Skip to main content

Reviewing the Application of Data Driven Digital Twins in Manufacturing Systems: A Business and Management Perspective

  • Conference paper
  • First Online:
Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems (APMS 2021)

Abstract

Simulation modelling has been a widely used tool for analyzing manufacturing systems and improving their performance. Although, little attention has been paid to the application of data-driven simulation modelling of the manufacturing systems. With the development of new-generation information and digitalization technologies, more data can be collected from the manufacturing shop floor. This has paved the way for employing data-driven simulation of manufacturing systems knows as a digital twin. This paper reviews the literature and practice on digital twins in manufacturing systems from a business and management perspective to identify the gaps and recommend avenues for future research. The results show that 2018 has been a turning point in the literature with small scale case studies of digital twins emerging independent of commercial practice. Since 2018 the digital twin literature has moved on from descriptions and conceptual frameworks to focus on one product lifecycle phase with any reference to sustainability advance being confined to energy and resource efficiency. Practice has been advanced by manufacturers and IT vendors however the definition of digital twins lacks precision for ease comparison with the literature. Future avenues for research are identified in the areas of lifecycle phases and digital model fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Negri, E., Fumagalli, L., Macchi, M.: A review of the roles of digital twin in CPS-based production systems. Procedia Manuf. 11, 939–948 (2017)

    Article  Google Scholar 

  2. Grieves, M.: Digital twin: manufacturing excellence through virtual factory replication. White Pap. 1, 1–7 (2014)

    Google Scholar 

  3. Grieves, M., Vickers, J.: Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Kahlen, F.-J., Flumerfelt, S., Alves, A. (eds.) Transdisciplinary Perspectives on Complex Systems, pp. 85–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-38756-7_4

    Chapter  Google Scholar 

  4. Digital Twin Market Statistics | Global Size Forecasts 2026. https://www.gminsights.com/industry-analysis/digital-twin-market

  5. Hosseini, S., Ivanov, D., Dolgui, A.: Review of quantitative methods for supply chain resilience analysis. Transp. Res. Part E Logist. Transp. Rev. 125, 285–307 (2019)

    Article  Google Scholar 

  6. Dolgui, A., Ivanov, D., Sokolov, B.: Reconfigurable supply chain: the X-network. Int. J. Prod. Res. 58, 4138–4163 (2020)

    Article  Google Scholar 

  7. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine. 51, 1016–1022 (2018)

    Article  Google Scholar 

  8. van Eck, N.J., Waltman, L.: How to normalize cooccurrence data? An analysis of some well-known similarity measures. J. Am. Soc. Inf. Sci. Technol. 60, 1635–1651 (2009)

    Article  Google Scholar 

  9. Kiritsis, D., Bufardi, A., Xirouchakis, P.: Research issues on product lifecycle management and information tracking using smart embedded systems. Adv. Eng. Inform. 17, 189–202 (2003)

    Article  Google Scholar 

  10. Tao, F., et al.: Digital twin-driven product design framework. Int. J. Prod. Res. 57, 3935–3953 (2019)

    Article  Google Scholar 

  11. Liu, Q., Zhang, H., Leng, J., Chen, X.: Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system. Int. J. Prod. Res. 57, 3903–3919 (2019)

    Article  Google Scholar 

  12. Aderiani, A.R., Wärmefjord, K., Söderberg, R., Lindkvist, L.: Developing a selective assembly technique for sheet metal assemblies. Int. J. Prod. Res. 57, 7174–7188 (2019)

    Article  Google Scholar 

  13. Huang, S., Wang, G., Yan, Y.: Building blocks for digital twin of reconfigurable machine tools from design perspective. Int. J. Prod. Res. 1–15 (2020)

    Google Scholar 

  14. Eisentrager, M., Adler, S., Kennel, M., Moser, S.: Changeability in engineering. In: 2018 IEEE International Conference on Engineering, Technology and Innovation, ICE/ITMC (2018)

    Google Scholar 

  15. Strelets, D.Y., Serebryansky, S.A., Shkurin, M.V.: Concept of creation of a digital twin in the uniform information environment of product life cycle. In: 2020 13th International Conference Management of Large-Scale System Development, MLSD (2020)

    Google Scholar 

  16. Zheng, P., Lin, T.J., Chen, C.H., Xu, X.: A systematic design approach for service innovation of smart product-service systems. J. Clean. Prod. 201, 657–667 (2018)

    Article  Google Scholar 

  17. He, B., Cao, X., Hua, Y.: Data fusion-based sustainable digital twin system of intelligent detection robotics. J. Clean. Prod. 280, 124–181 (2021)

    Article  Google Scholar 

  18. Zhang, Z., Guan, Z., Gong, Y., Luo, D., Yue, L.: Improved multi-fidelity simulation-based optimisation: application in a digital twin shop floor. Int. J. Prod. Res. 1–20 (2020)

    Google Scholar 

  19. Ding, K., Chan, F.T.S., Zhang, X., Zhou, G., Zhang, F.: Defining a digital twin-based cyber-physical production system for autonomous manufacturing in smart shop floors. Int. J. Prod. Res. 57, 6315–6334 (2019)

    Article  Google Scholar 

  20. Zhou, G., Zhang, C., Li, Z., Ding, K., Wang, C.: Knowledge-driven digital twin manufacturing cell towards intelligent manufacturing. Int. J. Prod. Res. 58, 1034–1051 (2020)

    Article  Google Scholar 

  21. Polini, W., Corrado, A.: Digital twin of composite assembly manufacturing process. Int. J. Prod. Res. 58, 5238–5252 (2020)

    Article  Google Scholar 

  22. Ait-Alla, A., Kreutz, M., Rippel, D., Lütjen, M., Freitag, M.: Simulated-based methodology for the interface configuration of cyber-physical production systems. Int. J. Prod. Res. 1–16 (2020)

    Google Scholar 

  23. Lin, T.Y., et al.: Efficient container virtualization-based digital twin simulation of smart industrial systems. J. Clean. Prod. 281, 124443 (2020)

    Article  Google Scholar 

  24. Leiden, A., Herrmann, C., Thiede, S.: Cyber-physical production system approach for energy and resource efficient planning and operation of plating process chains. J. Clean. Prod. 280, 125–160 (2020)

    Google Scholar 

  25. Ma, S., Zhang, Y., Liu, Y., Yang, H., Lv, J., Ren, S.: Data-driven sustainable intelligent manufacturing based on demand response for energy-intensive industries. J. Clean. Prod. 274, 123–155 (2020)

    Article  Google Scholar 

  26. Park, K.T., Lee, D., Do Noh, S.: Operation procedures of a work-center-level digital twin for sustainable and smart manufacturing. Int. J. Precis. Eng. Manuf. - Green Technol. 7, 791–814 (2020)

    Article  Google Scholar 

  27. Zhang, C., Zhou, G., Hu, J., Li, J.: Deep learning-enabled intelligent process planning for digital twin manufacturing cell. Knowl.-Based Syst. 191, 105247 (2020)

    Article  Google Scholar 

  28. Kusiak, A.: Convolutional and generative adversarial neural networks in manufacturing. Int. J. Prod. Res. 58, 1594–1604 (2020)

    Article  Google Scholar 

  29. Uhlenkamp, J.-F., Hribernik, K., Wellsandt, S., Thoben, K.-D.: Digital twin applications: a first systemization of their dimensions. In: 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 1–8. IEEE (2019)

    Google Scholar 

  30. Catarci, T., Firmani, D., Leotta, F., Mandreoli, F., Mecella, M., Sapio, F.: A conceptual architecture and model for smart manufacturing relying on service-based digital twins. In: 2019 IEEE International Conference on Web Services, ICWS (2019)

    Google Scholar 

  31. Horváthová, M., Lacko, R., Hajduová, Z.: Using Industry 4.0 concept – digital twin – to improve the efficiency of leather cutting in automotive industry. Qual. Innov. Prosper. 23, 1–12 (2019)

    Article  Google Scholar 

  32. Raza, M., Kumar, P.M., Hung, D.V., Davis, W., Nguyen, H., Trestian, R.: A Digital twin framework for Industry 4.0 enabling next-gen manufacturing. In: ICITM 2020 (2020)

    Google Scholar 

  33. Lin, W.D., Low, M.Y.H.: Concept and implementation of a cyber-physical digital twin for a SMT line. In: IEEE International Conference on Industrial Engineering and Engineering Management, pp. 1455–1459 (2019)

    Google Scholar 

  34. Vijayakumar, K., Dhanasekaran, C., Pugazhenthi, R., Sivaganesan, S.: Digital twin for factory system simulation. Int. J. Recent Technol. Eng. 8, 63–68 (2019)

    Google Scholar 

  35. Negri, E., Assiro, G., Caioli, L., Fumagalli, L.: A machine state-based digital twin development methodology. In: XXV Summerschool Francesco Turco (2019)

    Google Scholar 

  36. Agostino, Í.R.S., Broda, E., Frazzon, E.M., Freitag, M.: Using a digital twin for production planning and control in Industry 4.0. In: Sokolov, B., Ivanov, D., Dolgui, A. (eds.) Scheduling in Industry 4.0 and Cloud Manufacturing. ISORMS, vol. 289, pp. 39–60. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43177-8_3

    Chapter  Google Scholar 

  37. Assawaarayakul, C., Srisawat, W., Ayuthaya, S.D.N., Wattanasirichaigoon, S.: Integrate digital twin to exist production system for Industry 4.0. In: 4th Technology Innovation Management and Engineering Science International Conference (2019)

    Google Scholar 

  38. Lin, W.D., Low, Y.H., Chong, Y.T., Teo, C.L.: Integrated cyber physical simulation modelling environment for manufacturing 4.0. In: IEEE International Conference on Industrial Engineering and Engineering Management, pp. 1861–1865 (2019)

    Google Scholar 

  39. Santos, R., Basto, J., Alcalá, S.G.S., Frazzon, E., Azevedo, A.: Industrial IoT integrated with simulation-a digital twin approach to support real-time decision making. In: International Conference on Industrial Engineering and Operations Management, pp. 23–26 (2019)

    Google Scholar 

  40. Zhang, Y.F., Shao, Y.Q., Wang, J.F., Li, S.Q.: Digital twin-based production simulation of discrete manufacturing shop-floor for onsite performance analysis. In: IEEE International Conference on Industrial Engineering and Engineering Management, pp. 1107–1111(2020)

    Google Scholar 

  41. Lin, W.D., Low, M.Y.H.: Concept design of a system architecture for a manufacturing cyber-physical digital twin system. In: IEEE International Conference on Industrial Engineering and Engineering Management, pp. 1320–1324 (2020)

    Google Scholar 

  42. Protic, A., Jin, Z., Marian, R., Abd, K., Campbell, D., Chahl, J.: Implementation of a bi-directional digital twin for industry 4 labs in academia: a solution based on OPC UA. In: International Conference on Industrial Engineering and Engineering Management (2020)

    Google Scholar 

  43. Guo, D., Li, M., Zhong, R., Huang, G.Q.: Graduation intelligent manufacturing system (GiMS): an Industry 4.0 paradigm for production and operations management. Ind. Manag. Data Syst. 121, 86–98 (2020)

    Article  Google Scholar 

  44. Makarov, V.V., Frolov, Y.B., Parshina, I.S., Ushakova, M.V.: MES systems as an integral part of digital production. In: 13th International Conference Management of Large-Scale System Development, MLSD (2020)

    Google Scholar 

  45. Golovina, T., Polyanin, A., Adamenko, A., Khegay, E., Schepinin, V.: Digital twins as a new paradigm of an industrial enterprise. Int. J. Technol. 11, 1115 (2020)

    Article  Google Scholar 

  46. Yildiz, E., Møller, C., Bilberg, A.: Virtual factory: competence-based adaptive modelling and simulation approach for manufacturing enterprise. In: Lecture Notes in Business Information Processing, pp. 197–207 (2020)

    Google Scholar 

  47. Rodič, B.: Industry and the new simulation modelling paradigm. Organizacija 50, 193–207 (2017)

    Article  Google Scholar 

  48. Amos, H.C., Bandaru, S.: Virtual factories with knowledge-driven optimization as a new research profile (2020)

    Google Scholar 

  49. Wang, K.-J., Lee, Y.-H., Angelica, S.: Digital twin design for real-time monitoring–a case study of die cutting machine. Int. J. Prod. Res. 1–15 (2020)

    Google Scholar 

  50. Wang, J., Ye, L., Gao, R.X., Li, C., Zhang, L.: Digital twin for rotating machinery fault diagnosis in smart manufacturing. Int. J. Prod. Res. 57, 3920–3934 (2019)

    Article  Google Scholar 

  51. Ardanza, A., Moreno, A., Segura, Á., de la Cruz, M., Aguinaga, D.: Sustainable and flexible industrial human machine interfaces to support adaptable applications in the Industry 4.0 paradigm. Int. J. Prod. Res. 57, 4045–4059 (2019)

    Article  Google Scholar 

  52. Park, K.T., Son, Y.H., Do Noh, S.: The architectural framework of a cyber physical logistics system for digital-twin-based supply chain control. Int. J. Prod. Res. 1–22 (2020)

    Google Scholar 

  53. Ivanov, D., Dolgui, A., Das, A., Sokolov, B.: Digital supply chain twins: managing the ripple effect, resilience, and disruption risks by data-driven optimization, simulation, and visibility. In: Ivanov, D., Dolgui, A., Sokolov, B. (eds.) Handbook of Ripple Effects in the Supply Chain. International Series in Operations Research & Management Science, vol. 276. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14302-2_15

  54. Aivaliotis, P., Georgoulias, K., Arkouli, Z., Makris, S.: Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance. Procedia CIRP 81, 417–422 (2019)

    Article  Google Scholar 

  55. Baruffaldi, G., Accorsi, R., Manzini, R.: Warehouse management system customization and information availability in 3PL companies. Ind. Manag. Data Syst. (2019)

    Google Scholar 

  56. Ivanov, D., Dolgui, A.: A digital supply chain twin for managing the disruptions risks and resilience in the era of Industry 4.0. Prod. Plan. Control 32, 1–14 (2020)

    Google Scholar 

  57. Navas, M.A., Sancho, C., Carpio, J.: Disruptive maintenance engineering 4.0. Int. J. Qual. Reliab. Manag. 37, 853–871 (2020)

    Article  Google Scholar 

  58. Yevgenievich Barykin, S., Aleksandrovich Bochkarev, A., Vladimirovna Kalinina, O., Konstantinovich Yadykin, V.: Concept for a supply chain digital twin. Int. J. Math. Eng. Manag. Sci. 5, 1498–1515 (2020)

    Google Scholar 

  59. Jharko, E.: Some aspects of creation of flexible modeling software package for NPP. In: International Conference Management of Large-Scale System Development, MLSD (2020)

    Google Scholar 

  60. Perno, M., Hvam, L.: Developing a framework for scoping digital twins in the process manufacturing Industry. In: the Swedish Production Symposium (2020)

    Google Scholar 

  61. Chen, Q., Zhu, Z., Si, S., Cai, Z.: Intelligent maintenance of complex equipment based on blockchain and digital twin technologies. In: IEEE International Conference on Industrial Engineering and Engineering Management, pp. 908–912 (2020)

    Google Scholar 

  62. Chakrabortty, R.K., Rahman, H.F., Mo, H., Ryan, M.J.: Digital twin-based cyber physical system for sustainable project scheduling. In: IEEE International Conference on Industrial Engineering and Engineering Management, pp. 820–824 (2019)

    Google Scholar 

  63. Wang, X.V., Wang, L.: Digital twin-based WEEE recycling, recovery and remanufacturing in the background of Industry 4.0. Int. J. Prod. Res. 57, 3892–3902 (2019)

    Article  Google Scholar 

  64. Wang, Y., Wang, S., Yang, B., Zhu, L., Liu, F.: Big data driven hierarchical digital twin predictive remanufacturing paradigm: architecture, control mechanism, application scenario and benefits. J. Clean. Prod. 248, 119299 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Badakhshan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Badakhshan, E., Ball, P. (2021). Reviewing the Application of Data Driven Digital Twins in Manufacturing Systems: A Business and Management Perspective. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. APMS 2021. IFIP Advances in Information and Communication Technology, vol 633. Springer, Cham. https://doi.org/10.1007/978-3-030-85910-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85910-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85909-1

  • Online ISBN: 978-3-030-85910-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics