Skip to main content

Abstract

Infants of diabetic mothers are at significant risk for major congenital anomalies. The overall reported risk for major malformations is 5–6%, with a higher prevalence of 10–12% in pregnancies requiring insulin therapy. The risk of isolated and multiple congenital anomalies appears to be highest in infants of mothers with pregestational diabetes. However, intensive treatment aiming to an optimal glycemic control during organogenesis can reduce the risk for congenital malformations. In addition, diabetes in pregnancy has been associated with increased fetal growth. According to Padersen hypothesis, maternal hyperglycaemia results in fetal hyperglycaemia and, hence, in hypertrophy of fetal islet tissue with insulin-hypersecretion. Increased insulin concentration is associated with fetal macrosomia, as fetal insulin is a primary anabolic factor for in utero fetal growth. Moreover, maternal lipids contribute to the fetal growth, in particular adiposity. Women with diabetes have significantly higher triglyceride concentrations and maternal triglyceride concentrations have a significant positive correlation with birth weight, independent of maternal glucose concentration. In pregnancies complicated by maternal diabetes mellitus, the increased incidence of late fetal death and intrapartum fetal distress may have its origins in chronic or acute fetal hypoxemia. The combination of glucose and insulin excess in the fetus stimulates its metabolism, and consequently increases the fetal oxygen demands, often leading to chronic fetal hypoxia and acidemia. As a response to hypoxia, erythropoietin (EPO) is produced. It has been proposed that fetal acidemia may be a consequence of short-term maternal hyperglycemia, whereas fetal polycythemia reflects poor long-term glycemic control. Insulin is the preferred treatment for pregestational diabetes in pregnancy. In case of gestational diabetes, if lifestyle modifications fail to achieve the glycemic targets, insulin is initiated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becerra JE, Khoury MJ, Cordero JF, Erickson JD. Diabetes mellitus during pregnancy and the risks for specific birth defects: a population-based case-control study. Pediatrics. 1990;85(1):1–9. http://europepmc.org/abstract/MED/2404255.

    CAS  PubMed  Google Scholar 

  2. Riskin A, Itzchaki O, Bader D, Ioffe A, Toropine A, Riskin-Mashiah S. Perinatal outcomes in infants of mothers with diabetes in pregnancy. Isr Med Assoc J. 2020;22(9):569–75.

    PubMed  Google Scholar 

  3. Mills JL, Simpson JL, Driscoll SG, Jovanovic-Peterson L, Van Allen M, Aarons JH, et al. Incidence of spontaneous abortion among normal women and insulin-dependent diabetic women whose pregnancies were identified within 21 days of conception. N Engl J Med. 1988;319(25):1617–23. https://doi.org/10.1056/NEJM198812223192501.

    Article  CAS  PubMed  Google Scholar 

  4. Greene MF, Hare JW, Cloherty JP, Benacerraf BR, Soeldner JS. First-trimester hemoglobin A1 and risk for major malformation and spontaneous abortion in diabetic pregnancy. Teratology. 1989;39(3):225–31. https://doi.org/10.1002/tera.1420390303.

    Article  CAS  PubMed  Google Scholar 

  5. Pregnancy outcomes in the diabetes control and complications trial. Am J Obstet Gynecol. 1996;174(4):1343–53. https://pubmed.ncbi.nlm.nih.gov/8623868/

  6. Weintrob N, Karp M, Hod M. Short- and long-range complications in offspring of diabetic mothers. J Diabetes Complicat. 1996;10(5):294–301. https://linkinghub.elsevier.com/retrieve/pii/1056872795000801.

    CAS  Google Scholar 

  7. Wren C. Cardiovascular malformations in infants of diabetic mothers. Heart. 2003;89(10):1217–20. https://doi.org/10.1136/heart.89.10.1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Loffredo CA, Wilson PD, Ferencz C. Maternal diabetes: an independent risk factor for major cardiovascular malformations with increased mortality of affected infants. Teratology. 2001;64(2):98–106. https://doi.org/10.1002/tera.1051.

    Article  CAS  PubMed  Google Scholar 

  9. Mills JL, Baker L, Goldman AS. Malformations in infants of diabetic mothers occur before the seventh gestational week: implications for treatment. Diabetes. 1979;28(4):292–3. https://doi.org/10.2337/diab.28.4.292.

    Article  CAS  PubMed  Google Scholar 

  10. Ray JG, O’Brien TE, Chan WS. Preconception care and the risk of congenital anomalies in the offspring of women with diabetes mellitus: a meta-analysis. QJM. 2001;94(8):435–44.

    CAS  PubMed  Google Scholar 

  11. Balsells M, García-Patterson A, Gich I, Corcoy R. Maternal and fetal outcome in women with type 2 versus type 1 diabetes mellitus: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2009;94(11):4284–91.

    CAS  PubMed  Google Scholar 

  12. Castle HL, Laifer SA. Factors influencing preconception control of glycemia in diabetic women. Arch Intern Med. 1998;158(12):1321–4.

    Google Scholar 

  13. Starikov R, Bohrer J, Goh W, Kuwahara M, Chien EK, Lopes V, et al. Hemoglobin A1c in pregestational diabetic gravidas and the risk of congenital heart disease in the fetus. Pediatr Cardiol. 2013;34(7):1716–22. https://doi.org/10.1007/s00246-013-0704-6.

    Article  PubMed  Google Scholar 

  14. Khoury MJ, Becerra JE, Cordero JF, Erickson JD. Clinical-epidemiologic assessment of patterns of birth defects associated with human teratogens: application to diabetic embryopathy | American Academy of Pediatrics. Pediatrics. 1989;84(4):658–65. https://pediatrics.aappublications.org/content/84/4/658.short.

    CAS  PubMed  Google Scholar 

  15. Kucera J. Rate and type of congenital anomalies among offspring of diabetic women. J Reprod Med. 1971;7(2):73–82. https://pubmed.ncbi.nlm.nih.gov/5095696/.

    CAS  PubMed  Google Scholar 

  16. Davidson CM, Northrup H, King TM, Fletcher JM, Townsend I, Tyerman GH, et al. Genes in glucose metabolism and association with spina bifida. Reprod Sci. 2008;15(1):51–8.

    CAS  PubMed  Google Scholar 

  17. Zhang Q, Cai T, Xiao Z, Li D, Wan C, Cui X, et al. Identification of histone malonylation in the human fetal brain and implications for diabetes-induced neural tube defects. Mol Genet Genomic Med. 2020;8(9):e1403. https://doi.org/10.1002/mgg3.1403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hrubec TC, Prater MR, Toops KA, Holladay SD. Reduction in diabetes-induced craniofacial defects by maternal immune stimulation. Birth Defects Res Part B Dev Reprod Toxicol. 2006;77(1):1–9.

    CAS  Google Scholar 

  19. Cerrizuela S, Vega-Lopez GA, Aybar MJ. The role of teratogens in neural crest development. Birth Defects Res. 2020;112(8):584–632.

    CAS  PubMed  Google Scholar 

  20. Bueno A, Sinzato YK, Sudano MJ, Alvarenga FC, Calderon IM, Rudge MV, Damasceno DC. Short and long-term repercussions of the experimental diabetes in embryofetal development. Diabetes Metab Res Rev. 2014;30(7):575–81.

    PubMed  Google Scholar 

  21. Frías JL, Frías JP, Frías PA, Martínez-Frías ML. Infrequently studied congenital anomalies as clues to the diagnosis of maternal diabetes mellitus. Am J Med Genet Part A. 2007;143A(24):2904–9. https://doi.org/10.1002/ajmg.a.32071.

    Article  PubMed  Google Scholar 

  22. Ellis H, Kumar R, Kostyrka B. Neonatal small left colon syndrome in the offspring of diabetic mothers-an analysis of 105 children. J Pediatr Surg. 2009;44(12):2343–6. https://doi.org/10.1016/j.jpedsurg.2009.07.054.

    Article  PubMed  Google Scholar 

  23. Correa A, Gilboa SM, Besser LM, Botto LD, Moore CA, Hobbs CA, et al. Diabetes mellitus and birth defects. Am J Obstet Gynecol. 2008;199(3):237.e1–9.

    Google Scholar 

  24. Åberg A, Westbam L, Källén B. Congenital malformations among infants whose mothers had gestational diabetes or preexisting diabetes. Early Hum Dev. 2001;61(2):85–95. https://pubmed.ncbi.nlm.nih.gov/11223271/.

    PubMed  Google Scholar 

  25. Dart AB, Ruth CA, Sellers EA, Au W, Dean HJ. Maternal diabetes mellitus and congenital anomalies of the kidney and urinary tract (CAKUT) in the child. Am J Kidney Dis. 2015;65(5):684–91. https://doi.org/10.1053/j.ajkd.2014.11.017.

    Article  PubMed  Google Scholar 

  26. Parimi M, Nitsch D. A systematic review and meta-analysis of diabetes during pregnancy and congenital genitourinary abnormalities. Kidney Int Rep. 2020;5(5):678–93.

    PubMed  PubMed Central  Google Scholar 

  27. Pedersen J. Diabetes and pregnancy: blood sugar of newborn infants during fasting and glucose administration. Ugeskr Laeger. 1952;114:685.

    CAS  PubMed  Google Scholar 

  28. HAPO Study Cooperative Research Group, Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358(19):1991–2002. https://doi.org/10.1056/NEJMoa0707943.

    Article  Google Scholar 

  29. Hill DJ, Milner RDG. Insulin as a growth factor, vol. 19. The Woodlands, TX: International Pediatric Research Foundation, Inc; 1985.

    Google Scholar 

  30. Catalano PM, Hauguel-De Mouzon S. Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic? Am J Obstet Gynecol. 2011;204:479–87.

    PubMed  PubMed Central  Google Scholar 

  31. Schaefer-Graf UM, Graf K, Kulbacka I, Kjos SL, Dudenhausen J, Vetter K, et al. Maternal lipids as strong determinants of fetal environment and growth in pregnancies with gestational diabetes mellitus. Diabetes Care. 2008;31(9):1858–63. https://pubmed.ncbi.nlm.nih.gov/18606978/.

    PubMed  PubMed Central  Google Scholar 

  32. Idris N, Wong SF, Thomae M, Gardener G, McIntyre DH. Influence of polyhydramnios on perinatal outcome in pregestational diabetic pregnancies. Ultrasound Obstet Gynecol. 2010;36(3):338–43. https://doi.org/10.1002/uog.7676.

    Article  CAS  PubMed  Google Scholar 

  33. Shoham I, Wiznitzer A, Silberstein T, Fraser D, Holcberg G, Katz M, et al. Gestational diabetes complicated by hydramnios was not associated with increased risk of perinatal morbidity and mortality. Eur J Obstet Gynecol Reprod Biol. 2001;100(1):46–9. https://pubmed.ncbi.nlm.nih.gov/11728656/.

    CAS  PubMed  Google Scholar 

  34. Salvesen DR, Michael Brudenell J, Snijders RJM, Ireland RM, Nicolaides KH. Fetal plasma erythropoietin in pregnancies complicated by maternal diabetes mellitus. Am J Obstet Gynecol. 1993;168(1):88–94. https://doi.org/10.1016/S0002-9378(12)90891-1.

    Article  CAS  PubMed  Google Scholar 

  35. Mellitus PD. ACOG practice bulletin: pregestational diabetes. Am Coll Obstet Gynecol. 2018;132(60):228–48.

    Google Scholar 

  36. American Diabetes Association. 14. Management of diabetes in pregnancy: standards of medical care in diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S165–72. https://doi.org/10.2337/dc19-S014.

    Article  Google Scholar 

  37. Lambert K, Holt RIG. The use of insulin analogues in pregnancy. In: Diabetes, obesity and metabolism., vol. 15. London: Blackwell Publishing Ltd; 2013. p. 888–900. https://doi.org/10.1111/dom.12098.

    Chapter  Google Scholar 

  38. Negrato CA, Montenegro Junior RM, Von Kostrisch LM, Guedes MF, Mattar R, Gomes MB. Insulin analogues in the treatment of diabetes in pregnancy. Arq Bras Endocrinol Metabol. 2012;56(7):405–14. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-27302012000700001&lng=en&tlng=en.

    PubMed  Google Scholar 

  39. Alfadhli EM. Gestational diabetes mellitus. Saudi Med J. 2015;36(4):399–406.

    PubMed  PubMed Central  Google Scholar 

  40. Jovanovic L. Role of diet and insulin treatment of diabetes in pregnancy. Clin Obstet Gynecol. 2000;43(1):46–55. http://www.ncbi.nlm.nih.gov/pubmed/10694987.

    CAS  PubMed  Google Scholar 

  41. Paterson M, Bell KJ, O’Connell SM, Smart CE, Shafat A, King B. The role of dietary protein and fat in glycaemic control in type 1 diabetes: implications for intensive diabetes management. Curr Diab Rep. 2015;15(9):61. http://www.ncbi.nlm.nih.gov/pubmed/26202844.

    PubMed  PubMed Central  Google Scholar 

  42. Chatzakis C, Floros D, Papagianni M, Tsiroukidou K, Kosta K, Vamvakis A, et al. The beneficial effect of the mobile application euglyca in children and adolescents with type 1 diabetes mellitus: a randomized controlled trial. Diabetes Technol Ther. 2019;21(11):627–34. http://www.ncbi.nlm.nih.gov/pubmed/31335204.

    PubMed  Google Scholar 

  43. Kowalska A, Piechowiak K, Ramotowska A, Szypowska A. Impact of Elka, the electronic device for prandial insulin dose calculation, on metabolic control in children and adolescents with type 1 diabetes mellitus: a randomized controlled trial. J Diabetes Res. 2017;2017:1–9. http://www.ncbi.nlm.nih.gov/pubmed/28232949, https://www.hindawi.com/journals/jdr/2017/1708148/.

    Google Scholar 

  44. Goyal S, Nunn CA, Rotondi M, Couperthwaite AB, Reiser S, Simone A, et al. A mobile app for the self-management of type 1 diabetes among adolescents: a randomized controlled trial. JMIR mHealth uHealth. 2017;5(6):e82. http://mhealth.jmir.org/2017/6/e82/.

    PubMed  PubMed Central  Google Scholar 

  45. Ryu RJ, Hays KE, Hebert MF. Gestational diabetes mellitus management with oral hypoglycemic agents. Semin Perinatol. 2014;38(8):508–15. http://www.ncbi.nlm.nih.gov/pubmed/25315294.

    PubMed  PubMed Central  Google Scholar 

  46. Charles B, Norris R, Xiao X, Hague W. Population pharmacokinetics of metformin in late pregnancy. Ther Drug Monit. 2006;28(1):67–72. http://journals.lww.com/00007691-200602000-00015.

    CAS  PubMed  Google Scholar 

  47. Vanky E, Zahlsen K, Spigset O, Carlsen S. Placental passage of metformin in women with polycystic ovary syndrome. Fertil Steril. 2005;83(5):1575–8. https://linkinghub.elsevier.com/retrieve/pii/S001502820500141X.

    PubMed  Google Scholar 

  48. Malek R, Davis SN. Pharmacokinetics, efficacy and safety of glyburide for treatment of gestational diabetes mellitus. In: Expert opinion on drug metabolism and toxicology, vol. 12. Abingdon: Taylor and Francis Ltd; 2016. p. 691–9. http://www.ncbi.nlm.nih.gov/pubmed/27163280.

    Google Scholar 

  49. Hebert MF, Ma X, Naraharisetti SB, Krudys KM, Umans JG, Hankins GDV, et al. Are we optimizing gestational diabetes treatment with glyburide the pharmacologic basis for better clinical practice. Clin Pharmacol Ther. 2009;85(6):607–14. http://www.ncbi.nlm.nih.gov/pubmed/19295505.

    CAS  PubMed  Google Scholar 

  50. Niromanesh S, Alavi A, Sharbaf FR, Amjadi N, Moosavi S, Akbari S. Metformin compared with insulin in the management of gestational diabetes mellitus: a randomized clinical trial. Diabetes Res Clin Pract. 2012;98(3):422–9. https://linkinghub.elsevier.com/retrieve/pii/S0168822712003361.

    CAS  PubMed  Google Scholar 

  51. Liang HL, Ma SJ, Xiao YN, Tan HZ. Comparative efficacy and safety of oral antidiabetic drugs and insulin in treating gestational diabetes mellitus: an updated PRISMA-compliant network meta-analysis. Medicine (Baltimore). 2017;96(38):e7939.

    CAS  Google Scholar 

  52. Tarry-Adkins JL, Aiken CE, Ozanne SE. Neonatal, infant, and childhood growth following metformin versus insulin treatment for gestational diabetes: a systematic review and meta-analysis. PLoS Med. 2019;16(8):e1002848. http://www.ncbi.nlm.nih.gov/pubmed/31386659.

    PubMed  PubMed Central  Google Scholar 

  53. Rowan JA, Rush EC, Plank LD, Lu J, Obolonkin V, Coat S, et al. Metformin in gestational diabetes: the offspring follow-up (MiG TOFU): body composition and metabolic outcomes at 7–9 years of age. BMJ Open Diabetes Res Care. 2018;6(1):e000456. https://doi.org/10.1136/bmjdrc-2017-000456.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hanem LGE, Stridsklev S, Júlíusson PB, Salvesen Ø, Roelants M, Carlsen SM, et al. Metformin use in PCOS pregnancies increases the risk of offspring overweight at 4 years of age: follow-up of two RCTs. J Clin Endocrinol Metab. 2018;103(4):1612–21. https://academic.oup.com/jcem/article/103/4/1612/4912386.

    PubMed  Google Scholar 

  55. Balsells M, García-Patterson A, Solà I, Roqué M, Gich I, Corcoy R. Glibenclamide, metformin, and insulin for the treatment of gestational diabetes: a systematic review and meta-analysis. BMJ. 2015;350:h102. http://www.ncbi.nlm.nih.gov/pubmed/25609400.

    PubMed  PubMed Central  Google Scholar 

  56. Song R, Chen L, Chen Y, Si X, Liu Y, Liu Y, et al. Comparison of glyburide and insulin in the management of gestational diabetes: a meta-analysis. PLoS One. 2017;12(8):e0182488. http://www.ncbi.nlm.nih.gov/pubmed/28771572.

    PubMed  PubMed Central  Google Scholar 

  57. Sénat M-V, Affres H, Letourneau A, Coustols-Valet M, Cazaubiel M, Legardeur H, et al. Effect of glyburide vs subcutaneous insulin on perinatal complications among women with gestational diabetes. JAMA. 2018;319(17):1773. https://doi.org/10.1001/jama.2018.4072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Barbour LA, Scifres C, Valent AM, Friedman JE, Buchanan TA, Coustan D, et al. A cautionary response to SMFM statement: pharmacological treatment of gestational diabetes. Am J Obstet Gynecol. 2018;219(4):367.e1–7. https://linkinghub.elsevier.com/retrieve/pii/S0002937818305295.

    Google Scholar 

  59. Barbour LA, Feig DS. Metformin for gestational diabetes mellitus: progeny, perspective, and a personalized approach. Diabetes Care. 2019;42(3):396–9. https://doi.org/10.2337/dci18-0055.

    Article  CAS  PubMed  Google Scholar 

  60. National Institute for Health and Care Excellence. Diabetes in pregnancy: management from preconception to the postnatal period. London: NICE; 2015. p. 2–65. http://www.ncbi.nlm.nih.gov.ez.srv.meduniwien.ac.at/pubmed/25950069.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandros Sotiriadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chatzakis, C., Sotiriadis, A., Gerede, A., Dinas, K., Nicolaides, K.H. (2022). Fetal Complications. In: Goulis, D.G. (eds) Comprehensive Clinical Approach to Diabetes During Pregnancy. Springer, Cham. https://doi.org/10.1007/978-3-030-89243-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89243-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89242-5

  • Online ISBN: 978-3-030-89243-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics