Skip to main content

Biomechanical Overloading Factors Influencing the Failure of Dental Implants: A Review

  • Conference paper
  • First Online:
Structural Integrity Cases in Mechanical and Civil Engineering (SDMMS 2020)

Part of the book series: Structural Integrity ((STIN,volume 23))

Included in the following conference series:

  • 351 Accesses

Abstract

The increasing popularity of dental implants has led to an increase in the number of late implant failures. Although the failure of dental implants is rare, it produces a challenging clinical situation. Thus, the scope of causes that is detrimental to dental implants and peri-implant tissues is important to be explored. Inadequate forces resulting from occlusion may cause complications that leading to implant failure. It is found that the mechanical-related contributing factors (biomechanical overloading) significantly affect the implant persistence as compared to the biological factors. The present review, therefore, emphasises the causes of the overloaded dental implants and technical complications in clinical scenarios. A comprehensive search was performed via ScienceDirect, Scopus and PubMed databases using the related keywords. The literature indicates various factors could trigger biomechanical overloading and promote the occurrence of implant failures: parafunctional habits, implant diameter, length, thread shape and material and implant-abutment connection. The relationship between these factors and implant longevity is still controversial, with further randomised clinical trials and advanced quantitative assessments are required to help elucidate this issue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kunjappu J, Mathew V, Abdul Kader M, Kuruniyan M, Mohamed Ali A, Shamsuddin S (2019) Fracture of dental implants: an overview. Int J Prev Clin Dent Res 6(1):21–23

    Article  Google Scholar 

  2. Marcelo CG, Filié Haddad M, Gennari Filho H, Marcelo Ribeiro Villa L, Dos Santos DM, Aldiéris AP (2014) Dental implant fractures-aetiology, treatment and case report. J Clin Diagn Res 8(3):300–304

    Google Scholar 

  3. Stoichkov B, Kirov D (2018) Analysis of the causes of dental implant fracture: a retrospective clinical study. Quintessence Int 49(4):279–286

    Google Scholar 

  4. Chrcanovic BR, Kisch J, Albrektsson T, Wennerberg A (2018) Factors influencing the fracture of dental implants. Clin Implant Dent Relat Res 20(1):58–67

    Article  Google Scholar 

  5. Gargallo Albiol J, Satorres-Nieto M, Puyuelo Capablo JL, Sanchez Garces MA, Pi Urgell J, Gay Escoda C (2008) Endosseous dental implant fractures: an analysis of 21 cases. Med Oral Patol Oral Cir Bucal 13(2):E124–E128

    Google Scholar 

  6. Ali B, Ould Chikh EB, Meddah HM, Merdji A, Bachir Bouiadjra BA (2013) Effects of overloading in mastication on the mechanical behaviour of dental implants. Mater Des 47:210–217

    Google Scholar 

  7. Lian ZQ, Guan H, Loo YC (2011) Optimum degree of bone-implant contact in bone remodelling induced by dental implant. Proc Eng 14:2972–2979

    Google Scholar 

  8. Yousef A, Hadeel A (2019) Occlusal considerations in dental implantology. EC Dent Sci 18(8):1872–1883

    Google Scholar 

  9. Chrcanovic BR, Kisch J, Albrektsson T, Wennerberg A (2016) Bruxism and dental implant failures: a multilevel mixed effects parametric survival analysis approach. J Oral Rehabil 43(11):813–823

    Article  Google Scholar 

  10. Chrcanovic BR, Kisch J, Albrektsson T, Wennerberg A (2017) Bruxism and dental implant treatment complications: a retrospective comparative study of 98 bruxer patients and a matched group. Clin Oral Implant Res 28(7):e1–e9

    Article  Google Scholar 

  11. Quirynen M, Naert I, Van Steenberghe D (1992) Fixture design and overload influence marginal bone loss and future success in the Brånemark® system. Clin Oral Implant Res 3(3):104–111

    Article  Google Scholar 

  12. Rangert B, Krogh PH, Langer B, Van Roekel N (1995) Bending overload and implant fracture: a retrospective clinical analysis. Int J Oral Maxillofac Implants 10(3):326–334

    Google Scholar 

  13. Mangano FG, Shibli JA, Sammons RL, Iaculli F, Piattelli A, Mangano C (2014) Short (8-mm) locking-taper implants supporting single crowns in posterior region: a prospective clinical study with 1-to 10-years of follow-up. Clin Oral Implant Res 25(8):933–940

    Article  Google Scholar 

  14. Chitumalla R, Halini Kumari K, Mohapatra A, Parihar A, Anand K, Katragadda P (2018) Assessment of survival rate of dental implants in patients with bruxism: A 5-year retrospective study 9(6):278–282

    Google Scholar 

  15. Pommer B, Bucur L, Zauza K, Tepper G, Hof M, Watzek G (2014) Meta-analysis of oral implant fracture incidence and related determinants. J Oral Implantol 2014

    Google Scholar 

  16. Glauser R, Ree A, Lundgren A, Gottlow J, Hammerle CHR, Scharer P (2001) Immediate occlusal loading of brånemark implants applied in various jawbone regions: a prospective, 1-year clinical study. 3(4):204–213

    Google Scholar 

  17. Kilic E, Doganay O (2020) Evaluation of stress in tilted implant concept with variable diameters in the atrophic mandible: three-dimensional finite element analysis. J Oral Implantol 46(1):19–26

    Article  Google Scholar 

  18. Valera-Jiménez JF, Burgueño-Barris G, Gómez-González S, López-López J, Valmaseda-Castellón E, Fernández-Aguado E (2020) Finite element analysis of narrow dental implants. Dent Mater 36(7):927–935

    Article  Google Scholar 

  19. Cicciù M, Cervino G, Milone D, Risitano G (2018) FEM investigation of the stress distribution over mandibular bone due to screwed overdenture positioned on dental implants. Materials (Basel, Switzerland) 11(9):1512

    Article  Google Scholar 

  20. Duyck J, Ronold HJ, Van Oosterwyck H, Naert I, Vander Sloten J, Ellingsen JE (2001) The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clin Oral Implants Res 12(3):207–218

    Article  Google Scholar 

  21. Naert I, Quirynen M, Steenberghe DV, Darius P (1992) A study of 589 consecutive implants supporting complete fixed prostheses. Part II: prosthetic aspects. J Prosthet Dent 68(6):949–956

    Google Scholar 

  22. Shackleton JL, Carr L, Slabbert JCG, Becker PJ (1994) Survival of fixed implant-supported prostheses related to cantilever lengths. J Prosthet Dent 71(1):23–26

    Article  Google Scholar 

  23. Romanos GE, Gupta B, Gaertner K, Nentwig GH (2014) Distal cantilever in full-arch prostheses and immediate loading: a retrospective clinical study. Int J Oral Maxillofac Implants 29(2):427–431

    Article  Google Scholar 

  24. Romeo E, Tomasi C, Finini I, Casentini P, Lops D (2009) Implant-supported fixed cantilever prosthesis in partially edentulous jaws: a cohort prospective study 20(11):1278–1285

    Google Scholar 

  25. Sadowsky SJ (2019) Occlusal overload with dental implants: a review. Int J Implant Dent 5(1):29–29

    Article  Google Scholar 

  26. Romeo E, Storelli S (2012) Systematic review of the survival rate and the biological, technical, and aesthetic complications of fixed dental prostheses with cantilevers on implants reported in longitudinal studies with a mean of 5 years follow-up. 23(s6):39–49

    Google Scholar 

  27. Freitas da Silva EV, Dos Santos DM, Sonego MV, de Luna Gomes JM, Pellizzer EP, Goiato MC (2018) Does the presence of a cantilever influence the survival and success of partial implant-supported dental prostheses? Systematic review and meta-analysis. Int J Oral Maxillofac Implants 33(4):815–823

    Google Scholar 

  28. Storelli S, Del Fabbro M, Scanferla M, Palandrani G, Romeo E (2018) Implant-supported cantilevered fixed dental rehabilitations in fully edentulous patients: Systematic review of the literature. Part II 29(S18):275–294

    Google Scholar 

  29. Belser UC, Mericske-Stern R, Bernard J-P, Taylor TD (2000) Prosthetic management of the partially dentate patient with fixed implant restorations. Note 11(s1):126–145

    Google Scholar 

  30. Zhang X, Mao J, Zhou Y, Ji F, Chen X (2020) Study on statics and fatigue analysis of dental implants in the descending process of alveolar bone level. Proc Inst Mech Eng H 0954411920926080

    Google Scholar 

  31. Vidyasagar L, Apse P (2003) Biological response to dental implant loading/overloading. Implant overloading: Empiricism or science. Stomatologija 5

    Google Scholar 

  32. O’Mahony A, Bowles Q, Woolsey G, Robinson SJ, Spencer P (2000) Stress distribution in the single-unit osseointegrated dental implant: finite element analyses of axial and off-axial loading. Implant Dent 9(3):207–218

    Article  Google Scholar 

  33. Holmes DC, Loftus JT (1997) Influence of bone quality on stress distribution for endosseous implants. J Oral Implantol 23(3):104–111

    Google Scholar 

  34. Gupta S, Gupta H, Tandan A (2015) Technical complications of implant-causes and management: a comprehensive review. Natl J Maxillofac Surg 6(1):3–8

    Article  Google Scholar 

  35. Schwarz MS (2000) Mechanical complications of dental implants. 11(s10:156–158

    Google Scholar 

  36. Hernandez-Rodriguez MAL, Contreras-Hernandez GR, Juarez-Hernandez A, Beltran-Ramirez B, Garcia-Sanchez E (2015) Failure analysis in a dental implant. Eng Fail Anal 57:236–242

    Google Scholar 

  37. Farawati FA, Nakaparksin P (2019) What is the optimal material for implant prosthesis? Dent Clin North Am 63(3):515–530

    Article  Google Scholar 

  38. Shetty M, Shetty NHG, Jaiman R (2014) Implant abutment connection: biomechanical perspectives. Nitte Univ J Health Sci 4(2)

    Google Scholar 

  39. Kitagawa T, Tanimoto Y, Iida T, Murakami H (2020) Effects of material and coefficient of friction on taper joint dental implants. J. Prosthodont Res

    Google Scholar 

  40. Scholander S (1999) A retrospective evaluation of 259 single-tooth replacements by the use of Branemark implants. Int J Prosthodont 12(6):483–491

    Google Scholar 

  41. Al Jabbari YS, Fournelle R, Ziebert G, Toth J, Iacopino AM (2008) Mechanical behavior and failure analysis of prosthetic retaining screws after long-term use in vivo. Part 1: characterization of adhesive wear and structure of retaining screws 17(3):168–180

    Google Scholar 

  42. Najeeb S, Mali M, Yaqin SAU, Zafar MS, Khurshid Z, Alwadaani A, Matinlinna JP (2019) 21-Dental implants materials and surface treatments. Woodhead Publishing

    Google Scholar 

  43. Tretto PHW, dos Santos MBF, Spazzin AO, Pereira GKR, Bacchi A (2020) Assessment of stress/strain in dental implants and abutments of alternative materials compared to conventional titanium alloy-3D non-linear finite element analysis. Comput Methods Biomech Biomed Engin 23(8):372–383

    Article  Google Scholar 

  44. Huang YS, McGowan T, Lee R, Ivanovski S (2017) 7.23 Dental implants: biomaterial properties influencing osseointegration. Elsevier, Oxford

    Google Scholar 

  45. Robau-Porrua A, Pérez-Rodríguez Y, Soris-Rodríguez LM, Pérez-Acosta O, González JE (2020) The effect of diameter, length and elastic modulus of a dental implant on stress and strain levels in peri-implant bone: A 3D finite element analysis. Biomed Mater Eng 30:541–558

    Google Scholar 

  46. Reis TAD, Zancopé K, Karam FK, Neves FDD (2019) Biomechanical behavior of extra-narrow implants after fatigue and pull-out tests. J Prosthet Dent 122(1):54.e1–54.e6

    Google Scholar 

  47. Ogle OE (2015) Implant surface material, design, and osseointegration. Dent Clin North Am 59(2):505–520

    Article  Google Scholar 

  48. Ortega-Oller I, Suárez F, Galindo-Moreno P, Torrecillas-Martínez L, Monje A, Catena A, Wang H-L (2014) The influence of implant diameter on its survival: a meta-analysis based on prospective clinical trials. J Periodontol 85(4):569–580

    Article  Google Scholar 

  49. Al-Johany SS, Al Amri MD, Alsaeed S, Alalola B (2017) Dental implant length and diameter: a proposed classification scheme. J Prosthodont 26(3):252–260

    Article  Google Scholar 

  50. Lee CT, Chen YW, Starr JR, Chuang SK (2016) Survival analysis of wide dental implant: systematic review and meta-analysis. Clin Oral Implants Res 27(10):1251–1264

    Article  Google Scholar 

  51. Graves CV, Harrel SK, Rossmann JA, Kerns D, Gonzalez JA, Kontogiorgos ED, Al-Hashimi I, Abraham C (2016) The role of occlusion in the dental implant and peri-implant condition: a review. Open Dent J 10:594–601

    Google Scholar 

  52. Shin SW, Bryant SR, Zarb GA (2004) A retrospective study on the treatment outcome of wide-bodied implants. Int J Prosthodont 17(1):52–58

    Google Scholar 

  53. Klein MO, Schiegnitz E, Al-Nawas B (2014) Systematic review on success of narrow-diameter dental implants. Int J Oral Maxillofac Implants 29(Suppl):43–54

    Google Scholar 

  54. Zembic A, Johannesen LH, Schou S, Malo P, Reichert T, Farella M, Hammerle CH (2012) Immediately restored one-piece single-tooth implants with reduced diameter: one-year results of a multi-center study. Clin Oral Implants Res 23(1):49–54

    Article  Google Scholar 

  55. Vigolo P, Givani A, Majzoub Z, Cordioli G (2004) Clinical evaluation of small-diameter implants in single-tooth and multiple-implant restorations: a 7-year retrospective study. Int J Oral Maxillofac Implants 19(5):703–709

    Google Scholar 

  56. Saad M, Assaf A, Gerges E (2016) The use of narrow diameter implants in the molar area. Int J Dent 2016(8)

    Google Scholar 

  57. Misch CE (2008) Contemporary implant dentistry. Mosby Elsevier

    Google Scholar 

  58. Misch CE, Strong JT, Bidez MW (2015) Chapter 15-Scientific rationale for dental implant design. Mosby, St. Louis

    Google Scholar 

  59. Demenko V, Linetskiy I, Linetska L, Yefremov O (2019) Load-carrying capacity of short implants in edentulous posterior maxilla: a finite element study. Med Eng Phys

    Google Scholar 

  60. Pirmoradian M, Naeeni HA, Firouzbakht M, Toghraie D, khabaz MK, Darabi R (2020) Finite element analysis and experimental evaluation on stress distribution and sensitivity of dental implants to assess optimum length and thread pitch. Comput Methods Programs Biomed 187:105258

    Google Scholar 

  61. Griffin TJ, Cheung WS (2004) The use of short, wide implants in posterior areas with reduced bone height: a retrospective investigation. J Prosthet Dent 92(2):139–144

    Article  Google Scholar 

  62. Nielsen HB, Schou S, Isidor F, Christensen AE, Starch-Jensen T (2019) Short implants (≤8mm) compared to standard length implants (>8mm) in conjunction with maxillary sinus floor augmentation: a systematic review and meta-analysis. Int J Oral Maxillofac Surg 48(2):239–249

    Article  Google Scholar 

  63. Amine M, Guelzim Y, Benfaida S, Bennani A, Andoh A (2019) Short implants (5–8 mm) vs. long implants in augmented bone and their impact on peri-implant bone in maxilla and/or mandible: systematic review. J Stomatol Oral Maxillofac Surg 120(2):133–142

    Google Scholar 

  64. Jung RE, Al-Nawas B, Araujo M, Avila-Ortiz G, Barter S, Brodala N, Chappuis V, Chen B, De Souza A, Almeida RF, Fickl S, Finelle G, Ganeles J, Gholami H, Hammerle C, Jensen S, Jokstad A, Katsuyama H, Kleinheinz J, Kunavisarut C, Mardas N, Monje A, Papaspyridakos P, Payer M, Schiegnitz E, Smeets R, Stefanini M, ten Bruggenkate C, Vazouras K, Weber H-P, Weingart D, Windisch P (2018) Group 1 ITI consensus report: the influence of implant length and design and medications on clinical and patient-reported outcomes. Clin Oral Implant Res 29(S16):69–77

    Article  Google Scholar 

  65. Malchiodi L, Giacomazzi E, Cucchi A, Ricciotti G, Caricasulo R, Bertossi D, Gherlone E (2019) Relationship between crestal bone levels and crown-to-implant ratio of ultra-short implants with a microrough surface: a prospective study with 48 months of follow-up. J Oral Implantol 45(1):18–28

    Article  Google Scholar 

  66. Meijer HJA, Boven C, Delli K, Raghoebar GM (2018) Is there an effect of crown-to-implant ratio on implant treatment outcomes? A Syst Rev 29(S18):243–252

    Google Scholar 

  67. de Dias FJN, Pecorari VGA, Martins CB, Del Fabbro M, Casati MZ (2019) Short implants versus bone augmentation in combination with standard-length implants in posterior atrophic partially edentulous mandibles: systematic review and meta-analysis with the Bayesian approach. Int J Oral Maxillofac Surg 48(1):90–96

    Google Scholar 

  68. Caricasulo R, Malchiodi L, Ghensi P, Fantozzi G, Cucchi A (2018) The influence of implant-abutment connection to peri-implant bone loss: a systematic review and meta-analysis. Clin Implant Dent Relat Res 20(4):653–664

    Article  Google Scholar 

  69. Pjetursson BE, Tan K, Lang NP, Brägger U, Egger M, Zwahlen M (2004) A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. Clin Oral Implant Res 15(6):625–642

    Article  Google Scholar 

  70. Koutouzis T (2019) Implant-abutment connection as contributing factor to peri-implant diseases. Periodontology 2000 81(1):152–166

    Google Scholar 

  71. Da Silva EF, Pellizzer EP, Quinelli Mazaro JV, Garcia Júnior IR (2010) Influence of the connector and implant design on the implant–tooth-connected prostheses 12(3):254–262

    Google Scholar 

  72. Sasada Y, Cochran DL (2017) Implant-abutment connections: a review of biologic consequences and peri-implantitis implications. Int J Oral Maxillofac Implants 32(6):1296–1307

    Article  Google Scholar 

  73. Maeda Y, Satoh T, Sogo M (2006) In vitro differences of stress concentrations for internal and external hex implant–abutment connections: a short communication 33(1):75–78

    Google Scholar 

  74. Jeng M-D, Lin Y-S, Lin C-L (2020) dBiomechanical evaluation of the effects of implant neck wall thickness and abutment screw size: a 3D nonlinear finite element analysis. Appl Sci 10(10)

    Google Scholar 

  75. Möllersten L, Lockowandt P, Lindén L-Å (1997) Comparison of strength and failure mode of seven implant systems: an in vitro test. J Prosthet Dent 78(6):582–591

    Article  Google Scholar 

  76. Alkan A, Bulut E, Arici S, Sato S (2008) Evaluation of treatments in patients with nocturnal bruxism on bite force and occlusal contact area: a preliminary report. Eur J Dent 2(4):276–282

    Article  Google Scholar 

  77. Haïat G, Wang H-L, Brunski J (2014) Effects of biomechanical properties of the bone-implant interface on dental implant stability: from in silico approaches to the patient’s mouth. Annu Rev Biomed Eng 16(1):187–213

    Article  Google Scholar 

  78. Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH (1998) Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J Biomed Mater Res 43(2):192–203

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support from Fundamental Research Grant Scheme (FRGS) under a grant number of FRGS/1/2020/TK0/UNIMAP/03/2 from the Ministry of Higher Education Malaysia. The authors reported no conflicts of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ikman Ishak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ishak, M.I., Daud, R., Ibrahim, I., Mat, F., Mansor, N.N. (2022). Biomechanical Overloading Factors Influencing the Failure of Dental Implants: A Review. In: Abdullah, S., Karam Singh, S.S., Md Nor, N. (eds) Structural Integrity Cases in Mechanical and Civil Engineering. SDMMS 2020. Structural Integrity, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-85646-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85646-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85645-8

  • Online ISBN: 978-3-030-85646-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics