Skip to main content

Distributed Coloring and the Local Structure of Unit-Disk Graphs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 12961))

Abstract

Coloring unit-disk graphs efficiently is an important problem in the global and distributed settings, with applications in radio channel assignment problems when the communication relies on omni-directional antennas of the same power. In this context it is important to bound not only the complexity of the coloring algorithms, but also the number of colors used. In this paper, we consider two natural distributed settings. In the location-aware setting (when nodes know their coordinates in the plane), we give a constant time distributed algorithm coloring any unit-disk graph G with at most \((3+\epsilon )\omega (G)+6\) colors, for any constant \(\epsilon >0\), where \(\omega (G)\) is the clique number of G. This improves upon a classical 3-approximation algorithm for this problem, for all unit-disk graphs whose chromatic number significantly exceeds their clique number. When nodes do not know their coordinates in the plane, we give a distributed algorithm in the LOCAL model that colors every unit-disk graph G with at most \(5.68\omega (G)\) colors in \(O(\log ^3 \log n)\) rounds. Moreover, when \(\omega (G)=O(1)\), the algorithm runs in \(O(\log ^* n)\) rounds. This algorithm is based on a study of the local structure of unit-disk graphs, which is of independent interest. We conjecture that every unit-disk graph G has average degree at most \(4\omega (G)\), which would imply the existence of a \(O(\log n)\) round algorithm coloring any unit-disk graph G with (approximatively) \(4\omega (G)\) colors.

The authors are partially supported by ANR Projects GATO (anr-16-ce40-0009-01), GrR (anr-18-ce40-0032), MIN-MAX (anr-19-ce40-0014) and SoS (anr-17-CE40-0033), and by LabEx PERSYVAL-lab (anr-11-labx-0025). The full version of the paper is available on arXiv [7]. It contains some proofs that are omitted in this version together with an additional appendix discussing a Fourier analytical approach toward Conjecture 1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barenboim, L., Elkin, M.: Sublogarithmic distributed MIS algorithm for sparse graphs using Nash-Williams decomposition. Distrib. Comput. 22(5–6), 363–379 (2010)

    Article  Google Scholar 

  2. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry breaking. J. ACM 63(3), 20:1–20:45 (2016)

    Google Scholar 

  3. Bieberbach, L.: Über eine Extremaleigenschaft des Kreises. Jahresber. Deutsch. Math.-Verein. 24, 247–250 (1915)

    MATH  Google Scholar 

  4. Cho, S.Y., Adjih, C., Jacquet, P.: Heuristics for network coding in wireless networks. In: Proceedings of the 3rd International Conference on Wireless Internet (WICON ’07), Article 6, pp. 1–5 (2007)

    Google Scholar 

  5. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discret. Math. 86(1–3), 165–177 (1990)

    Article  MathSciNet  Google Scholar 

  6. Elkin, M., Pettie, S., Su, H.-H.: \((2\Delta -1)\)-edge-coloring is much easier than maximal matching in the distributed setting. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA’15), pp. 355–370 (2015)

    Google Scholar 

  7. Esperet, L., Julliot, J., de Mesmay, A.: Distributed coloring and the local structure of unit-disk graphs. arXiv:2106.12322 (2021)

  8. Gerke, S., McDiarmid, C.J.H.: Graph imperfection. J. Combin. Theory Ser. B 83(1), 58–78 (2001)

    Article  MathSciNet  Google Scholar 

  9. Ghaffari, M., Grunau, C., Rozhoň, V.: Improved deterministic network decomposition. In: Proceedings of the ACM Symposium on Discrete Algorithms (2021)

    Google Scholar 

  10. Ghaffari, M., Kuhn, F.: Deterministic distributed vertex coloring: simpler, faster, and without network decomposition. arXiv:2011.04511 (2020)

  11. Gräf, A., Stumpf, M., Weißenfels, G.: On coloring unit disk graphs. Algorithmica 20, 277–293 (1998)

    Article  MathSciNet  Google Scholar 

  12. Halldórsson, M., Konrad, C.: Improved distributed algorithms for coloring interval graphs with application to multicoloring trees. Theoret. Comput. Sci. 811, 29–41 (2020)

    Article  MathSciNet  Google Scholar 

  13. Hassinen, M., Kaasinen, J., Kranakis, E., Polishchuk, V., Suomela, J., Wiese, A.: Analysing local algorithms in location-aware quasi-unit-disk graphs. Discrete Applied Math. 159(15), 1566–1580 (2011)

    Article  MathSciNet  Google Scholar 

  14. Kuhn, F.: The price of locality: exploring the complexity of distributed coordination primitives. Ph.D. thesis, ETH Zurich (2005)

    Google Scholar 

  15. Kuhn, F.: Faster deterministic distributed coloring through recursive list coloring. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (2020)

    Google Scholar 

  16. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21, 193–201 (1992)

    Article  MathSciNet  Google Scholar 

  17. McDiarmid, C.J.H.: Random channel assignment in the plane. Random Struct. Algorithms 22(2), 187–212 (2003)

    Article  MathSciNet  Google Scholar 

  18. McDiarmid, C.J.H., Reed, B.: Colouring proximity graphs in the plane. Discret. Math. 199(1–3), 123–137 (1999)

    Article  MathSciNet  Google Scholar 

  19. Peeters, R.: On coloring \(j\)-unit sphere graphs. FEW 512, Department of Economics, Tilburg University (1991)

    Google Scholar 

  20. Rozhoň, V., Ghaffari, M.: Polylogarithmic-time deterministic network decomposition and distributed derandomization. In: Proceedings 52nd ACM Symposium on Theory of Computing (STOC), pp. 350–363 (2020)

    Google Scholar 

  21. Scheinerman E.R., Ullman, D.H.: Fractional Graph Theory: A Rational Approach to the Theory of Graphs. Dover Publications (2013)

    Google Scholar 

  22. Scott, A., Seymour, P.: A survey of \(\chi \)-boundedness. J. Graph Theory 95, 473–504 (2020)

    Article  MathSciNet  Google Scholar 

  23. Suomela, J.: Survey of local algorithms. ACM Comput. Surv. 45(2), Article 24 (2013)

    Google Scholar 

  24. Valencia-Pabon, M.: Revisiting Tucker’s algorithm to color circular arc graphs. SIAM J. Comput. 32(4), 1067–1072 (2003)

    Article  MathSciNet  Google Scholar 

  25. Wiese, A.: Local approximation algorithms in unit disk graphs. Master’s thesis, Technische Universität Berlin (2007)

    Google Scholar 

  26. Wiese, A., Kranakis, E.: Local construction and coloring of spanners of location aware unit disk graphs. Discret. Math. Algorithms Appl. 1(4), 555–588 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Wouter Cames van Batenburg and François Pirot for the interesting discussions. The authors would also like to thank the reviewers of the conference version of the paper for their comments and suggestions, and Mohsen Ghaffari for his kind explanations on the status of the \((\text {deg}+\epsilon \varDelta )\)-list coloring and \((\text {deg}+1)\)-list coloring problems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Esperet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esperet, L., Julliot, S., de Mesmay, A. (2021). Distributed Coloring and the Local Structure of Unit-Disk Graphs. In: Gąsieniec, L., Klasing, R., Radzik, T. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2021. Lecture Notes in Computer Science(), vol 12961. Springer, Cham. https://doi.org/10.1007/978-3-030-89240-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89240-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89239-5

  • Online ISBN: 978-3-030-89240-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics