Skip to main content

Pricing Decisions for an Omnichannel Retailing Under Service Level Considerations

  • Conference paper
  • First Online:

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 632))

Abstract

An increasing number of retailers are presently moving to omnichannel configurations and embracing modern innovations to integrate the physical store and the online store to provide customers a comprehensive shopping experience. We develop a classical newsvendor model where a retailer buys items from a supplier and distributes them through two market segments, online vs. offline. We seek optimal prices for the product in the two channels under the newsvendor model with a single period, price-based stochastic demand, and cycle service level-based order quantity to maximize the retailer’s profit. Motivated by market share models often used in marketing, we focus on a demand model involving multiplicative uncertainty and interaction between the two sales channels. The pricing problem arising is not to be well behaved because it is difficult to verify the joint concavity in prices of the objective function’s deterministic version. However, we find that the objective function is still reasonably well behaved within the sense that there is a unique solution for our optimal problem. We observe such a situation through the visualization graphs in bounded conditions for prices and find the approximate optimal point.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Retail e-commerce sales worldwide from 2014 to 2024 (in billion U.S. dollars). https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/. Accessed 6 Apr 2021

  2. Pavithra, H., Subramanian, S., Ettl, M.: A practical price optimization approach for omnichannel retailing. INFORMS J. Optim. 13 (2019)

    Google Scholar 

  3. Yuqing, J., Liu, L., Lim, A.: Optimal pricing decisions for an omni-channel supply chain with retail service. Int. Trans. Oper. Res. 27(6), 2927–2948 (2020)

    Article  MathSciNet  Google Scholar 

  4. Yang, C., Cheung, C., Tan, C.: Omnichannel business research: opportunities and challenges. Decis. Support Syst. 109, 1–4 (2018)

    Article  Google Scholar 

  5. Whitin, T.M.: Inventory control and price theory. Manag. Sci. 2(1), 61–68 (1955)

    Article  MathSciNet  Google Scholar 

  6. Mills, E.S.: Uncertainty and price theory. Q. J. Econ. 73(1), 116–130 (1959)

    Article  Google Scholar 

  7. Karlin, S., Carr, C.R.: Prices and optimal inventory policy. Stud. Appl. Probab. Manag. Sci. 4, 159–172 (1962)

    MathSciNet  MATH  Google Scholar 

  8. Young, L.: Price, inventory and the structure of uncertain demand. New Zealand Oper. Res. 6(2), 157–177 (1978)

    MathSciNet  Google Scholar 

  9. Petruzzi, N.C., Dada, M.: Pricing and the newsvendor problem: a review with extensions. Oper. Res. 47(2), 183–194 (1999)

    Article  Google Scholar 

  10. Aydin, G., Porteus, E.L.: Joint inventory and pricing decisions for an assortment. Oper. Res. 56(5), 1247–1255 (2008)

    Article  MathSciNet  Google Scholar 

  11. Kocabiyikoglu, A., Popescu, I.: An elasticity approach to the newsvendor with price-sensitive demand. Oper. Res. 59(2), 301–312 (2011)

    Article  MathSciNet  Google Scholar 

  12. Xu, M., Chen, Y., Xu, X.: The effect of demand uncertainty in a price-setting newsvendor model. Eur. J. Oper. Res. 207(2), 946–957 (2010)

    Article  MathSciNet  Google Scholar 

  13. Kyparisis, G.J., Koulamas, C.: The price-setting newsvendor problem with nonnegative linear additive demand. Eur. J. Oper. Res. 269(2), 695–698 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Appendix I

Proof

The expected profit within the channel i is:

$$\begin{aligned} \varPi _i(Q_i, r_i) = (r_i-s_i)G_i(r)E[\xi ] - (c_i - s_i)Q_i - (r_i-s_i)G_i(r)\int _{\frac{Q_i}{G_i(r)}}^\infty \left( x - \frac{Q_i}{G_i(r)}\right) f_{\xi }(x)dx. \end{aligned}$$

To find the order quantity \(Q_i^*\) that maximizes the expected profit associated to the channel i within a given prices \(r_i\), we compute the derivative of \(\varPi _i(Q_i, r_i)\):

$$\begin{aligned} \frac{\partial \varPi _i(Q_i, r_i)}{\partial Q_i}= & {} - (c_i - s_i) + (r_i-s_i)G_i(r) \frac{1}{G_i(r)} \int _{\frac{Q_i}{G_i(r)}}^\infty f_{\xi }(x)dx \\= & {} - (c_i - s_i) + (r_i-s_i) \left( 1-F_{\xi }\left( \frac{Q_i}{G_i(r)}\right) \right) \\= & {} (r_i-c_i) - (r_i-s_i) F_{\xi }\left( \frac{Q_i}{G_i(r)}\right) . \end{aligned}$$

In addition, the second derivative is negative:

$$\begin{aligned} \frac{\partial ^2 \varPi _i(Q_i, r_i)}{\partial Q_i^2}= & {} - (r_i-s_i) \frac{\partial F_{\xi }\left( \frac{Q_i}{G_i(r)}\right) }{\partial Q_i}\\= & {} - (r_i-s_i)\frac{1}{G_i(r)} f_{\xi }\left( \frac{Q_i}{G_i(r)}\right) < 0. \end{aligned}$$

The function \(\varPi _i(Q_i, r_i)\) is therefore concave and is minimal if and only if:

$$\begin{aligned} \frac{\partial \varPi _i(Q_i, r_i)}{\partial Q_i} = 0 \Leftrightarrow (r_i-c_i) - (r_i-s_i) F_{\xi }\left( \frac{Q_i}{G_i(r)}\right) =0 \Leftrightarrow F_{\xi }\left( \frac{Q_i^*(r)}{G_i(r)}\right) = \frac{r_i-c_i}{r_i-s_i}. \end{aligned}$$

This proves the Eq. 7.

1.2 Appendix II

Proof

The induced profit function for the channel i:

$$\begin{aligned} \varPi _i(Q_i^*,r) =&(r_i-s_i)G_i(r)E[\xi ] - (c_i - s_i)Q_i^*(r) - (r_i-s_i)G_i(r)\int _{\frac{Q_i^*(r)}{G_i(r)}}^\infty \left( x - \frac{Q_i^*(r)}{G_i(r)}\right) f_{\xi }(x)dx \\ =&(r_i-s_i)G_i(r)E[\xi ] - (c_i - s_i)Q_i^*(r) \\&- (r_i-s_i)G_i(r) \left( E[\xi ] - \int _{-\infty }^{\frac{Q_i^*(r)}{G_i(r)}} xf_{\xi }(x)dx - \frac{Q_i^*(r)}{G_i(r)} \left( 1-F_{\xi }\left( \frac{Q_i^*(r)}{G_i(r)}\right) \right) \right) \\ =&- (c_i - s_i)Q_i^*(r) + (r_i-s_i)G_i(r) \int _{-\infty }^{\frac{Q_i^*(r)}{G_i(r)}} xf_{\xi }(x)dx + (r_i-s_i)Q_i^*(r) \\&- (r_i-s_i)Q_i^*(r) F_{\xi }\left( \frac{Q_i^*(r)}{G_i(r)}\right) \\ =&(r_i - c_i)Q_i^*(r) + (r_i-s_i)G_i(r) \int _{-\infty }^{\frac{Q_i^*(r)}{G_i(r)}} xf_{\xi }(x)dx - (r_i-s_i)Q_i^*(r) \frac{r_i - c_i}{r_i-s_i}\\ =&(r_i-s_i)G_i(r)\int _{-\infty }^{\frac{Q_i^*(r)}{G_i(r)}} xf_{\xi }(x)dx. \end{aligned}$$

Since \(\varPi (Q^*,r) = \sum _i\varPi _i(Q^*_i,r)\), the Eq. 8 holds.

1.3 Appendix III

Proof

For each index i, we have

$$\begin{aligned} \int _{\frac{\hat{Q}_i}{G_i(r)}}^\infty \left( x - \frac{\hat{Q}_i}{G_i(r)}\right) f_{\xi }(x)dx= & {} \int _{\frac{\hat{Q}_i}{G_i(r)}}^\infty xf_{\xi }(x)dx - \frac{\hat{Q}_i}{G_i(r)} \int _{\frac{\hat{Q}_i}{G_i(r)}}^\infty f_{\xi }(x)dx \\= & {} E[\xi ] - \int _{-\infty }^{\frac{\hat{Q}_i}{G_i(r)}} xf_{\xi }(x)dx - \frac{\hat{Q}_i}{G_i(r)} \left( 1-\int _{-\infty }^{\frac{\hat{Q}_i}{G_i(r)}} f_{\xi }(x)dx\right) \\= & {} E[\xi ] - \int _{-\infty }^{\frac{\hat{Q}_i}{G_i(r)}} xf_{\xi }(x)dx - \frac{\hat{Q}_i}{G_i(r)} \left( 1-F_{\xi }\left( \frac{\hat{Q}_i}{G_i(r)}\right) \right) . \end{aligned}$$

Thus

$$\begin{aligned} \varPi _i(\hat{Q}_i,r) =&(r_i-s_i)G_i(r)E[\xi ] - (c_i - s_i)\hat{Q}_i - (r_i-s_i)G_i(r)\int _{\frac{\hat{Q}_i}{G_i(r)}}^\infty \left( x - \frac{\hat{Q}_i}{G_i(r)}\right) f_{\xi }(x)dx \\ =&(r_i-s_i)G_i(r)E[\xi ] - (c_i - s_i)\hat{Q}_i \\&- (r_i-s_i)G_i(r) \left( E[\xi ] - \int _{-\infty }^{\frac{\hat{Q}_i}{G_i(r)}} xf_{\xi }(x)dx - \frac{\hat{Q}_i}{G_i(r)} \left( 1-F_{\xi }\left( \frac{\hat{Q}_i}{G_i(r)}\right) \right) \right) \\ =&- (c_i - s_i)\hat{Q}_i + (r_i-s_i)G_i(r) \int _{-\infty }^{\frac{\hat{Q}_i}{G_i(r)}} xf_{\xi }(x)dx + (r_i-s_i)\hat{Q}_i - (r_i-s_i)\hat{Q}_i F_{\xi }\left( \frac{\hat{Q}_i}{G_i(r)}\right) \\ =&(r_i - c_i)\hat{Q}_i - (r_i-s_i)CSL_i\hat{Q}_i + (r_i-s_i)G_i(r) \int _{-\infty }^{\frac{\hat{Q}_i}{G_i(r)}} xf_{\xi }(x)dx. \end{aligned}$$

Since \(\varPi (\hat{Q},r) = \sum _i\varPi _i(\hat{Q}_i,r)\), the Eq. 12 is proved.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tran, M.T., Rekik, Y., Hadj-Hamou, K. (2021). Pricing Decisions for an Omnichannel Retailing Under Service Level Considerations. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. APMS 2021. IFIP Advances in Information and Communication Technology, vol 632. Springer, Cham. https://doi.org/10.1007/978-3-030-85906-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85906-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85905-3

  • Online ISBN: 978-3-030-85906-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics