Skip to main content

Insights into the Regulation of Implantation and Placentation in Humans, Rodents, Sheep, and Pigs

  • Chapter
  • First Online:
Recent Advances in Animal Nutrition and Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1354))

Abstract

Precise cell-specific spatio-temporal molecular signaling cascades regulate the establishment and maintenance of pregnancy. Importantly, the mechanisms regulating uterine receptivity, conceptus apposition and adhesion to the uterine luminal epithelia/superficial glandular epithelia and, in some species, invasion into the endometrial stroma and decidualization of stromal cells, are critical prerequisite events for placentation which is essential for the appropriate regulation of feto-placental growth for the remainder of pregnancy. Dysregulation of these signaling cascades during this critical stage of pregnancy can lead to pregnancy loss, impaired growth and development of the conceptus, and alterations in the transplacental exchange of gasses and nutrients. While many of these processes are conserved across species, significant variations in the molecular mechanisms governing maternal recognition of pregnancy, conceptus implantation, and placentation exist. This review addresses the complexity of key mechanisms that are critical for the establishment and maintenance of a successful pregnancy in humans, rodents, sheep, and pigs. Improving understanding of the molecular mechanisms governing these processes is critical to enhancing the fertility and reproductive health of humans and livestock species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AKR1C1:

Aldo-keto reductase family 1 member C1

BH4:

Tetrahydrobiopterin

CE:

Chorionic epithelium

CGB:

Chorionic gonadotrophin beta

CL:

Corpus luteum

CST3:

Cystatin C

CTB:

Cytotrophoblasts

CTSL:

Cathepsin L

CYPs:

Cytochrome P450 mixed-function oxidases

E2:

Estradiol

ECM:

Extracellular Matrix

ESR1:

Estradiol receptor

eEVT:

Endovascular extravillous trophoblast

EVT:

Extravillous trophoblast

FGF:

Fibroblast growth factor

FGFR:

Fibroblast growth factor receptor

GCH1:

GTP cyclohydrolase 1

GE:

Glandular epithelium

GLYCAM1:

Glycosylation dependent cell adhesion molecule 1

GNRH:

Gonadotropin-releasing hormone

GNRHR:

Gonadotropin-releasing hormone receptor

HBEGF:

Heparin-binding epidermal growth factor

HGF:

Hepatocyte growth factor

HIF2A:

Hypoxia inducible factor 2 α

HLA:

Human leukocyte antigen

ICM:

Inner cell mass

iEVT:

Interstitial extravillous trophoblast

IFND:

Interferon delta

IFNG:

Interferon gamma

IFNT:

Interferon tau

IL1B:

Interleukin-1 beta

IRF:

Interferon regulatory factor

ISG:

Interferon stimulated gene

LE:

Luminal epithelium

LGALS15:

Galectin 15

LH:

Luteinizing hormone

LHCGR:

Luteinizing hormone/choriogonadotropin receptor

MAPK:

Mitogen activated protein kinases

MMP:

Matrix metalloproteinases

MTORC:

Mechanistic target of rapamycin

MUC1:

Mucin 1

OXT:

Oxytocin

OXTR:

Oxytocin receptor

P4:

Progesterone

PA1:

Plasminogen activator inhibitor

PGF:

Prostaglandin F2α

PGFM:

Prostaglandin F2α metabolite

PGR:

Progesterone receptor

PI3K:

Phosphoinositide-3 kinase

PRL:

Prolactin

PTGFR:

Prostaglandin F2α receptor

PTGS2:

Prostaglandin synthase 2

sGE:

Superficial glandular epithelium

SLC:

Solute carrier family

SPP1:

Secreted phosphoprotein 1

STAT1:

Signal transducer and activator of transcription 1

STB:

Syncytiotrophoblast

TGC:

Trophoblast giant cell

TGFB:

Transforming growth factor beta

TIMPs:

Tissue inhibitors of matrix metalloproteins

TPA:

Tissue-type plasminogen activator

UF:

Uteroferrin

UPA:

Urokinase-type plasminogen activator

WNT:

Wingless-related integration site

20α-OHP:

20α-Hydroxyprogesterone

20αHSD:

20α-Hydroxysteroid dehydrogenase

References

  • Amoroso E (1952) Placentation. In: Parkes A (ed) Marshall’s physiology of reproduction. Little Brown & Co, Boston, MA, USA, pp 127–311

    Google Scholar 

  • Aplin JD, Ruane PT (2017) Embryo—epithelium interactions during implantation at a glance. J Cell Sci 130:15–22

    Article  PubMed  CAS  Google Scholar 

  • Bazer F (1989) Establishment of pregnancy in sheep and pigs. Reprod Fertil Dev 1:237–242

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW (2013) Pregnancy recognition signaling mechanisms in ruminants and pigs. J Anim Sci Biotechnol 4:1–10

    Article  Google Scholar 

  • Bazer FW, Johnson GA (2014) Pig blastocyst-uterine interactions. Differentiation 87:52–65

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Marengo SR, Geisert RD, Thatcher WW (1984) Exocrine versus endocrine secretion of prostaglandin f2a in the control of pregnancy in swine. Anim Reprod Sci 7:115–132

    Article  CAS  Google Scholar 

  • Bazer FW, Worthington-White D, Fliss MFV, Gross S (1991) Uteroferrin: a progesterone-induced hematopoietic growth factor of uterine origin. Exp Hematol 19:910–915

    PubMed  CAS  Google Scholar 

  • Bazer FW, Ott TL, Spencer TE (1994) Pregnancy recognition in ruminants, pigs and horses: signals from the trophoblast. Theriogenology 41:79–94

    Article  Google Scholar 

  • Bazer FW, Burghardt RC, Johnson GA, Spencer TE, Wu G (2008) Interferons and progesterone for establishment and maintenance of pregnancy: interactions among novel cell signaling pathways. Reprod Biol 8:179–211

    Article  PubMed  Google Scholar 

  • Bazer FW, Spencer TE, Johnson GA (2009) Interferons and uterine receptivity. Semin Reprod Med 27:90–102

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Wu G, Johnson GA, Kim J, Song G (2011) Uterine histotroph and conceptus development: Select nutrients and secreted phosphoprotein 1 affect mechanistic target of rapamycin cell signaling in ewes. Biol Reprod 85:1094–1107

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Spencer TE, Thatcher WW (2012) Growth and development of the ovine conceptus. J Anim Sci 90:159–170

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Wang X, Johnson GA, Wu G (2015a) Select nutrients and their effects on conceptus development in mammals. Anim Nutr 1:85–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Bazer FW, Ying W, Wang X, Dunlap KA, Zhou B, Johnson GA (2015b) The many faces of interferon tau. Amino Acids 47:449–460

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Burghardt RC, Johnson GA, Spencer TE, Wu G (2018) Mechanisms for the establishment and maintenance of pregnancy: Synergies from scientific collaborations. Biol Reprod 99:225–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Beall MH, Wang S, Yang B, Chaudhri N, Amidi F, Ross MG (2007) Placental and membrane aquaporin water channels: correlation with amniotic fluid volume and composition. Placenta 28:421–428

    Article  PubMed  CAS  Google Scholar 

  • Bonduelle ML, Dodd R, Liebaers I, Van Steirteghem A, Williamson R, Akhurst R (1988) Chorionic gonadotrophin-β mRNA, a trophoblast marker, is expressed in human 8-cell embryos derived from tripronucleate zygotes. Hum Reprod 3:909–914

    Article  PubMed  CAS  Google Scholar 

  • Carson DD, Bagchi I, Dey SK, Enders AC, Fazleabas AT, Lessey BA, Yoshinaga K (2000) Embryo implantation. Dev Biol 223:217–237

    Article  PubMed  CAS  Google Scholar 

  • Chan HC, Ruan YC, He Q, Chen MH, Chen H, Xu WM, Chen WY, Xie C, Zhang XH, Zhou Z (2009) The cystic fibrosis transmembrane conductance regulator in reproductive health and disease. J Physiol 587:2187–2195

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Spencer TE, Bazer FW (2000) Fibroblast growth factor-10: a stromal mediator of epithelial function in the ovine uterus. Biol Reprod 63:959–966

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Spencer TE, Bazer FW (2000) Expression of hepatocyte growth factor and its receptor c-met in the ovine uterus. Biol Reprod 62:1844–1850

    Article  PubMed  CAS  Google Scholar 

  • Choi Y, Johnson GA, Burghardt RC, Berghman LR, Joyce MM, Taylor KM, Stewart MD, Bazer FW, Spencer TE (2001) Interferon regulatory factor-two restricts expression of interferon-stimulated genes to the endometrial Stroma and glandular epithelium of the ovine uterus. Biol Reprod 65:1038–1049

    Article  PubMed  CAS  Google Scholar 

  • Cockburn K, Rossant J (2010) Making the blastocyst: lessons from the mouse. J Clin Invest 120:995–1003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dantzer V, Leiser R (1994) Initial vascularisation in the pig placenta: I. Demonstration of nonglandular areas by histology and corrosion cases. Anat Rec 238:177–190

    Article  PubMed  CAS  Google Scholar 

  • De Oliveira V, Schaefer J, Abu-Rafea B, Vilos GA, Vilos AG, Bhattacharya M, Radovick S, Babwah AV (2020) Uterine aquaporin expression is dynamically regulated by estradiol and progesterone and ovarian stimulation disrupts embryo implantation without affecting luminal closure. Mol Hum Reprod 26:154–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Fazleabas AT, Kim JJ, Strakova Z (2004) Implantation: embryonic signals and the modulation of the uterine environment—a review. Placenta 25:S26–S31

    Google Scholar 

  • Fleming JGW, Spencer TE, Safe SH, Bazer FW (2006) Estrogen regulates transcription of the ovine oxytocin receptor gene through GC-rich SP1 promoter elements. Endocrinology 147:899–911

    Article  PubMed  CAS  Google Scholar 

  • Freeman ME, Smith MS, Nazian SJ, Neill JD (1974) Ovarian and hypothalamic control of the daily surges of prolactin secretion during Pseudopregnancy in the rat. Endocrinology 94:875–882

    Article  PubMed  CAS  Google Scholar 

  • Friess AE, Sinowatz F, Skolek-Winnisch R, Träutner W (1981) The placenta of the pig II the ultrasound of the areolae. Anat Embryol (berl) 163:43–53

    Article  CAS  Google Scholar 

  • Friess AE, Sionwatz F, Skolek-Winnisch R, Trautner W (1980) The placenta of the Pig I. Finestructural changes of the placental barrier during pregnancy. Anat Embryol (berl) 158:179–191

    Article  CAS  Google Scholar 

  • Furukawa S, Tsuji N, Sugiyama A (2019) Morphology and physiology of rat placenta for toxicological evaluation. J Toxicol Pathol 32:1–17

    Article  PubMed  Google Scholar 

  • Gunnet JW, Freeman ME (1983) The Mating-induced release of prolactin: a unique neuroendocrine response. Endocr Rev 4:44–61

    Article  PubMed  CAS  Google Scholar 

  • Igarashi M, Finch PW, Aaronson SA (1998) Characterization of recombinant human fibroblast growth factor (FGF)-10 reveals functional similarities with keratinocyte growth factor (FGF-7). J Biol Chem 273:13230–13235

    Article  PubMed  CAS  Google Scholar 

  • Johnson GA, Spencer TE, Burghardt RC, Taylor KM, Gray CA, Bazer FW (2000) Progesterone modulation of osteopontin gene expression in the ovine uterus. Biol Reprod 62:1315–1321

    Article  PubMed  CAS  Google Scholar 

  • Johnson GA, Bazer FW, Burghardt RC, Spencer TE, Wu G, Bayless KJ (2009) Conceptus-uterus interactions in pigs: endometrial gene expression in response to estrogens and interferons from conceptuses. Soc Reprod Fertil Suppl 66:321–332

    PubMed  CAS  Google Scholar 

  • Johnson GA, Burghardt RC, Bazer FW (2014) Osteopontin: a leading candidate adhesion molecule for implantation in pigs and sheep. J Anim Sci Biotechnol 5:1–14

    Article  Google Scholar 

  • Johnson GA, Bazer FW, Burghardt RC, Wu G, Seo H, Kramer AC, McLendon BA (2018) Cellular events during ovine implantation and impact for gestation. Anim Reprod 15:843–855

    Article  Google Scholar 

  • Joyce MM, Burghardt JR, Burghardt RC, Hooper RN, Jaeger LA, Spencer TE, Bazer FW, Johnson GA (2007) Pig conceptuses increase uterine interferon-regulatory factor 1 (IRF1), but restrict expression to stroma through estrogen-induced IRF2 in luminal epithelium. Biol Reprod 77:292–302

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Kim J (2017) A review of mechanisms of implantation. Dev Reprod 21:351–359

    Article  PubMed  PubMed Central  Google Scholar 

  • Knight JW, Bazer FW, Thatcher WW, Franke DE, Wallace D (1977) Conceptus development in intact and unilaterally Hysterectomized-Ovariectomized gilts: interrelations among hormonal status, placental development, fetal fluids and fetal growth. J Anim Sci 44:620–637

    Article  PubMed  CAS  Google Scholar 

  • Kramer AC, Steinhauser CB, Gao H, Seo H, Mclendon BA, Burghardt RC, Wu G, Bazer FW, Johnson GA (2020) Steroids regulate SLC2A1 and SLC2A3 to deliver glucose into Trophectoderm for metabolism via glycolysis. Endocrinology 161:1–19

    Article  Google Scholar 

  • Marrable AW (1971) The embryonic pig: a chronological account. Pitman Medical, London

    Google Scholar 

  • Matsumoto H (2017) Molecular and cellular events during blastocyst implantation in the receptive uterus: clues from mouse models. J Reprod Dev 63:445–454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McGowen MR, Erez O, Romero R, Wildman DE (2014) The evolution of embryo implantation. Int J Dev Biol 58:155–161

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer AE, Pfeiffer CA, Brooks KE, Spate LD, Benne JA, Cecil R, Samuel MS, Murphy CN, Behura S, Mclean MK, Ciernia LA, Smith MF, Whitworth KM, Wells KD, Spencer TE, Prather RS, Geisert RD (2019) New perspective on conceptus estrogens in maternal recognition and pregnancy establishment in the pig. Biol Reprod 101:148–161

    Article  PubMed  Google Scholar 

  • Picut CA, Swanson CL, Parker RF, Scully KL, Parker GA (2009) The metrial gland in the rat and its similarities to granular cell tumors. Toxicol Pathol 37:474–480

    Article  PubMed  Google Scholar 

  • Richard C, Gao J, Brown N, Reese J (2003) Aquaporin water channel genes are differentially expressed and regulated by ovarian steroids during the periimplantation period in the mouse. Endocrinology 144:1533–1541

    Article  PubMed  CAS  Google Scholar 

  • Seo H, Bazer FW, Burghardt RC, Johnson GA (2019) Immunohistochemical examination of trophoblast syncytialization during early placentation in sheep. Int J Mol Sci 20:1–13

    Article  Google Scholar 

  • Seo H, Frank JW, Burghardt RC, Bazer FW, Johnson GA (2020a) Integrins and OPN localize to adhesion complexes during placentation in sheep. Reproduction 160:521–532

    Article  PubMed  CAS  Google Scholar 

  • Seo H, Li X, Wu G, Bazer FW, Burghardt RC, Bayless KJ, Johnson GA (2020b) Mechanotransduction drives morphogenesis to develop folding during placental development in pigs. Placenta 90:62–70

    Article  PubMed  CAS  Google Scholar 

  • Soares MJ (2004) The prolactin and growth hormone families: pregnancy-specific hormones/cytokines at the maternal-fetal interface. Reprod Biol Endocrinol 2:1–15

    Article  Google Scholar 

  • Soares MJ, Alam SMK, Konno T, Ho-chen JK, Ain R (2006) The prolactin family and pregnancy-dependent adaptations. Anim Sci J 77:1–9

    Article  CAS  Google Scholar 

  • Soares MJ, Konno T, Alam SMK (2007) The prolactin family: effectors of pregnancy-dependent adaptations. Trends Endocrinol Metab 18:114–121

    Article  PubMed  CAS  Google Scholar 

  • Soares MJ, Varberg KM, Iqbal K (2018) Hemochorial placentation: development, function, and adaptations. Biol Reprod 99:196–211

    Article  PubMed  PubMed Central  Google Scholar 

  • Spencer TE, Bazer FW (2004) Conceptus signals for establishing and maintenance of pregnancy. Reprod Biol Endocrinol 2:1–15

    Article  CAS  Google Scholar 

  • Spencer TE, Johnson GA, Bazer FW, Burghardt RC (2004) Focus on Implantation Implantation mechanisms: insights from the sheep. Reproduction 128:657–668

    Article  PubMed  CAS  Google Scholar 

  • Srisuparp S, Strakova Z, Fazleabas AT (2001) The role of chorionic gonadotropin (CG) in blastocyst implantation. Arch Med Res 32:627–634

    Article  PubMed  CAS  Google Scholar 

  • Stouffer RL (1988) Perspectives on the corpus luteum of the menstrual cycle and early pregnancy. Semin Reprod Endocrinol 6:103–113

    Article  Google Scholar 

  • Stouffer RL, Bishop CV, Bogan RL, Xu F, Hennebold JD (2014) Endocrine and local control of the primate corpus Luteum. Reprod Biol 13:259–271

    Article  Google Scholar 

  • Stouffer RL, Hearn JP (1998) Endocrinology of the transition from menstrual cyclicity to establishment of pregnancy in primates. In: Bazer FW (ed) Endocrinology of Pregnancy. Humana Press

    Google Scholar 

  • Strickland S, Reich E, Sherman MI (1976) Plasminogen activator in early embryogenesis: enzyme production by trophoblast and parietal endoderm. Cell 9:231–240

    Google Scholar 

  • Su R-W, Fazleabas AT (2015) Implantation and establishment of pregnancy in human and nonhuman primates. Adv Anatomy, Embryol Cell Biol 216:189–213

    Article  Google Scholar 

  • Syrkasheva AG, Dolgushina NV, Romanov AY, Burmenskaya OV, Makarova NP, Ibragimova EO, Kalinina EA, Sukhikh GT (2017) Cell and genetic predictors of human blastocyst hatching success in assisted reproduction. Zygote 25:631–636

    Article  PubMed  CAS  Google Scholar 

  • Thatcher W, Meyer MD, Danet-Desnoyers G (1995) Maternal recognition of pregnancy. J Reprod Fertil Suppl 49:15–28

    PubMed  CAS  Google Scholar 

  • Turco MY, Moffett A (2019) Development of the Human Placenta. Development 146:1–14

    Google Scholar 

  • Vallet JL, Freking BA (2007) Differences in placental structure during gestation associated with large and small pig fetuses. J Anim Sci 85:3267–3275

    Article  PubMed  CAS  Google Scholar 

  • Wassarman PM (1988) Zona Pellucida Glycoproteins. Annu Rev Biochem 57:415–442

    Article  PubMed  CAS  Google Scholar 

  • Wassarman PM, Litscher ES (2008) Mammalian fertilization: the egg’s multifunctional zona pellucida. Int J Dev Biol 52:665–676

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2022) Nutrition and metabolism: Foundations for animal growth, development, reproduction, and health. Adv Exp Med Biol 1354:1-24

    Google Scholar 

  • Ying W, Wang H, Bazer FW, Zhou B (2014) Pregnancy-secreted acid phosphatase, uteroferrin, enhances fetal erythropoiesis. Endocrinology 155:4521–4530

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Conflicts of Interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuller W. Bazer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stenhouse, C., Seo, H., Wu, G., Johnson, G.A., Bazer, F.W. (2022). Insights into the Regulation of Implantation and Placentation in Humans, Rodents, Sheep, and Pigs. In: Wu, G. (eds) Recent Advances in Animal Nutrition and Metabolism. Advances in Experimental Medicine and Biology, vol 1354. Springer, Cham. https://doi.org/10.1007/978-3-030-85686-1_2

Download citation

Publish with us

Policies and ethics