Skip to main content

Feature Selection and Disambiguation in Learning from Fuzzy Labels Using Rough Sets

  • Conference paper
  • First Online:
Book cover Rough Sets (IJCRS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12872))

Included in the following conference series:

Abstract

In this article, we study the setting of learning from fuzzy labels, a generalization of supervised learning in which instances are assumed to be labeled with a fuzzy set, interpreted as an epistemic possibility distribution. We tackle the problem of feature selection in such task, in the context of rough set theory (RST). More specifically, we consider the problem of RST-based feature selection as a means for data disambiguation: that is, retrieving the most plausible precise instantiation of the imprecise training data. We define generalizations of decision tables and reducts, using tools from generalized information theory and belief function theory. We study the computational complexity and theoretical properties of the associated computational problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that in the learning from fuzzy labels setting, the set of candidate labels (that is, the labels with a membership degree greater than 0) is given a disjunctive interpretation: only one of those labels is correct, but we don’t precisely know which one, and the membership degrees represent degrees of belief. Thus, in this article, we do not consider the conjunctive interpretation, in which the membership degrees are degrees of truth (and, thus, could be seen as a generalization of multi-label learning).

  2. 2.

    Here \(sup_{\le _{C}}\mathcal {I}(R) = \{ I \in \mathcal {I}(R) : \not \exists I' \in \mathcal {I}(R) \text { s.t. } I <_C I' \}\).

References

  1. Arora, S., Barak, B.: Computational Complexity: A modern Approach. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  2. Bello, R., Falcon, R.: Rough sets in machine learning: a review. In: Wang, G., Skowron, A., Yao, Y., Ślęzak, D., Polkowski, L. (eds.) Thriving Rough Sets. SCI, vol. 708, pp. 87–118. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54966-8_5

    Chapter  Google Scholar 

  3. Campagner, A., Ciucci, D.: Orthopartitions and soft clustering: soft mutual information measures for clustering validation. Knowl.-Based Syst. 180, 51–61 (2019)

    Article  Google Scholar 

  4. Campagner, A., Ciucci, D., Hüllermeier, E.: Feature reduction in superset learning using rough sets and evidence theory. In: Lesot, M.J., et al. (eds.) IPMU 2020. CCIS, vol. 1237, pp. 471–484. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50146-4_35

    Chapter  Google Scholar 

  5. Ciucci, D., Forcati, I.: Certainty-based rough sets. In: Polkowski, L., et al. (eds.) IJCRS 2017. LNCS (LNAI), vol. 10314, pp. 43–55. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60840-2_3

    Chapter  Google Scholar 

  6. Côme, E., Oukhellou, L., Denoeux, T., Aknin, P.: Learning from partially supervised data using mixture models and belief functions. Pattern Recogn. 42(3), 334–348 (2009)

    Article  Google Scholar 

  7. Couso, I., Borgelt, C., Hullermeier, E., Kruse, R.: Fuzzy sets in data analysis: from statistical foundations to machine learning. IEEE Comput. Intell. Mag. 14(1), 31–44 (2019)

    Article  Google Scholar 

  8. Couso, I., Dubois, D., Sánchez, L.: Random sets and random fuzzy sets as ill-perceived random variables. SpringerBriefs in Computational Intelligence (2014)

    Google Scholar 

  9. Denoeux, T.: A k-nearest neighbor classification rule based on dempster-shafer theory. In: Yager, R.R., Liu, L. (eds.) Classic Works of the Dempster-Shafer Theory of Belief Functions. Studies in Fuzziness and Soft Computing, vol. 219, pp. 737–760. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-44792-4_29

  10. Denœux, T., Zouhal, L.M.: Handling possibilistic labels in pattern classification using evidential reasoning. Fuzzy Sets Syst. 122(3), 409–424 (2001)

    Article  MathSciNet  Google Scholar 

  11. El Gayar, N., Schwenker, F., Palm, G.: A study of the robustness of KNN classifiers trained using soft labels. In: Schwenker, F., Marinai, S. (eds.) ANNPR 2006. LNCS (LNAI), vol. 4087, pp. 67–80. Springer, Heidelberg (2006). https://doi.org/10.1007/11829898_7

    Chapter  Google Scholar 

  12. Greco, S., Matarazzo, B., Slowinski, R.: Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 129(1), 1–47 (2001)

    Article  Google Scholar 

  13. Hüllermeier, E.: Learning from imprecise and fuzzy observations: data disambiguation through generalized loss minimization. Int. J. Approx. Reason. 55(7), 1519–1534 (2014)

    Article  MathSciNet  Google Scholar 

  14. Hüllermeier, E.: Does machine learning need fuzzy logic? Fuzzy Sets Syst. 281, 292–299 (2015)

    Article  MathSciNet  Google Scholar 

  15. Hüllermeier, E., Beringer, J.: Learning from ambiguously labeled examples. Intell. Data Anal. 10(5), 419–439 (2006)

    Article  Google Scholar 

  16. Hüllermeier, E., Cheng, W.: Superset learning based on generalized loss minimization. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9285, pp. 260–275. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23525-7_16

    Chapter  Google Scholar 

  17. Liu, L., Dietterich, T.: Learnability of the superset label learning problem. In: ICML, pp. 1629–1637 (2014)

    Google Scholar 

  18. Nakata, M., Sakai, H.: An approach based on rough sets to possibilistic information. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014. CCIS, vol. 444, pp. 61–70. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08852-5_7

    Chapter  MATH  Google Scholar 

  19. Nguyen, H.T., Walker, C., Walker, E.A.: A First Course in Fuzzy Logic. CRC Press, Boca Raton (2018)

    Google Scholar 

  20. Ning, Q., He, H., Fan, C., Roth, D.: Partial or complete, that’s the question. arXiv preprint arXiv:1906.04937 (2019)

  21. Orlowska, E. (ed.): IncompleteIinformation: Rough Set Analysis. Physica (2013)

    Google Scholar 

  22. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)

    Article  Google Scholar 

  23. Quost, B., Denoeux, T.: Clustering and classification of fuzzy data using the fuzzy em algorithm. Fuzzy Sets Syst. 286, 134–156 (2016)

    Article  MathSciNet  Google Scholar 

  24. Sakai, H., Liu, C., Nakata, M., Tsumoto, S.: A proposal of a privacy-preserving questionnaire by non-deterministic information and its analysis. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 1956–1965. IEEE (2016)

    Google Scholar 

  25. Sakai, H., Nakata, M., Yao, Y.: Pawlak’s many valued information system, non-deterministic information system, and a proposal of new topics on information incompleteness toward the actual application. In: Wang, G., Skowron, A., Yao, Y., Ślęzak, D., Polkowski, L. (eds.) Thriving Rough Sets. SCI, vol. 708, pp. 187–204. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54966-8_9

    Chapter  Google Scholar 

  26. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Google Scholar 

  27. Ślęzak, D.: Approximate entropy reducts. Fundam. Inform. 53(3–4), 365–390 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Ślęzak, D., Dutta, S.: Dynamic and discernibility characteristics of different attribute reduction criteria. In: Nguyen, H.S., Ha, Q.-T., Li, T., Przybyła-Kasperek, M. (eds.) IJCRS 2018. LNCS (LNAI), vol. 11103, pp. 628–643. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99368-3_49

    Chapter  Google Scholar 

  29. Thangavel, K., Pethalakshmi, A.: Dimensionality reduction based on rough set theory: a review. Appl. Soft Comput. 9(1), 1–12 (2009)

    Article  Google Scholar 

  30. Trabelsi, S., Elouedi, Z., Lingras, P.: Dynamic reduct from partially uncertain data using rough sets. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS (LNAI), vol. 5908, pp. 160–167. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10646-0_19

    Chapter  Google Scholar 

  31. Umans, C.: On the complexity and inapproximability of shortest implicant problems. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 687–696. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_65

    Chapter  MATH  Google Scholar 

  32. Yao, Y.Y., Lingras, P.J.: Interpretations of belief functions in the theory of rough sets. Inf. Sci. 104(1–2), 81–106 (1998)

    Article  MathSciNet  Google Scholar 

  33. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1(1), 3–28 (1978)

    Article  MathSciNet  Google Scholar 

  34. Zhou, Z.-H.: A brief introduction to weakly supervised learning. Natl. Sci. Rev. 5(1), 44–53 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Campagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Campagner, A., Ciucci, D. (2021). Feature Selection and Disambiguation in Learning from Fuzzy Labels Using Rough Sets. In: Ramanna, S., Cornelis, C., Ciucci, D. (eds) Rough Sets. IJCRS 2021. Lecture Notes in Computer Science(), vol 12872. Springer, Cham. https://doi.org/10.1007/978-3-030-87334-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87334-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87333-2

  • Online ISBN: 978-3-030-87334-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics