Skip to main content

Self-supervised Learning of Inter-label Geometric Relationships for Gleason Grade Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12968))

Abstract

Segmentation of Prostate Cancer (PCa) tissues from Gleason graded histopathology images is vital for accurate diagnosis. Although deep learning (DL) based segmentation methods achieve state-of-the-art accuracy, they rely on large datasets with manual annotations. We propose a method to synthesize PCa histopathology images by learning the geometrical relationship between different disease labels using self-supervised learning. Manual segmentation maps from the training set are used to train a Shape Restoration Network (ShaRe-Net) that predicts missing mask segments in a self-supervised manner. Using DenseUNet as the backbone generator architecture we incorporate latent variable sampling to inject diversity in the image generation process and thus improve robustness. Experimental results demonstrate the superiority of our method over competing image synthesis methods for segmentation tasks. Ablation studies show the benefits of integrating geometry and diversity in generating high-quality images. Our self-supervised approach with limited class-labeled data achieves better performance than fully supervised learning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://gleason2019.grand-challenge.org/Home.

  2. 2.

    https://github.com/hubutui/Gleason.

References

  1. Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340 (2017)

  2. Baumgartner, C.F., et al.: PHiSeg: capturing uncertainty in medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 119–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_14

    Chapter  Google Scholar 

  3. Bozorgtabar, B., Mahapatra, D., Vray, G., Thiran, J.-P.: SALAD: self-supervised aggregation learning for anomaly detection on X-rays. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 468–478. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_46

    Chapter  Google Scholar 

  4. Bozorgtabar, B., et al.: Informative sample generation using class aware generative adversarial networks for classification of chest Xrays. Comput. Vis. Image Underst. 184, 57–65 (2019)

    Article  Google Scholar 

  5. Campanella, G., Silva, V., Fuchs, T.: Terabyte-scale deep multiple instance learning for classification and localization in pathology. arXiv preprint arXiv:1805.06983 (2018)

  6. Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.: Self-supervised learning for medical image analysis using image context restoration. Medical Imag. Anal. 58, 1–12 (2019)

    Article  Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  8. Gupta, L., Klinkhammer, B.M., Boor, P., Merhof, D., Gadermayr, M.: GAN-based image enrichment in digital pathology boosts segmentation accuracy. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 631–639. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_70

    Chapter  Google Scholar 

  9. Han, C., et al.: GAN-based synthetic brain MR image generation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 734–738. IEEE (2018)

    Google Scholar 

  10. Ing, N., et al.: Semantic segmentation for prostate cancer grading by convolutional neural networks. In: Medical Imaging 2018: Digital Pathology, pp. 343–355 (2018)

    Google Scholar 

  11. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: NIPS (2015)

    Google Scholar 

  12. Jamaludin, A., Kadir, T., Zisserman, A.: Self-supervised learning for spinal MRIs. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS 2017. LNCS, vol. 10553, pp. 294–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_34

    Chapter  Google Scholar 

  13. Karimi, D., Nir, G., Fazli, L., Black, P., Goldenberg, L., Salcudean, S.: Deep learning-based Gleason grading of prostate cancer from histopathology images-role of multiscale decision aggregation and data augmentation. IEEE J. Biomed. Health Inform. 24(5), 1413–1426 (2020)

    Article  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Koohbanani, N.A., Unnikrishnan, B., Khurram, S.A., Krishnaswamy, P., Rajpoot, N.: Self-path: self-supervision for classification of pathology images with limited annotations. arXiv:2008.05571 (2020)

  16. Leo, P., et al.: Stable and discriminating features are predictive of cancer presence and Gleason grade in radical prostatectomy specimens: a multi-site study. Sci. Rep. 8, 1–13 (2018)

    Article  Google Scholar 

  17. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A.: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imag. 37(12), 2663–2674 (2018)

    Article  Google Scholar 

  18. Lu, M.Y., Chen, R.J., Wang, J., Dillon, D., Mahmood, F.: Semi-supervised histology classification using deep multiple instance learning and contrastive predictive coding. arXiv:1910.10825 (2019)

  19. Mahapatra, D., Antony, B., Sedai, S., Garnavi, R.: Deformable medical image registration using generative adversarial networks. In: Proceedings of the IEEE ISBI, pp. 1449–1453 (2018)

    Google Scholar 

  20. Mahapatra, D., Bozorgtabar, B., Shao, L.: Pathological retinal region segmentation from oct images using geometric relation based augmentation. In: Proceedings of the IEEE CVPR, pp. 9611–9620 (2020)

    Google Scholar 

  21. Mahapatra, D., Bozorgtabar, B., Thiran, J.-P., Shao, L.: Structure preserving stain normalization of histopathology images using self supervised semantic guidance. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 309–319. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_30

    Chapter  Google Scholar 

  22. Mahapatra, D., Ge, Z.: Training data independent image registration with GANs using transfer learning and segmentation information. In: Proceedings of the IEEE ISBI, pp. 709–713 (2019)

    Google Scholar 

  23. Mahapatra, D., Bozorgtabar, B., Thiran, J.-P., Reyes, M.: Efficient active learning for image classification and segmentation using a sample selection and conditional generative adversarial network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 580–588. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_65

    Chapter  Google Scholar 

  24. Mahapatra, D., Ge, Z.: Training data independent image registration using generative adversarial networks and domain adaptation. Pattern Recogn. 100, 1–14 (2020, in press)

    Google Scholar 

  25. Mahapatra, D., Poellinger, A., Shao, L., Reyes, M.: Interpretability-driven sample selection using self supervised learning for disease classification and segmentation. IEEE TMI, pp. 1–15 (2021)

    Google Scholar 

  26. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the International Conference on 3D vision, pp. 565–571 (2016)

    Google Scholar 

  27. Muhammad, H., et al.: Towards unsupervised cancer subtyping: predicting prognosis using a histologic visual dictionary. arXiv:1903.05257 (2019)

  28. Nielsen, C., Okoniewski, M.: GAN data augmentation through active learning inspired sample acquisition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 109–112 (2019)

    Google Scholar 

  29. Persson, J., et al.: Interobserver variability in the pathological assessment of radical prostatectomy specimens: findings of the laparoscopic prostatectomy robot open (LAPPRO) study. Scand. J. Urol. 48(2), 160–167 (2014)

    Article  Google Scholar 

  30. Tong, J., Mahapatra, D., Bonnington, P., Drummond, T., Ge, Z.: Registration of histopathology images using self supervised fine grained feature maps. In: Albarqouni, S., et al. (eds.) DART/DCL 2020. LNCS, vol. 12444, pp. 41–51. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_5

    Chapter  Google Scholar 

  31. Xue, Y., et al.: Synthetic augmentation and feature-based filtering for improved cervical histopathology image classification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 387–396. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_43

    Chapter  Google Scholar 

  32. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imag. 39, 1–10 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dwarikanath Mahapatra .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2496 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahapatra, D., Kuanar, S., Bozorgtabar, B., Ge, Z. (2021). Self-supervised Learning of Inter-label Geometric Relationships for Gleason Grade Segmentation. In: Albarqouni, S., et al. Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health. DART FAIR 2021 2021. Lecture Notes in Computer Science(), vol 12968. Springer, Cham. https://doi.org/10.1007/978-3-030-87722-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87722-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87721-7

  • Online ISBN: 978-3-030-87722-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics