Skip to main content

Orthogonality Types in Normed Linear Spaces

  • Chapter
  • First Online:
Surveys in Geometry I

Abstract

This chapter gives a comparing exposition of the large family of orthogonality concepts in normed linear spaces. With the help of fundamental properties that such concepts can have, or cannot have, we show their differences, similarities and direct connections. Based on this framework, we try to structurize this little subfield of the theory of real Banach spaces. For example, many characterizations of inner product spaces or of other special norm classes are presented. We also try to emphasize the geometric side of the given theoretical setting. Various open problems are posed, and a final survey can be taken as an update of the large amount of existing related literature. Hence our exposition should be useful for beginners in this research direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If \(\dim X=+\infty \), it is necessary to assume that X is complete.

  2. 2.

    If \(\dim X=+\infty \), in property (b) it is necessary to assume that X is complete.

  3. 3.

    If \(\dim X=+\infty \), in property (b) it is necessary to assume that X is complete.

  4. 4.

    In fact, this property characterizes inner product spaces (see the footnote on page 46).

  5. 5.

    Similarly if P is replaced by P +.

  6. 6.

    Similarly if P is replaced by P +.

  7. 7.

    Joly [91] proved his result for gauges.

  8. 8.

    In [5] it is also proved that the corresponding curve for area orthogonality has the same property. But nevertheless, this is not a general property of all orthogonalities. If we consider the Carlsson orthogonality, x ⊥C y  :⇔ 5∥x − y2 = ∥x − 2y2 + ∥y − 2x2, then \(A(\mathcal {S}_C)\approx 2.3381 A(S_X)\).

  9. 9.

    Joly [91] assumed that \(\mathcal {S}_B=\mathcal {S}_B^{\prime }=\sqrt {2}\,S_X\).

  10. 10.

    Later, in Theorem 4.8.21, we will see that any of these properties characterizes two-dimensional inner product spaces .

  11. 11.

    A Banach space X is said to be uniformly non-square if there exists δ ∈ (0,  1) such that for any x, y ∈ S X, either ∥x + y∥≤ 2(1 − δ) or ∥x − y∥≤ 2(1 − δ).

  12. 12.

    Some years after the paper from Del Río–Benítez [63] had been published, Baronti [34] showed that this property characterizes inner product spaces .

  13. 13.

    Similarly if P + is replaced by P .

  14. 14.

    Also coincide with area orthogonality.

  15. 15.

    See the comments before Theorem 4.5.17.

References

  1. J. Alonso, Ortogonalidad en espacios normados, in Publicaciones de la Sección de Matemáticas, Universidad de Extremadura [Publications of the Mathematics Section of the University of Extremadura], vol. 4 (Universidad de Extremadura, Facultad de Ciencias, Departamento de Matemáticas, Badajoz, 1984). Dissertation, Universidad de Extremadura, Cáceres, 1984

    Google Scholar 

  2. J. Alonso, Some results on Singer orthogonality and characterizations of inner product spaces. Arch. Math. 61(2), 177–182 (1993). https://doi.org/10.1007/BF01207467

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Alonso, Uniqueness properties of isosceles orthogonality in normed linear spaces. Ann. Sci. Math. Québec 18(1), 25–38 (1994)

    MathSciNet  MATH  Google Scholar 

  4. J. Alonso, Some properties of Birkhoff and isosceles orthogonality in normed linear spaces, in Inner Product Spaces and Applications. Pitman Research Notes in Mathematics Series, vol. 376 (Longman, Harlow, 1997), pp. 1–11

    Google Scholar 

  5. J. Alonso, C. Benítez, The Joly’s construction: a common property of some generalized orthogonalities. Bull. Soc. Math. Belg. Sér. B 39(3), 277–285 (1987)

    MathSciNet  MATH  Google Scholar 

  6. J. Alonso, C. Benítez, Orthogonality in normed linear spaces: a survey. I. Main properties. Extracta Math. 3(1), 1–15 (1988)

    MathSciNet  Google Scholar 

  7. J. Alonso, C. Benítez, Some characteristic and noncharacteristic properties of inner product spaces. J. Approx. Theory 55(3), 318–325 (1988). https://doi.org/10.1016/0021-9045(88)90098-6

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Alonso, C. Benítez, Orthogonality in normed linear spaces: a survey. II. Relations between main orthogonalities. Extracta Math. 4(3), 121–131 (1989)

    Google Scholar 

  9. J. Alonso, C. Benítez, Complements on Diminnie orthogonality. Math. Nachr. 165, 99–106 (1994). https://doi.org/10.1002/mana.19941650108

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Alonso, C. Benítez, Area orthogonality in normed linear spaces. Arch. Math. 68(1), 70–76 (1997). https://doi.org/10.1007/PL00000397

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Alonso, M.L. Soriano, On height orthogonality in normed linear spaces. Rocky Mountain J. Math. 29(4), 1167–1183 (1999). https://doi.org/10.1216/rmjm/1181070401

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Alonso, M. Spirova, Characterization of different classes of convex bodies via orthogonality. Bull. Belg. Math. Soc. Simon Stevin 18(4), 707–721 (2011). http://projecteuclid.org/getRecord?id=euclid.bbms/1320763132

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Alonso, H. Martini, Z. Mustafaev, On orthogonal chords in normed planes. Rocky Mountain J. Math. 41(1), 23–35 (2011). https://doi.org/10.1216/RMJ-2011-41-1-23

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Alonso, H. Martini, S. Wu, On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces. Aequationes Math. 83(1–2), 153–189 (2012). https://doi.org/10.1007/s00010-011-0092-z

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Alsina, M.S. Tomás, On some orthogonality relations in real normed spaces and characterizations of inner products. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10(3), 513–520 (2007)

    Google Scholar 

  16. C. Alsina, P. Guijarro, M.S. Tomás, A characterization of inner product spaces based on orthogonal relations related to height’s theorem. Rocky Mountain J. Math. 25(3), 843–849 (1995). https://doi.org/10.1216/rmjm/1181072190

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Alsina, P. Cruells, M.S. Tomàs, Isosceles trapezoids, norms and inner products. Arch. Math. 72(3), 233–240 (1999). https://doi.org/10.1007/s000130050327

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Amir, Characterizations of inner product spaces, in Operator Theory: Advances and Applications, vol. 20 (Birkhäuser Verlag, Basel, 1986)

    Book  Google Scholar 

  19. E.Z. Andalafte, C.R. Diminnie, R.W. Freese, (α, β)-orthogonality and a characterization of inner product spaces. Math. Jpn. 30(3), 341–349 (1985)

    Google Scholar 

  20. L. Arambašić, R. Rajić, On Birkhoff-James and Roberts orthogonality. Spec. Matrices 6, 229–236 (2018). https://doi.org/10.1515/spma-2018-0018

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Arambašić, R. Rajić, Another characterization of orthogonality in Hilbert C -modules. Math. Inequal. Appl. 22(4), 1421–1426 (2019). https://doi.org/10.7153/mia-2019-22-99

    MathSciNet  MATH  Google Scholar 

  22. L. Arambašić, R. Rajić, Roberts orthogonality for 2 × 2 complex matrices. Acta Math. Hungar. 157(1), 220–228 (2019). https://doi.org/10.1007/s10474-018-0870-3

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Arambašić, T. Berić, R. Rajić, Roberts orthogonality and Davis-Wielandt shell. Linear Algebra Appl. 539, 1–13 (2018). https://doi.org/10.1016/j.laa.2017.10.023

    Article  MathSciNet  MATH  Google Scholar 

  24. L. Arambašić, A. Guterman, B. Kuzma, R. Rajić, S. Zhilina, Symmetrized Birkhoff-James orthogonality in arbitrary normed spaces. J. Math. Anal. Appl. 502(1), 125203 (2021). https://doi.org/10.1016/j.jmaa.2021.125203

  25. V. Balestro, H. Martini, R. Teixeira, Geometric constants for quantifying the difference between orthogonality types. Ann. Funct. Anal. 7(4), 656–671 (2016). https://doi.org/10.1215/20088752-3661053

    Article  MathSciNet  MATH  Google Scholar 

  26. V. Balestro, A.G. Horváth, H. Martini, R. Teixeira, Angles in normed spaces. Aequationes Math. 91(2), 201–236 (2017). https://doi.org/10.1007/s00010-016-0445-8

    Article  MathSciNet  MATH  Google Scholar 

  27. V. Balestro, H. Martini, R. Teixeira, On Legendre curves in normed planes. Pacific J. Math. 297(1), 1–27 (2018). https://doi.org/10.2140/pjm.2018.297.1

    Article  MathSciNet  MATH  Google Scholar 

  28. V. Balestro, H. Martini, E. Shonoda, Concepts of curvatures in normed planes. Expo. Math. 37(4), 347–381 (2019). https://doi.org/10.1016/j.exmath.2018.04.002

    Article  MathSciNet  MATH  Google Scholar 

  29. V. Balestro, H. Martini, R. Teixeira, Surface immersions in normed spaces from the affine point of view. Geom. Dedicata 201, 21–31 (2019). https://doi.org/10.1007/s10711-018-0380-z

    Article  MathSciNet  MATH  Google Scholar 

  30. V. Balestro, H. Martini, R. Teixeira, Differential geometry of immersed surfaces in three-dimensional normed spaces. Abh. Math. Semin. Univ. Hambg. 90(1), 111–134 (2020). https://doi.org/10.1007/s12188-020-00219-7

    Article  MathSciNet  MATH  Google Scholar 

  31. V. Balestro, H. Martini, R. Teixeira, On curvature of surfaces immersed in normed spaces. Monatsh. Math. 192(2), 291–309 (2020). https://doi.org/10.1007/s00605-020-01394-8

    Article  MathSciNet  MATH  Google Scholar 

  32. V. Balestro, H. Martini, R. Teixeira, Some topics in differential geometry of normed spaces. Adv. Geom. 21(1), 109–118 (2021). https://doi.org/10.1515/advgeom-2020-0001

    Article  MathSciNet  MATH  Google Scholar 

  33. A.I. Ban, S.G. Gal, On the defect of orthogonality in real normed linear spaces. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 44(92)(4), 331–343 (2001)

    Google Scholar 

  34. M. Baronti, Su alcuni parametri degli spazi normati. Raporti Scientifico Dell’Instituto di Matematica 48, 945–957 (1980)

    MATH  Google Scholar 

  35. M. Baronti, C. Franchetti, The isosceles orthogonality and a new 2-dimensional parameter in real normed spaces. Aequationes Math. 89(3), 673–683 (2015). https://doi.org/10.1007/s00010-014-0255-9

    Article  MathSciNet  MATH  Google Scholar 

  36. C. Benítez, A Property of Some Orthogonalities in Normed Spaces (Spanish) (Actas de las Primeras Jornadas Matemáticas Hispano-Lusitanas, Madrid, 1973), pp. 55–62

    Google Scholar 

  37. C. Benítez, A property of Birkhoff orthogonality, and a characterization of pre-Hilbert spaces (Spanish). Collect. Math. 26(3), 211–218 (1975)

    MathSciNet  Google Scholar 

  38. C. Benítez, Orthogonality in normed linear spaces: a classification of the different concepts and some open problems. Rev. Mat. Univ. Complut. Madrid 2(suppl.), 53–57 (1989). Congress on Functional Analysis (Madrid, 1988)

    Google Scholar 

  39. C. Benítez, A note on certain orthogonality in normed linear spaces. Math. Nachr. 153, 7–8 (1991). https://doi.org/10.1002/mana.19911530102

    Article  MathSciNet  MATH  Google Scholar 

  40. C. Benítez, M. del Rio, Characterization of inner product spaces through rectangle and square inequalities. Rev. Roumaine Math. Pures Appl. 29(7), 543–546 (1984)

    MathSciNet  MATH  Google Scholar 

  41. G. Birkhoff, Orthogonality in linear metric spaces. Duke Math. J. 1(2), 169–172 (1935). https://doi.org/10.1215/S0012-7094-35-00115-6

    Article  MathSciNet  MATH  Google Scholar 

  42. W. Blaschke, Kreis und Kugel. (Veit u. Co., Leipzig, 1916)

    Google Scholar 

  43. Á.P. Bosznay, On a problem concerning orthogonality in normed linear spaces. Studia Sci. Math. Hungar. 26(1), 63–65 (1991)

    MathSciNet  MATH  Google Scholar 

  44. B. Boussouis, Caractérisation d’un espace préhilbertien au moyen des orthogonalités généralisées. Extracta Math. 7(1), 20–24 (1992)

    MathSciNet  Google Scholar 

  45. B. Boussouis, Relations entre l’orthogonalité de Birkhoff-James et l’orthogonalité de Carlsson. Ann. Sci. Math. Québec 17(2), 139–143 (1993)

    MathSciNet  MATH  Google Scholar 

  46. B. Boussouis, Comparaison de l’orthogonalité de Diminnie aux orthogonalités de type Carlsson. Extracta Math. 9(3), 173–180 (1994)

    MathSciNet  MATH  Google Scholar 

  47. B. Boussouis, Orthogonalité et caractérisation des espaces préhilbertiens. Ph.D. thesis, Université Sidi Mohamed Ben Abdellah, Fès, Morocco (1995)

    Google Scholar 

  48. B. Boussouis, Orthogonalité et caractérisation des espaces préhilbertiens. Ann. Sci. Math. Québec 24(1), 1–17 (2000)

    MathSciNet  MATH  Google Scholar 

  49. H. Busemann, The geometry of Finsler spaces. Bull. Amer. Math. Soc. 56, 5–16 (1950). https://doi.org/10.1090/S0002-9904-1950-09332-X

    Article  MathSciNet  MATH  Google Scholar 

  50. S.O. Carlsson, Orthogonality in normed linear spaces. Ark. Mat. 4, 297–318 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  51. J. Chmieliński, Orthogonality preserving property and its Ulam stability, in Functional Equations in Mathematical Analysis. Springer Optimization and Its Applications, vol. 52 (Springer, New York, 2012), pp. 33–58. https://doi.org/10.1007/978-1-4614-0055-4_4

  52. J. Chmieliński, P. Wójcik, Isosceles-orthogonality preserving property and its stability. Nonlinear Anal. 72(3–4), 1445–1453 (2010). https://doi.org/10.1016/j.na.2009.08.028

    Article  MathSciNet  MATH  Google Scholar 

  53. J. Chmieliński, P. Wójcik, ρ-orthogonality and its preservation—revisited, in Recent Developments in Functional Equations and Inequalities. Banach Center Publications, vol. 99 (Institute of Mathematics of the Polish Academy of Sciences, Warsaw, 2013), pp. 17–30. https://doi.org/10.4064/bc99-0-2

  54. J. Chmieliński, P. Wójcik, Approximate symmetry of Birkhoff orthogonality. J. Math. Anal. Appl. 461(1), 625–640 (2018). https://doi.org/10.1016/j.jmaa.2018.01.031

    Article  MathSciNet  MATH  Google Scholar 

  55. J. Chmieliński, P. Wójcik, Birkhoff-James orthogonality reversing property and its stability, in Ulam Type Stability (Springer, Cham, 2019), pp. 57–71

    MATH  Google Scholar 

  56. J. Chmieliński, T. Stypuła, P. Wójcik, Approximate orthogonality in normed spaces and its applications. Linear Algebra Appl. 531, 305–317 (2017). https://doi.org/10.1016/j.laa.2017.06.001

    Article  MathSciNet  MATH  Google Scholar 

  57. F. Dadipour, F. Sadeghi, A. Salemi, Characterizations of inner product spaces involving homogeneity of isosceles orthogonality. Arch. Math. 104(5), 431–439 (2015). https://doi.org/10.1007/s00013-015-0762-5

    Article  MathSciNet  MATH  Google Scholar 

  58. F. Dadipour, F. Sadeghi, A. Salemi, An orthogonality in normed linear spaces based on angular distance inequality. Aequationes Math. 90(2), 281–297 (2016). https://doi.org/10.1007/s00010-014-0333-z

    Article  MathSciNet  MATH  Google Scholar 

  59. M.M. Day, Some characterizations of inner-product spaces. Trans. Amer. Math. Soc. 62, 320–337 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  60. M.M. Day, Normed Linear Spaces, 3rd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21 (Springer, New York, 1973)

    Google Scholar 

  61. M. Dehghani, A. Zamani, Characterization of real inner product spaces by Hermite-Hadamard type orthogonalities. J. Math. Anal. Appl. 479(1), 1364–1382 (2019). https://doi.org/10.1016/j.jmaa.2019.07.002

    Article  MathSciNet  MATH  Google Scholar 

  62. M. del Río, Ortogonalidad en espacios normados y caracterización de espacios prehilbertianos, in Publicaciones del Departamento de Análisis Matemático: serie B, vol. 14 (Universidad de Santiago de Compostela, Santiago de Compostela, 1975)

    Google Scholar 

  63. M. del Río, C. Benítez, The rectangular constant for two-dimensional spaces. J. Approx. Theory 19(1), 15–21 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  64. J. Desbiens, Une nouvelle caractérisation des espaces de Hilbert. Ann. Sci. Math. Québec 14(1), 17–22 (1990)

    MathSciNet  MATH  Google Scholar 

  65. C.R. Diminnie, A new orthogonality relation for normed linear spaces. Math. Nachr. 114, 197–203 (1983). https://doi.org/10.1002/mana.19831140115

    Article  MathSciNet  MATH  Google Scholar 

  66. C.R. Diminnie, R.W. Freese, E.Z. Andalafte, An extension of Pythagorean and isosceles orthogonality and a characterization of inner-product spaces. J. Approx. Theory 39(4), 295–298 (1983). https://doi.org/10.1016/0021-9045(83)90073-4

    Article  MathSciNet  MATH  Google Scholar 

  67. C.R. Diminnie, E.Z. Andalafte, R.W. Freese, Angles in normed linear spaces and a characterization of real inner product spaces. Math. Nachr. 129, 197–204 (1986). https://doi.org/10.1002/mana.19861290118

    Article  MathSciNet  MATH  Google Scholar 

  68. S.S. Dragomir, On approximation of continuous linear functionals in normed linear spaces. An. Univ. Timişoara Ser. Ştiinţ. Mat. 29(1), 51–58 (1991)

    MathSciNet  MATH  Google Scholar 

  69. S.S. Dragomir, Semi-Inner Products and Applications (Nova Science Publishers, Inc., Hauppauge, 2004)

    MATH  Google Scholar 

  70. S.S. Dragomir, E. Kikianty, Orthogonality connected with integral means and characterizations of inner product spaces. J. Geom. 98(1–2), 33–49 (2010). https://doi.org/10.1007/s00022-010-0048-9

    Article  MathSciNet  MATH  Google Scholar 

  71. A. Fankhänel, On angular measures in Minkowski planes. Beitr. Algebra Geom. 52(2), 335–342 (2011). https://doi.org/10.1007/s13366-011-0011-4

    Article  MathSciNet  MATH  Google Scholar 

  72. A. Fankhänel, On conics in Minkowski planes. Extracta Math. 27(1), 13–29 (2012)

    MathSciNet  MATH  Google Scholar 

  73. R. Fernández, Orthogonality in generalized normed spaces. Stochastica 12(2–3), 141–148 (1988)

    MathSciNet  MATH  Google Scholar 

  74. F.A. Ficken, Note on the existence of scalar products in normed linear spaces. Ann. Math. (2) 45, 362–366 (1944)

    Google Scholar 

  75. R. Freese, E. Andalafte, Metrizations of orthogonality and characterizations of inner product spaces. J. Geom. 39(1–2), 28–37 (1990). https://doi.org/10.1007/BF01222138

    Article  MathSciNet  MATH  Google Scholar 

  76. R. Freese, E. Andalafte, Weak additivity of metric Pythagorean orthogonality. J. Geom. 54(1–2), 44–49 (1995). https://doi.org/10.1007/BF01222851

    Article  MathSciNet  MATH  Google Scholar 

  77. R.W. Freese, C.R. Diminnie, E.Z. Andalafte, A study of generalized orthogonality relations in normed linear spaces. Math. Nachr. 122, 197–204 (1985). https://doi.org/10.1002/mana.19851220120

    Article  MathSciNet  MATH  Google Scholar 

  78. S. Gähler, Lineare 2-normierte Räume. Math. Nachr. 28, 1–43 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  79. N. Gastinel, J.L. Joly, Condition numbers and general projection method. Linear Algebra Appl. 3, 185–224 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  80. P. Guijarro, M.S. Tomás, Perpendicular bisectors and orthogonality. Arch. Math. 69(6), 491–496 (1997). https://doi.org/10.1007/s000130050151

    Article  MathSciNet  MATH  Google Scholar 

  81. P. Guijarro, M.S. Tomás, Characterizations of inner product spaces by geometrical properties of the heights in a triangle. Arch. Math. 73(1), 64–72 (1999). https://doi.org/10.1007/s000130050021

    Article  MathSciNet  MATH  Google Scholar 

  82. C. Hao, S. Wu, Homogeneity of isosceles orthogonality and related inequalities. J. Inequal. Appl. 2011, 84 (2011). https://doi.org/10.1186/1029-242X-2011-84

    Article  MathSciNet  MATH  Google Scholar 

  83. C. He, D. Wang, A remark on the homogeneity of isosceles orthogonality. J. Funct. Spaces 3, Art. ID 876015 (2014). https://doi.org/10.1155/2014/876015

  84. V.I. Istrăţescu, Inner product structures, in Mathematics and Its Applications, vol. 25 (D. Reidel Publishing Co., Dordrecht, 1987). https://doi.org/10.1007/978-94-009-3713-0. Theory and applications

  85. T. Jahn, Orthogonality in generalized Minkowski spaces. J. Convex Anal. 26(1), 49–76 (2019)

    MathSciNet  MATH  Google Scholar 

  86. R.C. James, Orthogonality in normed linear spaces. Duke Math. J. 12, 291–302 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  87. R.C. James, Inner product in normed linear spaces. Bull. Amer. Math. Soc. 53, 559–566 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  88. R.C. James, Orthogonality and linear functionals in normed linear spaces. Trans. Amer. Math. Soc. 61, 265–292 (1947)

    Article  MathSciNet  Google Scholar 

  89. R.C. James, Reflexivity and the sup of linear functionals, in Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), vol. 13 (1972), pp. 289–300

    Google Scholar 

  90. D. Ji, S. Wu, Quantitative characterization of the difference between Birkhoff orthogonality and isosceles orthogonality. J. Math. Anal. Appl. 323(1), 1–7 (2006). https://doi.org/10.1016/j.jmaa.2005.10.004

    Article  MathSciNet  MATH  Google Scholar 

  91. J.L. Joly, Caractérisations d’espaces hilbertiens au moyen de la constante rectangle. J. Approx. Theory 2, 301–311 (1969)

    Article  MATH  Google Scholar 

  92. S. Kakutani, Some characterizations of Euclidean space. Jpn. J. Math. 16, 93–97 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  93. O.P. Kapoor, J. Prasad, Orthogonality and characterizations of inner product spaces. Bull. Austral. Math. Soc. 19(3), 403–416 (1978). https://doi.org/10.1017/S0004972700008947

    Article  MathSciNet  MATH  Google Scholar 

  94. O.P. Kapoor, J. Prasad, On characterizations of inner-product spaces. Publ. Inst. Math. 35(49), 173–177 (1984)

    MathSciNet  MATH  Google Scholar 

  95. E. Kikianty, S.S. Dragomir, On Carlsson type orthogonality and characterization of inner product spaces. Filomat 26(4), 859–870 (2012). https://doi.org/10.2298/FIL1204859K

    Article  MathSciNet  MATH  Google Scholar 

  96. N. Komuro, K.S. Saito, R. Tanaka, On the class of Banach spaces with James constant \(\sqrt {2}\), III. Math. Inequal. Appl. 20(3), 865–887 (2017). https://doi.org/10.7153/mia-20-55

  97. D. Laugwitz, On characterizations of inner product spaces. Proc. Amer. Math. Soc. 50, 184–188 (1975). https://doi.org/10.2307/2040537

    Article  MathSciNet  MATH  Google Scholar 

  98. J.H. Li, B. Ling, S.Y. Liu, A new upper bound of geometric constant D(X). J. Inequal. Appl. 9, Paper No. 203 (2017). https://doi.org/10.1186/s13660-017-1474-0

  99. P.K. Lin, A remark on the Singer-orthogonality in normed linear spaces. Math. Nachr. 160, 325–328 (1993). https://doi.org/10.1002/mana.3211600116

    Article  MathSciNet  MATH  Google Scholar 

  100. Z. Liu, L p-orthogonality in Banach spaces. J. Math. Res. Exposition 4(4), 31–35 (1984)

    MathSciNet  Google Scholar 

  101. Z. Liu, Y.D. Zhuang, Singer orthogonality and characterizations of inner product spaces. Arch. Math. 55(6), 588–594 (1990). https://doi.org/10.1007/BF01191695

    Article  MathSciNet  MATH  Google Scholar 

  102. E.R. Lorch, On certain implications which characterize Hilbert space. Ann. Math. (2) 49, 523–532 (1948)

    Google Scholar 

  103. K. Mandal, D. Sain, K. Paul, A geometric characterization of polygonal Radon planes. J. Convex Anal. 26(4), 1113–1123 (2019)

    MathSciNet  MATH  Google Scholar 

  104. A. Marchaud, Un théorème sur les corps convexes. Ann. Sci. École Norm. Sup. (3) 76, 283–304 (1959)

    Google Scholar 

  105. G. Marino, P. Pietramala, A note about inner products on Banach spaces. Boll. Un. Mat. Ital. A (7) 1(3), 425–427 (1987)

    Google Scholar 

  106. C.F. Martin, J.E. Valentine, Angles in metric and normed linear spaces. Colloq. Math. 34(2), 209–217 (1975/76). https://doi.org/10.4064/cm-34-2-209-217

    Article  MathSciNet  MATH  Google Scholar 

  107. H. Martini, M. Spirova, Golden rectangles in normed planes. Mitt. Math. Ges. Hamburg 29, 125–134 (2010)

    MathSciNet  MATH  Google Scholar 

  108. H. Martini, M. Spirova, A new type of orthogonality for normed planes. Czechoslovak Math. J. 60(135)(2), 339–349 (2010). https://doi.org/10.1007/s10587-010-0039-x

  109. H. Martini, K.J. Swanepoel, Antinorms and Radon curves. Aequationes Math. 72(1–2), 110–138 (2006). https://doi.org/10.1007/s00010-006-2825-y

    Article  MathSciNet  MATH  Google Scholar 

  110. H. Martini, S. Wu, Tangent segments and orthogonality types in normed planes. J. Geom. 99(1–2), 89–100 (2010). https://doi.org/10.1007/s00022-011-0063-5

    Article  MathSciNet  MATH  Google Scholar 

  111. H. Martini, S. Wu, On Zindler curves in normed planes. Canad. Math. Bull. 55(4), 767–773 (2012). https://doi.org/10.4153/CMB-2011-112-x

    Article  MathSciNet  MATH  Google Scholar 

  112. H. Martini, K.J. Swanepoel, G. Weiß, The geometry of Minkowski spaces—a survey. I. Expo. Math. 19(2), 97–142 (2001). https://doi.org/10.1016/S0723-0869(01)80025-6

    Article  MathSciNet  MATH  Google Scholar 

  113. H. Martini, M. Spirova, K. Strambach, Geometric algebra of strictly convex Minkowski planes. Aequationes Math. 88(1–2), 49–66 (2014). https://doi.org/10.1007/s00010-013-0204-z

    Article  MathSciNet  MATH  Google Scholar 

  114. P.M. Miličić, Sur la g-orthogonalité dans des espaces normés. Mat. Vesnik 39(3), 325–334 (1987)

    MathSciNet  MATH  Google Scholar 

  115. P.M. Miličić, Singer orthogonality and James orthogonality in the so-called quasi-inner product space. Math. Morav. 15(1), 49–52 (2011). https://doi.org/10.5937/matmor1101049m

    Article  MathSciNet  MATH  Google Scholar 

  116. H. Mizuguchi, The differences between Birkhoff and isosceles orthogonalities in Radon planes. Extracta Math. 32(2), 173–208 (2017)

    MathSciNet  MATH  Google Scholar 

  117. H. Mizuguchi, Measurement of the difference between two orthogonality types in Banach spaces. J. Nonlinear Convex Anal. 19(9), 1579–1586 (2018)

    MathSciNet  MATH  Google Scholar 

  118. M. Naszódi, V. Prokaj, K. Swanepoel, Angular measures and Birkhoff orthogonality in Minkowski planes. Aequationes Math. 94(5), 969–977 (2020). https://doi.org/10.1007/s00010-020-00715-4

    Article  MathSciNet  MATH  Google Scholar 

  119. M. Nur, H. Gunawan, A new orthogonality and angle in a normed space. Aequationes Math. 93(3), 547–555 (2019). https://doi.org/10.1007/s00010-018-0582-3

    Article  MathSciNet  MATH  Google Scholar 

  120. K. Ōhira, On some characterizations of abstract Euclidean spaces by properties of orthogonality. Kumamoto J. Sci. Ser. A. 1(1), 23–26 (1952)

    MathSciNet  MATH  Google Scholar 

  121. V. Panagakou, P. Psarrakos, N. Yannakakis, Birkhoff-James ε-orthogonality sets of vectors and vector-valued polynomials. J. Math. Anal. Appl. 454(1), 59–78 (2017). https://doi.org/10.1016/j.jmaa.2017.04.033

    Article  MathSciNet  MATH  Google Scholar 

  122. P.L. Papini, S. Wu, Measurements of differences between orthogonality types. J. Math. Anal. Appl. 397(1), 285–291 (2013). https://doi.org/10.1016/j.jmaa.2012.07.059

    Article  MathSciNet  MATH  Google Scholar 

  123. K. Paul, D. Sain, Birkhoff-James orthogonality and its application in the study of geometry of Banach space, in Advanced Topics in Mathematical Analysis (CRC Press, Boca Raton, 2019), pp. 245–284

    MATH  Google Scholar 

  124. K. Paul, D. Sain, P. Ghosh, Symmetry of Birkhoff-James orthogonality of bounded linear operators, in Ulam Type Stability (Springer, Cham, 2019), pp. 331–344

    MATH  Google Scholar 

  125. H. Perfect, Pythagorean orthogonality in a normed linear space. Proc. Edinburgh Math. Soc. (2) 9, 168–169 (1958)

    Google Scholar 

  126. J. Rätz, Characterization of inner product spaces by means of orthogonally additive mappings. Aequationes Math. 58(1–2), 111–117 (1999). https://doi.org/10.1007/s000100050098. Dedicated to János Aczél on the occasion of his 75th birthday

  127. B.D. Roberts, On the geometry of abstract vector spaces. Tohoku Math. J. 39, 42–59 (1934)

    MATH  Google Scholar 

  128. J. Rooin, S. Rajabi, M.S. Moslehian, p-angular distance orthogonality. Aequationes Math. 94(1), 103–121 (2020). https://doi.org/10.1007/s00010-019-00664-7

  129. F.B. Saidi, A characterisation of Hilbert spaces via orthogonality and proximinality. Bull. Austral. Math. Soc. 71(1), 107–112 (2005). https://doi.org/10.1017/S0004972700038053

    Article  MathSciNet  MATH  Google Scholar 

  130. D. Sain, K. Paul, K. Jha, Strictly convex space: strong orthogonality and conjugate diameters. J. Convex Anal. 22(4), 1215–1225 (2015)

    MathSciNet  MATH  Google Scholar 

  131. I.J. Schoenberg, A remark on M. M. Day’s characterization of inner-product spaces and a conjecture of L. M. Blumenthal. Proc. Amer. Math. Soc. 3, 961–964 (1952)

    MATH  Google Scholar 

  132. I. Şerb, Rectangular modulus and geometric properties of normed spaces. Math. Pannon. 10(2), 211–222 (1999)

    MathSciNet  MATH  Google Scholar 

  133. I. Şerb, Rectangular modulus, Birkhoff orthogonality and characterizations of inner product spaces. Comment. Math. Univ. Carolin. 40(1), 107–119 (1999)

    MATH  Google Scholar 

  134. I. Şerb, Geometric properties of normed spaces and estimates for rectangular modulus. Math. Pannon. 12(1), 27–38 (2001)

    MathSciNet  MATH  Google Scholar 

  135. I. Singer, Angles abstraits et fonctions trigonométriques dans les espaces de Banach (Romanian). Acad. R. P. Romî ne. Bul. Şti. Secţ. Şti. Mat. Fiz. 9, 29–42 (1957)

    MATH  Google Scholar 

  136. F.E. Sullivan, Structure of real L p spaces. J. Math. Anal. Appl. 32, 621–629 (1970). https://doi.org/10.1016/0022-247X(70)90285-4

    Article  MathSciNet  MATH  Google Scholar 

  137. G. Szabó, Pythagorean orthogonality and additive mappings. Aequationes Math. 53(1–2), 108–126 (1997). https://doi.org/10.1007/BF02215968

    Article  MathSciNet  MATH  Google Scholar 

  138. A.C. Thompson, Minkowski geometry, Encyclopedia of Mathematics and Its Applications, vol. 63 (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  139. M.S. Tomás, Circumcenters in real normed spaces. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 8(2), 421–430 (2005)

    Google Scholar 

  140. J. Väisälä, Observations on circumcenters in normed planes. Beitr. Algebra Geom. 58(3), 607–615 (2017). https://doi.org/10.1007/s13366-017-0338-6

    Article  MathSciNet  MATH  Google Scholar 

  141. P. Wójcik, Characterizations of smooth spaces by approximate orthogonalities. Aequationes Math. 89(4), 1189–1194 (2015). https://doi.org/10.1007/s00010-014-0293-3

    Article  MathSciNet  MATH  Google Scholar 

  142. S. Wu, X. Dong, D. Wang, Circle-uniqueness of Pythagorean orthogonality in normed linear spaces. J. Funct. Spaces 4, Art. ID 634842 (2014). https://doi.org/10.1155/2014/634842

  143. S. Wu, C. He, G. Yang, Orthogonalities, linear operators, and characterization of inner product spaces. Aequationes Math. 91(5), 969–978 (2017). https://doi.org/10.1007/s00010-017-0494-7

    Article  MathSciNet  MATH  Google Scholar 

  144. A. Zamani, M.S. Moslehian, Approximate Roberts orthogonality. Aequationes Math. 89(3), 529–541 (2015). https://doi.org/10.1007/s00010-013-0233-7

    Article  MathSciNet  MATH  Google Scholar 

  145. A. Zamani, M.S. Moslehian, Approximate Roberts orthogonality sets and (δ, ε)-(a,b)-isosceles-orthogonality preserving mappings. Aequationes Math. 90(3), 647–659 (2016). https://doi.org/10.1007/s00010-015-0383-x

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Martini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alonso, J., Martini, H., Wu, S. (2022). Orthogonality Types in Normed Linear Spaces. In: Papadopoulos, A. (eds) Surveys in Geometry I. Springer, Cham. https://doi.org/10.1007/978-3-030-86695-2_4

Download citation

Publish with us

Policies and ethics