Skip to main content

On the Reproducibility of MiRNA-Seq Differential Expression Analyses in Neuropsychiatric Diseases

  • Conference paper
  • First Online:
Practical Applications of Computational Biology & Bioinformatics, 15th International Conference (PACBB 2021) (PACBB 2021)

Abstract

MiRNAs are attracting considerable interest as potential biomarkers on neuropsychiatric diseases due to their expression plasticity. In the last decade, a large number of studies have been published in this regard with promising results; however, there is widespread concern about the reproducibility of these results. This study aims to compare the differentially expressed miRNAs reported by 5 recent studies of neuropsychiatric diseases, with those obtained through the miARma-Seq pipeline [1]. In general, we found a low reproducibility (0–74%), and some variations related to the software used for the differential expression analysis. Our results support the idea that miRNAs reported as potential biomarkers in neuropsychiatric diseases are strongly correlated with the analytical methodology and the biological references used; nonetheless, further research is needed to establish the magnitude of this problem and spot its main causes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrés-León, E., Núñez-Torres, R., Rojas, A.M.: miARma-Seq: a comprehensive tool for miRNA, mRNA and circRNA analysis. Sci Rep. 6, 25749 (2016). https://doi.org/10.1038/srep25749

    Article  Google Scholar 

  2. Esteller, M.: Non-coding RNAs in human disease. Nat Rev Genet. 12, 861–874 (2011). https://doi.org/10.1038/nrg3074

    Article  Google Scholar 

  3. Peixoto, L., et al.: How data analysis affects power, reproducibility and biological insight of RNA-seq studies in complex datasets. Nucleic Acids Res. 43, 7664–7674 (2015). https://doi.org/10.1093/nar/gkv736

    Article  Google Scholar 

  4. Simoneau, J., Dumontier, S., Gosselin, R., Scott, M.S.: Current RNA-seq methodology reporting limits reproducibility. Brief. Bioinform. 22, 140–145 (2021). https://doi.org/10.1093/bib/bbz124

    Article  Google Scholar 

  5. Zhao, S., Zhang, B.: A comprehensive evaluation of ensembl, RefSeq, and UCSC annotations in the context of RNA-seq read mapping and gene quantification. BMC Genom. 16 (2015). https://doi.org/10.1186/s12864-015-1308-8

  6. Hansen, K.D., Wu, Z., Irizarry, R.A., Leek, J.T.: Sequencing technology does not eliminate biological variability. Nat. Biotechnol. 29, 572–573 (2011). https://doi.org/10.1038/nbt.1910

    Article  Google Scholar 

  7. McIntyre, L.M., et al.: RNA-seq: technical variability and sampling. BMC Genom. 12, 293 (2011). https://doi.org/10.1186/1471-2164-12-293

    Article  Google Scholar 

  8. Martin, C.G., et al.: Circulating miRNA associated with posttraumatic stress disorder in a cohort of military combat veterans. Psychiatry Res. 251, 261–265 (2017). https://doi.org/10.1016/j.psychres.2017.01.081

    Article  Google Scholar 

  9. Nie, C., et al.: Differential expression of plasma exo-miRNA in neurodegenerative diseases by next-generation sequencing. Front. Neurosci. 14 (2020). https://doi.org/10.3389/fnins.2020.00438

  10. Hicks, S.D., Ignacio, C., Gentile, K., Middleton, F.A.: Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment. BMC Pediatr. 16 (2016). https://doi.org/10.1186/s12887-016-0586-x

  11. Wang, L.J., et al.: Blood-bourne microRNA biomarker evaluation in attention-deficit/hyperactivity disorder of Han Chinese individuals: an exploratory study. Front. Psychiatr. 9 (2018). https://doi.org/10.3389/fpsyt.2018.00227

  12. Mavrikaki, M., et al.: Sex-dependent changes in miRNA expression in the bed nucleus of the Stria terminalis following stress. Front. Mol. Neurosci. 12 (2019). https://doi.org/10.3389/fnmol.2019.00236

  13. Hoss, A.G., Labadorf, A., Beach, T.G., Latourelle, J.C., Myers, R.H.: microRNA profiles in Parkinson’s disease prefrontal cortex. Front. Mol. Neurosci. 8 (2016). https://doi.org/10.3389/fnagi.2016.00036

  14. ncbi/sra-tools. NCBI - National Center for Biotechnology Information/NLM/NIH (2021)

    Google Scholar 

  15. Kans, J.: Entrez Direct: E-utilities on the Unix Command Line. National Center for Biotechnology Information (US) (2021)

    Google Scholar 

  16. NCBI Datasets. https://www.ncbi.nlm.nih.gov/datasets/. Accessed 11 May 2021

  17. Kozomara, A., Birgaoanu, M., Griffiths-Jones, S.: miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162 (2019). https://doi.org/10.1093/nar/gky1141

    Article  Google Scholar 

  18. Andrews, S.: FASTQC. A quality control tool for high throughput sequence data. (2010)

    Google Scholar 

  19. Martin, M.: Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011). https://doi.org/10.14806/ej.17.1.200

  20. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009). https://doi.org/10.1186/gb-2009-10-3-r25

    Article  Google Scholar 

  21. Liao, Y., Smyth, G.K., Shi, W.: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). https://doi.org/10.1093/bioinformatics/btt656

    Article  Google Scholar 

  22. Robinson, M.D., McCarthy, D.J., Smyth, G.K.: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). https://doi.org/10.1093/bioinformatics/btp616

    Article  Google Scholar 

  23. Tarazona, S., et al.: Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res. 43, e140 (2015). https://doi.org/10.1093/nar/gkv711

    Article  Google Scholar 

  24. Ewels, P., Magnusson, M., Lundin, S., Käller, M.: MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016). https://doi.org/10.1093/bioinformatics/btw354

    Article  Google Scholar 

  25. Ritchie, M.E., et al.: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47–e47 (2015). https://doi.org/10.1093/nar/gkv007

    Article  Google Scholar 

  26. Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). https://doi.org/10.1186/s13059-014-0550-8

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Instituto de Salud Carlos III through the project PI18/01311 (co-funded by European Regional Development Fund, “A way to make Europe”) and by a Ramon & Cajal grant [RYC2014-15246] to RCA-B. National funding by FCT, Foundation for Science and Technology (Portugal), through the individual scientific employment program-contract with Hugo López-Fernández (2020.00515.CEECIND). The authors would like to thank Galicia Sur Health Research Institute, Galicia Sur Biomedical Foundation, and the Area Sanitaria de Vigo for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo López-Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pérez-Rodríguez, D., López-Fernández, H., Agís-Balboa, R.C. (2022). On the Reproducibility of MiRNA-Seq Differential Expression Analyses in Neuropsychiatric Diseases. In: Rocha, M., Fdez-Riverola, F., Mohamad, M.S., Casado-Vara, R. (eds) Practical Applications of Computational Biology & Bioinformatics, 15th International Conference (PACBB 2021). PACBB 2021. Lecture Notes in Networks and Systems, vol 325. Springer, Cham. https://doi.org/10.1007/978-3-030-86258-9_5

Download citation

Publish with us

Policies and ethics