Skip to main content

LC-MS-Based Metabolomics in the Identification of Biomarkers Pertaining to Drug Toxicity: A New Narrative

  • Living reference work entry
  • First Online:
  • 77 Accesses

Abstract

The evaluation of adverse drug effects is essential for drug approval and clinical therapy. Safe and reliable biomarkers play important roles in the prediction, detection, and management of drug-induced toxicity in the preclinical and clinical studies. Identifying a highly specific, accurate, sensitive, and biologically or clinically relevant biomarker is very challenging. For instance, highly specific and accurate biomarkers for drug-induced liver injury are still not available. Nevertheless, the latest technology “omics” offer novel possibilities to develop the biomarkers pertaining to drug toxicity. Metabolomics is the systemic identification and quantification process of small biological molecules, and it serves as the downstream platform for other “omics” approaches like genomics, transcriptomics, and proteomics. Metabolomics alone, or together with other omics, has been successfully used for the identification of biomarkers in various fields, including drug toxicity. Various platforms, including nuclear magnetic resonance (NMR), gas chromatography or liquid chromatography-mass spectrometry (GC/LC-MS), and newly emerging mass spectrometry imaging (MSI), are employed in metabolomics. At present, LC-MS platform is a workhorse in metabolomics and other research fields, e.g., drug metabolism and pharmacokinetics. In some cases, drug metabolism is critical when the metabolite of a drug can be utilized as a valuable biomarker for toxicity. This review provides examples of advances in the field of metabolomics and emphasizes the application of metabolomics in biomarker discovery, drug metabolism, and mechanistic studies of drug toxicity. The challenges, opportunities, and future direction of metabolomics in biomarker discovery are highlighted as well.

This is a preview of subscription content, log in via an institution.

Abbreviations

AFB1:

Aflatoxin B1

ALT:

Alanine transaminase

APCI:

Atmospheric pressure chemical ionization

API:

Atmospheric pressure ionization

APPI:

Atmospheric pressure photoionization

AST:

Aspartate transaminase

AUC:

Area under the curve

BUN:

Blood urea nitrogen

CE:

Capillary electrophoresis

CI:

Chemical ionization

CPB2:

Carboxypeptidase B2

CPK:

Creatine phosphokinase

CYP:

Cytochrome P450

DILI:

Drug-induced hepatotoxicity

EI:

Electron ionization

ESI:

Electrospray ionization

FMO:

Flavin-containing monooxygenases

FT-ICR:

Fourier transform ion cyclotron resonance

GC:

Gas chromatography

GNMT:

Glycine N-methyltransferase

GSH:

Glutathione

HCC:

Hepatocellular carcinoma

HLM:

Human liver microsomes

HMDB:

HUMAN Metabolome Database

HRMS:

High-resolution mass spectrometers

IC:

Ion chromatography

IPA:

Ingenuity Pathway Analysis

LC:

Liquid chromatography

MALDI:

Matrix-assisted laser desorption/ionization

MetPA:

Metabolomics Pathway Analysis

mGWAS:

Metabolite genome-wide association studies

miRNAs:

microRNAs

MRM:

Multiple reaction monitoring

MS:

Mass spectrometry

MSI:

Mass spectrometry imaging

NAc:

N-acetylcysteine

NMR:

Nuclear magnetic resonance

OPLS-DA:

Orthogonal projections to latent structures discriminant analysis

Orbitrap:

Orbital ion traps

PCA:

Principal components analysis

QC:

Quality control

QQQ-MS:

Triple quadruple mass spectrometry

Q-TOF:

Quadrupole time of flight

ROC:

Receiver operating characteristic

ROS:

Reactive oxygen species

Scr:

Serum creatinine

SFC:

Supercritical fluid chromatography

SPE:

Solid-phase extraction

TOF:

Time of flight

References

  • Alhazzani K, Alotaibi MR, Alotaibi FN, Aljerian K, As Sobeai HM, Alhoshani AR, Alanazi AZ, Alanazi WA, Alswayyed M. Protective effect of valsartan against doxorubicin-induced cardiotoxicity: histopathology and metabolomics in vivo study. J Biochem Mol Toxicol. 2021;35:e22842.

    Article  CAS  PubMed  Google Scholar 

  • Alonso A, Marsal S, Julia A. Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol. 2015;3:23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alseekh S, Aharoni A, Brotman Y, Contrepois K, D’Auria J, Ewald JCE, Fraser PD, Giavalisco P, Hall RD, Heinemann M, Link H, Luo J, Neumann S, Nielsen J, Perez De Souza L, Saito K, Sauer U, Schroeder FC, Schuster S, Siuzdak G, Skirycz A, Sumner LW, Snyder MP, Tang H, Tohge T, Wang Y, Wen W, Wu S, Xu G, Zamboni N, Fernie AR. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat Methods. 2021;18:747–56.

    Article  CAS  PubMed  Google Scholar 

  • Araujo AM, Carvalho M, Carvalho F, Bastos ML, Guedes De Pinho P. Metabolomic approaches in the discovery of potential urinary biomarkers of drug-induced liver injury (DILI). Crit Rev Toxicol. 2017;47:633–49.

    Article  PubMed  CAS  Google Scholar 

  • Balcerczyk A, Damblon C, Elena-Herrmann B, Panthu B, Rautureau GJP. Metabolomic approaches to study chemical exposure-related metabolism alterations in mammalian cell cultures. Int J Mol Sci. 2020;21:6843.

    Google Scholar 

  • Bartel J, Krumsiek J, Theis FJ. Statistical methods for the analysis of high-throughput metabolomics data. Comput Struct Biotechnol J. 2013;4:e201301009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baverel G, El Hage M, Martin G. Protocols and applications of cellular metabolomics in safety studies using precision-cut tissue slices and carbon 13 NMR. Methods Mol Biol. 2017;1641:259–79.

    Article  CAS  PubMed  Google Scholar 

  • Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, Boughton BA, Kanojia K, Dayalan S, Jones OAH, Dias DA. Review of recent developments in GC-MS approaches to metabolomics-based research. Metabolomics. 2018;14:152.

    Article  PubMed  CAS  Google Scholar 

  • Beger RD, Sun J, Schnackenberg LK. Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity. Toxicol Appl Pharmacol. 2010;243:154–66.

    Article  CAS  PubMed  Google Scholar 

  • Beger RD, Schmidt MA, Kaddurah-Daouk R. Current concepts in pharmacometabolomics, biomarker discovery, and precision medicine. Metabolites. 2020;10:129.

    Google Scholar 

  • Chen DQ, Chen H, Chen L, Tang DD, Miao H, Zhao YY. Metabolomic application in toxicity evaluation and toxicological biomarker identification of natural product. Chem Biol Interact. 2016;252:114–30.

    Article  CAS  PubMed  Google Scholar 

  • Cialie Rosso M, Stilo F, Squara S, Liberto E, Mai S, Mele C, Marzullo P, Aimaretti G, Reichenbach SE, Collino M, Bicchi C, Cordero C. Exploring extra dimensions to capture saliva metabolite fingerprints from metabolically healthy and unhealthy obese patients by comprehensive two-dimensional gas chromatography featuring tandem ionization mass spectrometry. Anal Bioanal Chem. 2021;413:403–18.

    Article  CAS  PubMed  Google Scholar 

  • Cordero C, Rubiolo P, Cobelli L, Stani G, Miliazza A, Giardina M, Firor R, Bicchi C. Potential of the reversed-inject differential flow modulator for comprehensive two-dimensional gas chromatography in the quantitative profiling and fingerprinting of essential oils of different complexity. J Chromatogr A. 2015;1417:79–95.

    Article  CAS  PubMed  Google Scholar 

  • Dalisay DS, Rogers EW, Edison AS, Molinski TF. Structure elucidation at the nanomole scale. 1. Trisoxazole macrolides and thiazole-containing cyclic peptides from the nudibranch Hexabranchus sanguineus. J Nat Prod. 2009;72:732–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26:51–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudzik D, Barbas-Bernardos C, Garcia A, Barbas C. Quality assurance procedures for mass spectrometry untargeted metabolomics. A review. J Pharm Biomed Anal. 2018;147:149–73.

    Article  CAS  PubMed  Google Scholar 

  • Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, Brown M, Knowles JD, Halsall A, Haselden JN, Nicholls AW, Wilson ID, Kell DB, Goodacre R, Human Serum Metabolome, C. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6:1060–83.

    Article  CAS  PubMed  Google Scholar 

  • Edison AS, Colonna M, Gouveia GJ, Holderman NR, Judge MT, Shen X, Zhang S. NMR: unique strengths that enhance modern metabolomics research. Anal Chem. 2021;93:478–99.

    Article  CAS  PubMed  Google Scholar 

  • Ellis DI, Dunn WB, Griffin JL, Allwood JW, Goodacre R. Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics. 2007;8:1243–66.

    Article  CAS  PubMed  Google Scholar 

  • Emwas AH, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GAN, Raftery D, Alahmari F, Jaremko L, Jaremko M, Wishart DS. NMR spectroscopy for metabolomics research. Metabolites. 2019;9:123.

    Google Scholar 

  • Fenaille F, Barbier Saint-Hilaire P, Rousseau K, Junot C. Data acquisition workflows in liquid chromatography coupled to high resolution mass spectrometry-based metabolomics: where do we stand? J Chromatogr A. 2017;1526:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Furse S, Williams HEL, Watkins AJ, Virtue S, Vidal-Puig A, Amarsi R, Charalambous M, Koulman A. A pipeline for making (31)P NMR accessible for small- and large-scale lipidomics studies. Anal Bioanal Chem. 2021;413:4763–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Cebrian N, Domingo-Orti I, Poveda JL, Vicent MJ, Puchades-Carrasco L, Pineda-Lucena A. Multi-Omic approaches to breast cancer metabolic phenotyping: applications in diagnosis, prognosis, and the development of novel treatments. Cancers (Basel). 2021;13:4544.

    Google Scholar 

  • Gorrochategui E, Jaumot J, Lacorte S, Tauler R. Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: overview and workflow. TrAC Trends Anal Chem. 2016;82:425–42.

    Article  CAS  Google Scholar 

  • Griffin JL. Twenty years of metabonomics: so what has metabonomics done for toxicology? Xenobiotica. 2020;50:110–4.

    Article  CAS  PubMed  Google Scholar 

  • Guleria A, Kumar A, Kumar U, Raj R, Kumar D. NMR based metabolomics: an exquisite and facile method for evaluating therapeutic efficacy and screening drug toxicity. Curr Top Med Chem. 2018;18:1827–49.

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Zhang H, Liang X, Dai Y, Liu L, Tan K, Ma R, Luo J, Ding Y, Ke C. Application of metabolomics to the discovery of biomarkers for ischemic stroke in the murine model: a comparison with the clinical results. Mol Neurobiol. 2021, 58:6415-6426.

    Google Scholar 

  • Jiang S, Liu G, Yuan H, Xu E, Xia W, Zhang X, Liu J, Gao L. Changes on proteomic and metabolomic profile in serum of mice induced by chronic exposure to tramadol. Sci Rep. 2021;11:1454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17:451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebanov L, Ghiasvand A, Paull B. Data handling and data analysis in metabolomic studies of essential oils using GC-MS. J Chromatogr A. 2021;1640:461896.

    Article  CAS  PubMed  Google Scholar 

  • Li F, Miao Y, Zhang L, Neuenswander SA, Douglas JT, Ma X. Metabolomic analysis reveals novel isoniazid metabolites and hydrazones in human urine. Drug Metab Pharmacokinet. 2011;26:569–76.

    Article  CAS  PubMed  Google Scholar 

  • Li F, Lu J, Ma X. CPY3A4-mediated alpha-hydroxyaldehyde formation in saquinavir metabolism. Drug Metab Dispos. 2014;42:213–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Wang X, Duan C, Zhang J, Li X. Hepatoxicity mechanism of cantharidin-induced liver LO2 cells by LC-MS metabolomics combined traditional approaches. Toxicol Lett. 2020;333:49–61.

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Zhao X-M, Hu Z, Wang L, Li F. LC–MS-based metabolomics in the study of drug-induced liver injury. Curr Pharmacol Rep. 2019;5:56–67.

    Article  Google Scholar 

  • Luque De Castro MD, Priego-Capote F. The analytical process to search for metabolomics biomarkers. J Pharm Biomed Anal. 2018;147:341–9.

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie KR, Zhao M, Barzi M, Wang J, Bissig KD, Maletic-Savatic M, Jung SY, Li F. Metabolic profiling of norepinephrine reuptake inhibitor atomoxetine. Eur J Pharm Sci. 2020;153:105488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall DD, Powers R. Beyond the paradigm: combining mass spectrometry and nuclear magnetic resonance for metabolomics. Prog Nucl Magn Reson Spectrosc. 2017;100:1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastrangelo A, Ferrarini A, Rey-Stolle F, Garcia A, Barbas C. From sample treatment to biomarker discovery: a tutorial for untargeted metabolomics based on GC-(EI)-Q-MS. Anal Chim Acta. 2015;900:21–35.

    Article  CAS  PubMed  Google Scholar 

  • Michopoulos F, Lai L, Gika H, Theodoridis G, Wilson I. UPLC-MS-based analysis of human plasma for metabonomics using solvent precipitation or solid phase extraction. J Proteome Res. 2009;8:2114–21.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature. 2008;455:1054–6.

    Article  CAS  PubMed  Google Scholar 

  • Pal R, Singh K, Khan SA, Chawla P, Kumar B, Akhtar MJ. Reactive metabolites of the anticonvulsant drugs and approaches to minimize the adverse drug reaction. Eur J Med Chem. 2021;226:113890.

    Article  CAS  PubMed  Google Scholar 

  • Pautova A, Burnakova N, Revelsky A. Metabolic profiling and quantitative analysis of cerebrospinal fluid using gas chromatography-mass spectrometry: current methods and future perspectives. Molecules. 2021;26:3597.

    Google Scholar 

  • Proudfoot AG, McAuley DF, Hind M, Griffiths MJ. Translational research: what does it mean, what has it delivered and what might it deliver? Curr Opin Crit Care. 2011;17:495–503.

    Article  PubMed  Google Scholar 

  • Qi Y, Song Y, Gu H, Fan G, Chai Y. Global metabolic profiling using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Methods Mol Biol. 2014;1198:15–27.

    Article  CAS  PubMed  Google Scholar 

  • Rajawat J, Jhingan G. Mass spectroscopy. In: Data processing handbook for complex biological data sources. Academic Press, 2019, ISBN 9780128165485.

    Google Scholar 

  • Riekeberg E, Powers R. New frontiers in metabolomics: from measurement to insight. F1000Res. 2017;6:1148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saigusa D, Matsukawa N, Hishinuma E, Koshiba S. Identification of biomarkers to diagnose diseases and find adverse drug reactions by metabolomics. Drug Metab Pharmacokinet. 2021;37:100373.

    Article  CAS  PubMed  Google Scholar 

  • Schofield AL, Brown JP, Brown J, Wilczynska A, Bell C, Glaab WE, Hackl M, Howell L, Lee S, Dear JW, Remes M, Reeves P, Zhang E, Allmer J, Norris A, Falciani F, Takeshita LY, Seyed Forootan S, Sutton R, Park BK, Goldring C. Systems analysis of miRNA biomarkers to inform drug safety. Arch Toxicol. 2021;95:3475–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sellies L, Reile I, Aspers R, Feiters MC, Rutjes F, Tessari M. Parahydrogen induced hyperpolarization provides a tool for NMR metabolomics at nanomolar concentrations. Chem Commun (Camb). 2019;55:7235–8.

    Article  CAS  Google Scholar 

  • Siuzdak G. An introduction to mass spectrometry ionization: an excerpt from the expanding role of mass spectrometry in biotechnology, 2nd ed.; MCC Press: San Diego, 2005. J Assoc Lab Autom (JALA). 2016;9:50–63.

    Article  Google Scholar 

  • Sulkowski MS. Drug-induced liver injury associated with antiretroviral therapy that includes HIV-1 protease inhibitors. Clin Infect Dis. 2004;38(Suppl 2):S90–7.

    Article  CAS  PubMed  Google Scholar 

  • Tan B, Chen J, Qin S, Liao C, Zhang Y, Wang D, Li S, Zhang Z, Zhang P, Xu F. Tryptophan pathway-targeted metabolomics study on the mechanism and intervention of cisplatin-induced acute kidney injury in rats. Chem Res Toxicol. 2021;34:1759–68.

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Lu AY. Metabolic bioactivation and drug-related adverse effects: current status and future directions from a pharmaceutical research perspective. Drug Metab Rev. 2010;42:225–49.

    Article  CAS  PubMed  Google Scholar 

  • Tong Y, Guo C, Liu Z, Shi K, Zhang H, Liu Y, Wu G, Feng H, Pan Y. In situ localization of tris(2,3-dibromopropyl) isocyanurate in mouse organs by MALDI-IMS with auxiliary matrix strategy. Talanta. 2021;235:122723.

    Article  CAS  PubMed  Google Scholar 

  • Van De Velde B, Guillarme D, Kohler I. Supercritical fluid chromatography – mass spectrometry in metabolomics: past, present, and future perspectives. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1161:122444.

    Article  PubMed  CAS  Google Scholar 

  • Vinayavekhin N, Saghatelian A. Untargeted metabolomics. Curr Protoc Mol Biol. 2010;30(1):1–24. Chapter 30

    PubMed  Google Scholar 

  • Wang RCC, Campbell DA, Green JR, Čuperlović-Culf M. Automatic 1D (1)H NMR metabolite quantification for bioreactor monitoring. Metabolites. 2021a;11: 157.

    Google Scholar 

  • Wang S, Yang X, Liu F, Wang X, Zhang X, He K, Wang H. Comprehensive Metabolomic analysis reveals dynamic metabolic reprogramming in Hep3B cells with aflatoxin B1 exposure. Toxins (Basel). 2021b;13

    Google Scholar 

  • Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS, Shockcor J, Loftus N, Holmes E, Nicholson JK. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc. 2013;8:17–32.

    Article  CAS  PubMed  Google Scholar 

  • Wiklund S, Johansson E, Sjostrom L, Mellerowicz EJ, Edlund U, Shockcor JP, Gottfries J, Moritz T, Trygg J. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem. 2008;80:115–22.

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Lewis MJ, Morrissey JA, Flegel MD, Jeroncic K, Xiong Y, Cheng D, Eisner R, Gautam B, Tzur D, Sawhney S, Bamforth F, Greiner R, Li L. The human cerebrospinal fluid metabolome. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;871:164–73.

    Article  CAS  PubMed  Google Scholar 

  • Worley B, Powers R. PCA as a practical indicator of OPLS-DA model reliability. Curr Metabolomics. 2016;4:97–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z. Pharmacometabolomics in drug discovery & development: applications and challenges. Metabolomics 2012;2:e122.

    Google Scholar 

  • Yang XL, Shi Y, Zhang DD, Xin R, Deng J, Wu TM, Wang HM, Wang PY, Liu JB, Li W, Ma YS, Fu D. Quantitative proteomics characterization of cancer biomarkers and treatment. Mol Ther Oncolytics. 2021;21:255–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yerges-Armstrong LM, Ellero-Simatos S, Georgiades A, Zhu H, Lewis JP, Horenstein RB, Beitelshees AL, Dane A, Reijmers T, Hankemeier T, Fiehn O, Shuldiner AR, Kaddurah-Daouk R. Purine pathway implicated in mechanism of resistance to aspirin therapy: pharmacometabolomics-informed pharmacogenomics. Clin Pharmacol Ther. 2013;94:525–32.

    Article  CAS  PubMed  Google Scholar 

  • Zeki ÖC, Eylem CC, Reçber T, Kir S, Nemutlu E. Integration of GC-MS and LC-MS for untargeted metabolomics profiling. J Pharm Biomed Anal. 2020;190:113509.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Guo X, Ren J, Chen Y, Wang J, Gao A. Glycine/glycine N-methyltransferase/sarcosine axis mediates benzene-induced hematotoxicity. Toxicol Appl Pharmacol. 2021;428:115682.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Diabetes and Digestive and Kidney (R01-DK121970).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Qin, X., Hakenjos, J.M., Li, F. (2022). LC-MS-Based Metabolomics in the Identification of Biomarkers Pertaining to Drug Toxicity: A New Narrative. In: Patel, V.B., Preedy, V.R., Rajendram, R. (eds) Biomarkers in Toxicology. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-87225-0_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87225-0_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87225-0

  • Online ISBN: 978-3-030-87225-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics