertility. Asian J Androl. 2011;13(1):43.

    Article  CAS  PubMed  Google Scholar 

  20. Dutta S, Majzoub A, Agarwal A. Oxidative stress and sperm function: a systematic review on evaluation and management. Arab J Urol. 2019;17(2):87–97.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cocuzza M, Sikka SC, Athayde KS, Agarwal A. Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis. Int Brazilian J Urol. 2007;33(5):603–21.

    Article  Google Scholar 

  22. Ko EY Jr, Agarwal SS. Male infertility testing : reactive oxygen species and antioxidant capacity. Fertil Steril. 2014;102(6):1518–27. https://doi.org/10.1016/j.fertnstert.2014.10.020.

    Article  CAS  PubMed  Google Scholar 

  23. Rahiminia T. Etiologies of sperm oxidative stress. Iranian J Reproduct Med. 2016;14(4):231–40.

    Google Scholar 

  24. Ritchie C, Ko EY. Oxidative stress in the pathophysiology of male infertility. Andrologia. 2021;53(1):e13581.

    Article  PubMed  Google Scholar 

  25. Kumar DP, Sangeetha N. Mitochondrial DNA mutations and male infertility. Indian J Human Genet. 2009;15(3):93–7.

    Article  CAS  Google Scholar 

  26. Kasperczyk MDS, Birkner SHDCE, Kasperczyk A.: Oxidative stress and motility impairment in the semen of fertile males, (2017), 1–8. https://doi.org/10.1111/and.12783.

  27. Baskaran S, Finelli R, Agarwal A, Henkel R. Reactive oxygen species in male reproduction: a boon or a bane? Andrologia. 2021;53(1):e13577.

    Article  CAS  PubMed  Google Scholar 

  28. World Health Organization (WHO). International Classification of Diseases, 11th Revision (ICD-11) Geneva: WHO (2018)

    Google Scholar 

  29. Henkel R, Offor U, Fisher D. The role of infections and leukocytes in male infertility. Andrologia. 2020;53(1):e13743.

    PubMed  Google Scholar 

  30. Mascarenhas MN, Flaxman SR, Boerma T, Vanderpoel S, Stevens GA. National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med. 2012;9(12):e1001356.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dohle GR, Weidner W, Jungwirth A, Colpi G, Papp G, Pomerol J, Hargreave TB.: Guidelines on male infertility. European Association of Urology. (2004)

    Google Scholar 

  32. Moretti E, Capitani S, Figura N, Pammolli A, Federico MG, Giannerini V, Collodel G. The presence of bacteria species in semen and sperm quality. J Assist Reprod Genet. 2009;26(1):47–56.

    Article  PubMed  Google Scholar 

  33. Eley A, Pacey AA, Galdiero M, Galdiero M, Galdiero F. Can Chlamydia trachomatis directly damage your sperm? Lancet Infectious Dis. 2005;5(1):53–7.

    Article  Google Scholar 

  34. Gimenes F, Souza RP, Bento JC, Teixeira JJ, Maria-Engler SS, Bonini MG, Consolaro ME. Male infertility: a public health issue caused by sexually transmitted pathogens. Nat Rev Urol. 2014;11(12):672–87.

    Article  PubMed  Google Scholar 

  35. Stojanov M, Baud D, Greub G, Vulliemoz N. Male infertility: the intracellular bacterial hypothesis. New Microbes New Infect. 2018;26:37–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. World Health Organization. WHO laboratory manual for the examination and processing of human semen. (2010)

    Google Scholar 

  37. Farsimadan M, Motamedifar M. Bacterial infection of the male reproductive system causing infertility. J Reprod Immunol. 2020;3:103183.

    Article  CAS  Google Scholar 

  38. Ghasemian F, Esmaeilnezhad S, Moghaddam MJ. Staphylococcus saprophyticus and Escherichia coli: tracking from sperm fertility potential to assisted reproductive outcomes. Clin Exp Reprod Med. 2021;48(2):142.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fujita Y, Mihara T, Okazaki T, Shitanaka M, Kushino R, Ikeda C, Negishi H, Liu Z, Richards JS, Shimada M. Toll-like receptors (TLR) 2 and 4 on human sperm recognize bacterial endotoxins and mediate apoptosis. Hum Reprod. 2011;26(10):2799–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iommiello VM, Albani E, Di Rosa A, Marras A, Menduni F, Morreale G, Levi SL, Pisano B, Levi-Setti PE. Ejaculate oxidative stress is related with sperm DNA fragmentation and round cells. Int J Endocrinol. 2015;2015

    Google Scholar 

  41. Parks JE, Lynch DV. Lipid composition and thermotropic phase behavior of boar, bull, stallion, and rooster sperm membranes. Cryobiology. 1992;29(2):255–66.

    Article  CAS  PubMed  Google Scholar 

  42. La Vignera S, Condorelli RA, Vicari E, Salmeri M, Morgia G, Favilla V, Cimino S, Calogero AE. Microbiological investigation in male infertility: a practical overview. J Med Microbiol. 2014;63(1):1–4.

    Article  PubMed  Google Scholar 

  43. Yamamichi F, Shigemura K, Kitagawa K, Fujisawa M. Comparison between non-septic and septic cases in stone-related obstructive acute pyelonephritis and risk factors for septic shock: a multi-center retrospective study. J Infect Chemother. 2018;24(11):902–6.

    Article  PubMed  Google Scholar 

  44. Hayami H, Takahashi S, Ishikawa K, Yasuda M, Yamamoto S, Wada K, Kobayashi K, Hamasuna R, Minamitani S, Matsumoto T, Kiyota H. Second nationwide surveillance of bacterial pathogens in patients with acute uncomplicated cystitis conducted by Japanese surveillance committee from 2015 to 2016: antimicrobial susceptibility of Escherichia coli, Klebsiella pneumoniae, and staphylococcus saprophyticus. J Infect Chemother. 2019;25(6):413–22.

    Article  PubMed  Google Scholar 

  45. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schuppe HC, Pilatz A, Hossain H, Diemer T, Wagenlehner F, Weidner W. Urogenital infection as a risk factor for male infertility. Dtsch Arztebl Int. 2017;114(19):339.

    PubMed  PubMed Central  Google Scholar 

  47. Weidner W, Colpi GM, Hargreave TB, Papp GK, Pomerol JM. EAU working group on male infertility. EAU guidelines on male infertility. Eur Urol. 2002;42(4):313–22.

    Article  CAS  PubMed  Google Scholar 

  48. Henkel R, Offor U, Fisher D. The role of infections and leukocytes in male infertility. Andrologia. 2021;53(1):e13743.

    Article  PubMed  Google Scholar 

  49. Krieger JN, Nyberg L Jr, Nickel JC. NIH consensus definition and classification of prostatitis. JAMA. 1999;282(3):236–7.

    Article  CAS  PubMed  Google Scholar 

  50. Naber KG, Weidner W. Chronic prostatitis—an infectious disease? J Antimicrob Chemother. 2000;46(2):157–61.

    Article  CAS  PubMed  Google Scholar 

  51. Ness RB, Markovic N, Carlson CL, Coughlin MT. Do men become infertile after having sexually transmitted urethritis? An epidemiologic examination. Fertil Steril. 1997;68(2):205–13.

    Article  CAS  PubMed  Google Scholar 

  52. Horner PJ, Blee K, Falk L, van der Meijden W, Moi H. 2016 European guideline on the management of non-gonococcal urethritis. Int J STD AIDS. 2016;27(11):928–37.

    Article  CAS  PubMed  Google Scholar 

  53. Brill JR. Diagnosis and treatment of urethritis in men. Am Fam Physician. 2010;81(7):873–8.

    PubMed  Google Scholar 

  54. Osegbe DN. Testicular function after unilateral bacterial epididymo-orchitis. Eur Urol. 1991;19:204–8.

    Article  CAS  PubMed  Google Scholar 

  55. Ochsendorf FR. Sexually transmitted infections: impact on male fertility. Andrologia. 2008;40(2):72–5.

    Article  CAS  PubMed  Google Scholar 

  56. Martinez G, Daniels K, Chandra A: Fertility of men and women aged 15–44 years in the United States: National Survey of family growth, 2006–2010. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics; (2012)

    Google Scholar 

  57. Stamm WE. Chlamydia trachomatis infections: progress and problems. J Infect Dis. 1999;179(Supplement_2):S380–3.

    Article  PubMed  Google Scholar 

  58. World Health Organization. Global prevalence and incidence of selected curable sexually transmitted infections: overview and estimates. (2001)

    Google Scholar 

  59. Solomon M, Henkel R. Semen culture and the assessment of genitourinary tract infections. Indian J Urol: IJU: J Urol Soc India. 2017;33(3):188.

    Article  Google Scholar 

  60. Gdoura R, Kchaou W, Chaari C, Znazen A, Keskes L, Rebai T, Hammami A. Ureaplasma urealyticum, Ureaplasma parvum, mycoplasma hominis and mycoplasma genitalium infections and semen quality of infertile men. BMC Infect Dis. 2007;7(1):1–9.

    Article  Google Scholar 

  61. World Health Organization. Global incidence and prevalence of selected curable sexually transmitted infections-2008. (2012)

    Google Scholar 

  62. Golshani M, Taheri S, Eslami G, Soleymani RA, Falah F, Goudarzi H.: Genital tract infection in asymptomatic infertile men and its effect on semen quality (2006): 81–84.

    Google Scholar 

  63. Diemer T, Weidner W, Michelmann HW, SCHIEFER HG, Rovan E, Mayer F. Influence of Escherichia coli on motility parameters of human spermatozoa in vitro. Int J Androl. 1996;19(5):271–7.

    Article  CAS  PubMed  Google Scholar 

  64. Wolff H, Panhans A, Stolz W, Meurer M. Adherence of Escherichia coli to sperm: a mannose mediated phenomenon leading to agglutination of sperm and E. coli. Fertil Steril. 1993;60(1):154–8.

    Article  CAS  PubMed  Google Scholar 

  65. El-Mulla KF, Kohn FM, Dandal M, El Beheiry AH, Schiefer HG, Weidner W, Schill WB. In vitro effect of Escherichia coli on human sperm acrosome reaction. Arch Androl. 1996;37(2):73–8.

    Article  CAS  PubMed  Google Scholar 

  66. Schulz M, Sánchez R, Soto L, Risopatrón J, Villegas J. Effect of Escherichia coli and its soluble factors on mitochondrial membrane potential, phosphatidylserine translocation, viability, and motility of human spermatozoa. Fertil Steril. 2010;94(2):619–23.

    Article  CAS  PubMed  Google Scholar 

  67. Fraczek M, Piasecka M, Gaczarzewicz D, Szumala-Kakol A, Kazienko A, Lenart S, Laszczynska M, Kurpisz M. Membrane stability and mitochondrial activity of human-ejaculated spermatozoa during in vitro experimental infection with E scherichia coli, S taphylococcus haemolyticus and B acteroides ureolyticus. Andrologia. 2012;44(5):315–29.

    Article  CAS  PubMed  Google Scholar 

  68. Galdiero F, Gorga F, Bentivoglio C, Mancuso R, Galdiero E, Tufano MA. The action of LPS porins and peptidoglycan fragments on human spermatozoa. Infection. 1988;16(6):349–53.

    Article  CAS  PubMed  Google Scholar 

  69. Rennemeier C, Frambach T, Hennicke F, Dietl J, Staib P. Microbial quorum-sensing molecules induce acrosome loss and cell death in human spermatozoa. Infect Immun. 2009;77(11):4990–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Altaee MF, Nafee SK, Hamza SJ. Evaluation for the cytotoxic effect of exotoxin a produced by Pseudomonas aeruginosa on mice by using cytogenetic parameters. Curr Microbiol. 2013;1:257–61.

    Google Scholar 

  71. Buommino E, Morelli F, Metafora S, Rossano F, Perfetto B, Baroni A, Tufano MA. Porin from Pseudomonas aeruginosa induces apoptosis in an epithelial cell line derived from rat seminal vesicles. Infect Immun. 1999;67(9):4794–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Malhotra M, Sood S, Mukherjee A, Muralidhar S, Bala M. Genital chlamydia trachomatis: an update. Indian J Med Res. 2013;138(3):303.

    PubMed  PubMed Central  Google Scholar 

  73. Saka HA, Thompson JW, Chen YS, Kumar Y, Dubois LG, Moseley MA, Valdivia RH. Quantitative proteomics reveals metabolic and pathogenic properties of chlamydia trachomatis developmental forms. Mol Microbiol. 2011;82(5):1185–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Eley A, Hosseinzadeh S, Hakimi H, Geary I, Pacey AA. Apoptosis of ejaculated human sperm is induced by co-incubation with Chlamydia trachomatis lipopolysaccharide. Human Reproduct. 2005;20(9):2601–7.

    Article  CAS  Google Scholar 

  75. Segnini A, Camejo MI, Proverbio F. Chlamydia trachomatis and sperm lipid peroxidation in infertile men. Asian J Androl. 2003;5(1):47–50.

    CAS  PubMed  Google Scholar 

  76. Kokab A, Akhondi MM, Sadeghi MR, Modarresi MH, Aarabi M, Jennings R, Pacey AA, Eley A. Raised inflammatory markers in semen from men with asymptomatic chlamydial infection. J Androl. 2010;31(2):114–20.

    Article  CAS  PubMed  Google Scholar 

  77. Gallegos G, Ramos B, Santiso R, Goyanes V, Gosálvez J, Fernández JL. Sperm DNA fragmentation in infertile men with genitourinary infection by chlamydia trachomatis and mycoplasma. Fertil Steril. 2008;90(2):328–34.

    Article  PubMed  Google Scholar 

  78. Jiminez G, Villanveva Diaz CA. Epididymal stereocilia in semen of infertile men: evidence of chronic epididymitis? Int J Androl. 2006;38:26–30.

    Google Scholar 

  79. Rowley J, Vander Hoorn S, Korenromp E, Low N, Unemo M, Abu-Raddad LJ, Chico RM, Smolak A, Newman L, Gottlieb S, Thwin SS. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ. 2019;97(8):548.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Krause W. Male accessory gland infection. Andrologia. 2008;40(2):113–6.

    Article  CAS  PubMed  Google Scholar 

  81. Pérez-Plaza M, Padrón RS, Más J, Peralta H. Semen analyses in men with asymptomatic genital gonorrhoea. Int J Androl. 1982;5(1):6–10.

    Article  PubMed  Google Scholar 

  82. Harvey HA, Jennings MP, Campbell CA, Williams R, Apicella MA. Receptor-mediated endocytosis of Neisseria gonorrhoeae into primary human urethral epithelial cells: the role of the asialoglycoprotein receptor. Mol Microbiol. 2001;42(3):659–72.

    Article  CAS  PubMed  Google Scholar 

  83. Onemu SO, Ibeh IN. Studies on the significance of positive bacterial semen cultures in male fertility in Nigeria. Int J Fertil Womens Med. 2001;46(4):210–4.

    CAS  PubMed  Google Scholar 

  84. Marconi M, Pilatz A, Wagenlehner F, Diemer T, Weidner W. Impact of infection on the secretory capacity of the male accessory glands. Int Braz J Urol. 2009;35(3):299–309.

    Article  CAS  PubMed  Google Scholar 

  85. Emokpae MA, Uadia PO, Sadiq NM. Contribution of bacterial infection to male infertility in Nigerians. Online J Health Allied Sci. 2009;8(1)

    Google Scholar 

  86. Momoh AR, Idonije BO, Nwoke EO, Osifo UC, Okhai O, Omoroguiwa A, Momoh AA. Pathogenic bacteria-a probable cause of primary infertility among couples in Ekpoma. J Microbiol Biotechnol Res. 2011;1(3):66–71.

    Google Scholar 

  87. Kaur S, Prabha V, Shukla G, Sarwal A. Interference of human spermatozoal motility by live Staphylococcus aureus. Am J Biomed Sci. 2010;2(1):91–7.

    Article  CAS  Google Scholar 

  88. Esmailkhani A, Akhi MT, Sadeghi J, Niknafs B, Bialvaei AZ, Farzadi L, Safadel N. Assessing the prevalence of Staphylococcus aureus in infertile male patients in Tabriz, Northwest Iran. Int J Reproduct BioMed. 2018 Jul;16(7):469.

    CAS  Google Scholar 

  89. Zeighami H, Peerayeh SN, Yazdi RS, Sorouri R. Prevalence of Ureaplasma urealyticum and Ureaplasma parvum in semen of infertile and healthy men. Int J STD AIDS. 2009;20(6):387–90.

    Article  CAS  PubMed  Google Scholar 

  90. Wang Y, Liang CL, Wu JQ, Xu C, Qin SX, Gao ES. Do Ureaplasma urealyticum infections in the genital tract affect semen quality? Asian J Androl. 2006;8(5):562–8.

    Article  PubMed  Google Scholar 

  91. Zheng J, Yu SY, Jia DS, Yao B, Ge YF, Shang XJ, Huang YF. Ureaplasma urealyticum infection in the genital tract reduces seminal quality in infertile men. Zhonghua nan ke xue=. Natl J Androl. 2008;14(6):507–12.

    CAS  Google Scholar 

  92. Abdel Razzak AA, Bakr SS. Role of mycoplasma in male infertility. EMHJ-Eastern Mediterranean Health J. 2000;6(1):149–55.

    Article  Google Scholar 

  93. Potts JM, Sharma R, Pasqualotto F, Nelson D, Hall G, Agarwal A. Association of Ureaplasma urealyticum with abnormal reactive oxygen species levels and absence of leukocytospermia. J Urol. 2000;163(6):1775–8.

    Article  CAS  PubMed  Google Scholar 

  94. Svenstrup HF, Fedder J, Abraham-Peskir J, Birkelund S, Christiansen G. Mycoplasma genitalium attaches to human spermatozoa. Hum Reprod. 2003;18:2103–9.

    Article  PubMed  Google Scholar 

  95. Wikstrom A, Jensen JS. Mycoplasma genitalium: a common cause of persistent urethritis among men treated with doxycycline. Sex Transm Infect. 2006;82:276–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ahmadi MH, Mirsalehian A, Sadighi Gilani MA, Bahador A, Talebi M. Asymptomatic infection with mycoplasma hominis negatively affects semen parameters and leads to male infertility as confirmed by improved semen parameters after antibiotic treatment. Urology. 2017;100:97–102.

    Article  PubMed  Google Scholar 

  97. Ibadin OK, Ibeh IN. Bacteriospermia and sperm quality in infertile male patient at University of Benin Teaching Hospital, Benin City, Nigeria. Malaysian J Microbiol. 2008;4(2):65–7.

    Google Scholar 

  98. Zuleta-González MC, Zapata-Salazar ME, Guerrero-Hurtado LS, Puerta-Suárez J, Cardona-Maya WD. Klebsiella pneumoniae and Streptococcus agalactiae: passengers in the sperm travel. Archivos espanoles de Urolgia. 2019;72(9):939–47.

    Google Scholar 

  99. Prabha V, Sandhu R, Kaur S, Kaur K, Sarwal A, Mavuduru RS, Singh SK. Mechanism of sperm immobilization by Escherichia coli. Adv Urol. 2010;30:2010.

    Google Scholar 

  100. Agarwal A, Rana M, Qiu E, AlBunni H, Bui AD, Henkel R. Role of oxidative stress, infection and inflammation in male infertility. Andrologia. 2018;50(11):e13126.

    Article  PubMed  CAS  Google Scholar 

  101. Schaefler AJ. Epidemiology and demographics of prostatitis. Andrologia. 2003;35(5):252–7.

    Article  Google Scholar 

  102. Tremellen K. Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update. 2008;14(3):243–58.

    Article  CAS  PubMed  Google Scholar 

  103. Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull. 1993;49(3):481–93.

    Article  CAS  PubMed  Google Scholar 

  104. Aitken RJ. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol Reprod Dev. 2017;84(10):1039–52.

    Article  CAS  PubMed  Google Scholar 

  105. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829–43.

    Article  PubMed  Google Scholar 

  106. Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12(4):417–35.

    Article  CAS  PubMed  Google Scholar 

  107. Moustafa MH, Sharma RK, Thornton J, Mascha E, Abdel-Hafez MA, Thomas AJ, Agarwal A. Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Hum Reprod. 2004;19(1):129–38.

    Article  CAS  PubMed  Google Scholar 

  108. Ha HK, Park HJ, Park NC. Expression of E-cadherin and α-catenin in a varicocele-induced infertility rat model. Asian J Androl. 2011;13(3):470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sanocka D, Kurpisz M. Reactive oxygen species and sperm cells. Reprod Biol Endocrinol. 2004;2(1):1–7.

    Article  Google Scholar 

  110. Aitken RJ, Sawyer D. The human spermatozoon—not waving but drowning. Adv Male Mediated Dev Toxicity. 2003:85–98.

    Google Scholar 

  111. Grabe M, Bjerklund-Johansen TE, Botto H, Çek M, Naber KG, Tenke P, Wagenlehner F. Guidelines on urological infections. Eur Assoc Urol. 2015;182:237–57.

    Google Scholar 

  112. Wagenlehner FME, Naber KG, Bschleipfer T, Brähler E, Weidner W. Prostatitis and male pelvic pain syndrome: diagnosis and treatment. Dtsch Arztebl Int. 2009;106:175–83.

    PubMed  PubMed Central  Google Scholar 

  113. Rowe TA, Juthani-Mehta M. Diagnosis and management of urinary tract infection in older adults. Infect Dis Clin. 2014;28(1):75–89.

    Article  Google Scholar 

  114. Bent S, Nallamothu BK, Simel DL, Fihn SD, Saint S. Does this woman have an acute uncomplicated urinary tract infection? JAMA. 2002;287(20):2701–10.

    Article  PubMed  Google Scholar 

  115. Rubin RH, Shapiro ED, Andriole VT, Davis RJ, Stamm WE. Evaluation of new anti-infective drugs for the treatment of urinary tract infection. Clin Infect Dis. 1992;15(Supplement_1):S216–27.

    Article  PubMed  Google Scholar 

  116. Hooton TM. Uncomplicated urinary tract infection. N Engl J Med. 2012;366(11):1028–37.

    Article  CAS  PubMed  Google Scholar 

  117. Lee HN, Yoon H. Management of antibiotic-resistant acute pyelonephritis. Urogenital Tract Infect. 2017;12(3):95–102.

    Article  Google Scholar 

  118. Roy C, Pfleger DD, Tuchmann CM, Lang HH, Saussine CC, Jacqmin D. Emphysematous pyelitis: findings in five patients. Radiology. 2001;218(3):647–50.

    Article  CAS  PubMed  Google Scholar 

  119. Kang CI, Kim J, Park DW, Kim BN, Ha US, Lee SJ, Yeo JK, Min SK, Lee H, Wie SH. Clinical practice guidelines for the antibiotic treatment of community-acquired urinary tract infections. Infect Chemotherapy. 2018;50(1):67–100.

    Article  Google Scholar 

  120. Trost LW, Nehra A. Guideline-based management of male infertility: why do we need it? Indian J Urol: IJU: J Urol Soc India. 2011;27(1):49.

    Article  Google Scholar 

  121. Mohsen S, Dickinson JA, Somayaji R. Update on the adverse effects of antimicrobial therapies in community practice. Can Fam Physician. 2020;66(9):651–9.

    PubMed  PubMed Central  Google Scholar 

  122. Yamamoto S, Ishikawa K, Hayami H, Nakamura T, Miyairi I, Hoshino T, Hasui M, Tanaka K, Kiyota H, Arakawa S. JAID/JSC guidelines for clinical management of infectious disease 2015− urinary tract infection/male genital infection. J Infect Chemother. 2017;23(11):733–51.

    Article  PubMed  Google Scholar 

  123. Talan DA, Klimberg IW, Nicolle LE, Song J, Kowalsky SF, Church DA. Once daily, extended release ciprofloxacin for complicated urinary tract infections and acute uncomplicated pyelonephritis. J Urol. 2004;171(2):734–9.

    Article  CAS  PubMed  Google Scholar 

  124. Klausner HA, Brown P, Peterson J, Kaul S, Khashab M, Fisher AC, Kahn JB. A trial of levofloxacin 750 mg once daily for 5 days versus ciprofloxacin 400 mg and/or 500 mg twice daily for 10 days in the treatment of acute pyelonephritis. Curr Med Res Opin. 2007;23(11):2637–45.

    Article  CAS  PubMed  Google Scholar 

  125. Talan DA, Stamm WE, Hooton TM, Moran GJ, Burke T, Iravani A, Reuning-Scherer J, Church DA. Comparison of ciprofloxacin (7 days) and trimethoprim-sulfamethoxazole (14 days) for acute uncomplicated pyelonephritis in women: a randomized trial. JAMA. 2000;283(12):1583–90.

    Article  CAS  PubMed  Google Scholar 

  126. Adamus-Białek W, Wawszczak M, Arabski M, Majchrzak M, Gulba M, Jarych D, Parniewski P, Głuszek S. Ciprofloxacin, amoxicillin, and aminoglycosides stimulate genetic and phenotypic changes in uropathogenic Escherichia coli strains. Virulence. 2019;10(1):260–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Gundidza M, Manwa G. Activity of chloroform extract from Plumbago zeylanica against Neisseria gonorrhoeae. Fitoterapia. 1990;61(1):47–9.

    Google Scholar 

  128. Ruddock PS, Charland M, Ramirez S, López A, Towers GN, Arnason JT, Liao M, Dillon JA. Antimicrobial activity of flavonoids from Piper lanceaefolium and other Colombian medicinal plants against antibiotic susceptible and resistant strains of Neisseria gonorrhoeae. Sex Transm Dis. 2011;38(2):82–8.

    Article  CAS  PubMed  Google Scholar 

  129. Bouza E, Cercenado E: Klebsiella and enterobacter: antibiotic resistance and treatment implications. InSeminars in respiratory infections 2002; (Vol. 17, No. 3, pp. 215–230).

    Google Scholar 

  130. Doherty VF, Olaniran OO, Kanife UC. Antimicrobial activities of Aframomum melegueta (Alligator pepper). Int J Biol. 2010;2(2):126–31.

    Article  Google Scholar 

  131. Cock IE, Van Vuuren SF. The potential of selected South African plants with anti-Klebsiella activity for the treatment and prevention of ankylosing spondylitis. Inflammopharmacology. 2015;23(1):21–35.

    Article  CAS  PubMed  Google Scholar 

  132. Chang FY, Peacock JE Jr, Musher DM, Triplett P, MacDonald BB, Mylotte JM, O’Donnell A, Wagener MM, Victor LY. Staphylococcus aureus bacteremia: recurrence and the impact of antibiotic treatment in a prospective multicenter study. Medicine. 2003;82(5):333–9.

    Article  CAS  PubMed  Google Scholar 

  133. Isaiah IN, Nche BT, Nwagu IG, Nnanna II. Current studies on bacterospermia the leading cause of male infertility: a protégé and potential threat towards mans extinction. N Am J Med Sci. 2011;3(12):562.

    PubMed  PubMed Central  Google Scholar 

  134. Akinyemi KO, Oladapo O, Okwara CE, Ibe CC, Fasure KA. Screening of crude extracts of six medicinal plants used in South-West Nigerian unorthodox medicine for anti-methicillin resistant Staphylococcus aureus activity. BMC Complement Altern Med. 2005;5(1):1–7.

    Article  Google Scholar 

  135. Grube K, Spiegler V, Hensel A. Antiadhesive phthalides from Apium graveolens fruits against uropathogenic E. coli. J Ethnopharmacol. 2019;237:300–6. system. StatPearls

    Article  CAS  PubMed  Google Scholar 

  136. Noormandi A, Dabaghzadeh F. Effects of green tea on Escherichia coli as a uropathogen. J Tradit Complement Med. 2015;5(1):15–20.

    Article  PubMed  Google Scholar 

  137. Das S. Natural therapeutics for urinary tract infections—a review. Future J Pharm Sci. 2020;6(1):1–13.

    Google Scholar 

  138. Shaheen G, Akram M, Jabeen F, Ali Shah SM, Munir N, Daniyal M, Riaz M, Tahir IM, Ghauri AO, Sultana S, Zainab R. Therapeutic potential of medicinal plants for the management of urinary tract infection: a systematic review. Clin Exp Pharmacol Physiol. 2019;46(7):613–24.

    Article  CAS  PubMed  Google Scholar 

  139. Sahoo S, Kar DM, Mohapatra S, Rout SP, Dash SK. Antibacterial activity of Hybanthus enneaspermus against selected urinary tract pathogens. Indian J Pharm Sci. 2006;68(5)

    Google Scholar 

  140. Amabye TG, Tadesse FM. Phytochemical and antibacterial activity of moringa oleifera available in the market of Mekelle. J Analyt Pharm Res. 2016;2(1):1–4.

    Google Scholar 

  141. Zheleva-Dimitrova D, Obreshkova D, Nedialkov P. Antioxidant activity of tribulus terrestris—a natural product in infertility therapy. Int J Pharm Pharm Sci. 2012;4(4):508–11.

    Google Scholar 

  142. Nickavar B, Adeli A, Nickavar A. TLC-bioautography and GC-MS analyses for detection and identification of antioxidant constituents of Trachyspermum copticum essential oil. Iranian J Pharm Res: IJPR. 2014;13(1):127.

    CAS  Google Scholar 

  143. Mathew S, Abraham TE. In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies. Food Chem Toxicol. 2006;44(2):198–206.

    Article  CAS  PubMed  Google Scholar 

  144. Saha S, Verma RJ. Antioxidant activity of polyphenolic extract of Terminalia chebula Retzius fruits. J Taibah Univ Sci. 2016;10(6):805–12.

    Article  Google Scholar 

  145. Hakkim FL, Shankar CG, Girija S. Chemical composition and antioxidant property of holy basil (Ocimum sanctum L.) leaves, stems, and inflorescence and their in vitro callus cultures. J Agric Food Chem. 2007;55(22):9109–17.

    Article  CAS  PubMed  Google Scholar 

  146. Elmastaş M, Gülçin İ, Beydemir Ş, İrfan Küfrevioğlu Ö, Aboul-Enein HY. A study on the in vitro antioxidant activity of juniper (Juniperus communis L.) fruit extracts. Anal Lett. 2006;39(1):47–65.

    Article  CAS  Google Scholar 

  147. Ghaima KK, Hashim NM, Ali SA. Antibacterial and antioxidant activities of ethyl acetate extract of nettle (Urtica dioica) and dandelion (Taraxacum officinale). J Appl Pharm Sci. 2013;3(5):96.

    Google Scholar 

  148. Kumar N, Singh AK. Trends of male factor infertility, an important cause of infertility: a review of literature. J Human Reproduct Sci. 2015 Oct;8(4):191.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S. et al. (2022). Bacteriospermia and Male Infertility: Role of Oxidative Stress. In: Kesari, K.K., Roychoudhury, S. (eds) Oxidative Stress and Toxicity in Reproductive Biology and Medicine. Advances in Experimental Medicine and Biology, vol 1358. Springer, Cham. https://doi.org/10.1007/978-3-030-89340-8_7

Download citation

Publish with us

Policies and ethics