Skip to main content

Musculoskeletal Health in Menopause

  • Chapter
  • First Online:
Each Woman’s Menopause: An Evidence Based Resource

Abstract

The connection between menopause and musculoskeletal alterations has been studied for many years with new evidence continuing to link estrogen deficiency to significant metabolic bone and muscle changes. What is currently known about the musculoskeletal system’s response to diminishing estrogen levels is that bone can rapidly lose its density and strength, and muscle mass can deteriorate. More subtle musculoskeletal changes commonly reported by menopausal women, including arthralgia and myalgia, have been less studied.

This chapter describes the physiology of musculoskeletal changes surrounding menopause, including the assessment, prevention, and management of the more commonly reported conditions.

Risk factors and the influence of hormones on osteoporosis prevention are reviewed, with attention to the lifestyle and nutritional factors influencing bone, joint, and muscle health. Clinical treatment guidelines for musculoskeletal conditions commonly associated with menopause are presented in the management section of this chapter and include integrative, behavioral, and pharmaceutical therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NIH. Calcium-health professional fact sheet. Bethesda, MD: NIH; 2021. https://www.nih.gov/, https://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/. Accessed 1 Apr 2021.

    Google Scholar 

  2. Straub DA. Calcium supplementation in clinical practice: a review of forms, doses, and indications. Nutr Clin Pract. 2007;22(3):286–96.

    Article  PubMed  Google Scholar 

  3. Andon M, Peacock M, Kanerva RL, De Castro J. Calcium absorption from apple and orange juice fortified with calcium citrate malate (CCM). J Am Coll Nutr. 1996;15(3):13–6.

    Article  Google Scholar 

  4. Mayo Foundation for Medical Education and Research (MFMER). Calcium and calcium supplements: achieving the right balance. Rochester, MN: MFMER; 2020. https://www.mayoclinic.org/healthy-lifestyle/nutrition-and-healthy-eating/in-depth/calcium-supplements/art-20047097. Accessed 5 Dec 2020.

    Google Scholar 

  5. Castiglioni S, Cassaniga A, Albasetti W, Maier J. Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrients. 2013;5:3022–33. https://doi.org/10.3390/nu5083022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. LeBlanc E, Chou R, Zakher B, Daeges M, Pappas M. Screening for vitamin D deficiency: systematic review for the U.S. Preventive Services Task Force Recommendation. Rockville, MD: Agency for Healthcare Research and Quality; 2014a; Report No.: 13-05183-EF-1. PMID: 25521000.

    Google Scholar 

  7. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium, Ross AC, Taylor CL, Yaktine AL, et al. Dietary reference intakes for calcium and vitamin D. Washington, DC: National Academic Press; 2011. https://doi.org/10.17226/13050; Summary. https://www.ncbi.nlm.nih.gov/books/NBK56070/.

    Book  Google Scholar 

  8. Aoun A, Maalouf J, Fahed M, El Jabbour F. When and how to diagnose and treat vitamin D deficiency in adults: a practical and clinical update. J Diet Suppl. 2020;17(3):336–54. https://doi.org/10.1080/19390211.2019.1577935.

    Article  CAS  PubMed  Google Scholar 

  9. LeBlanc ES, Desai M, Perrin N, Wactawski-Wende J, Manson JE, Cauley JA, et al. Vitamin D levels and menopause-related symptoms. Menopause. 2014b;21(11):1197–203.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li G, Mbuagbaw L, Samaan Z, et al. Efficacy of vitamin D supplementation in depression in adults: a systematic review. J Clin Endocrinol Metab. 2013;99:757–67.

    Article  PubMed  Google Scholar 

  11. Cauley J, Greendale G, Ruppert K, Lian Y, Randolph J, Lo J, Burnett-Bowie S, Finkelstein J. Serum 25 hydroxyvitamin D, bone mineral density and fracture risk across the menopause. J Clin Endocrinol Metab. 2015;100(5):2046–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. National Osteoporosis Foundation. Are you at risk? Arlington, VA: National Osteoporosis Foundation; 2021. https://www.nof.org/preventing-fractures/general-facts/bone-basics/are-you-at-risk/. Accessed 10 Dec 2020.

    Google Scholar 

  13. Guyton AC, Hall JE. Chapter 80: Parathyroid hormone, calcitonin, calcium, and phosphate metabolism, vitamin D, bone, and teeth. In: Textbook of medical physiology. 14th ed. Philadelphia, PA: Elsevier; 2021. p. 997.

    Google Scholar 

  14. Clynes MA, Harvey NC, Curtis EM, Fuggle NR, Dennison EM, Cooper C. The epidemiology of osteoporosis. Br Med Bull. 2020a;133(1):105–17. https://doi.org/10.1093/bmb/ldaa005. PMID: 32282039; PMCID: PMC7115830.

    Article  PubMed  Google Scholar 

  15. Sozen T, Özışık L, Başaran N. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4:46–56.

    Article  PubMed  Google Scholar 

  16. U.S. National Library of Medicine. Women’s health initiative. Bethesda, MD: U.S. National Library of Medicine; 2016. https://clinicaltrials.gov/ct2/show/NCT00000611. Accessed 16 Dec 2020.

    Google Scholar 

  17. Harvey NC, McCloskey EV, Mitchell PJ, Dawson-Hughes B, Pierroz DD, Reginster JY, Rizzoli R, Cooper C, Kanis JA. Mind the (treatment) gap: a global perspective on current and future strategies for prevention of fragility fractures. Osteoporos Int. 2017;28(5):1507–29. https://doi.org/10.1007/s00198-016-3894-y. PMID: 28175979; PMCID: PMC5392413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, Dawson-Hughes B. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014;29(11):2520–6. https://doi.org/10.1002/jbmr.2269. PMID: 24771492; PMCID: PMC4757905.

    Article  PubMed  Google Scholar 

  19. Cooper C, Campion G, Melton LJ III. Hip fractures in the elderly: a world-wide projection. Osteoporos Int. 1992;2(6):285–9. https://doi.org/10.1007/BF01623184. PMID: 1421796.

    Article  CAS  PubMed  Google Scholar 

  20. Blain H, Masud T, Dargent-Molina P, Martin FC, Rosendahl E, van der Velde N, Bousquet J, Benetos A, Cooper C, Kanis JA, Reginster JY, Rizzoli R, Cortet B, Barbagallo M, Dreinhöfer KE, Vellas B, Maggi S, Strandberg T, EUGMS Falls and Fracture Interest Group; European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO), Osteoporosis Research and Information Group (GRIO), and International osteoporosis Foundation (IOF). A comprehensive fracture prevention strategy in older adults: the European Union Geriatric Medicine Society (EUGMS) Statement. J Nutr Health Aging. 2016;20(6):647–52. https://doi.org/10.1007/s12603-016-0741-y. PMID: 27273355; PMCID: PMC5094892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, Lindsay R, National Osteoporosis Foundation. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81. https://doi.org/10.1007/s00198-014-2794-2. Erratum in: Osteoporos Int. 2015;26(7):2045-7. PMID: 25182228; PMCID: PMC4176573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Curtis EM, van der Velde R, Moon RJ, van den Bergh JP, Geusens P, de Vries F, van Staa TP, Cooper C, Harvey NC. Epidemiology of fractures in the United Kingdom 1988-2012: variation with age, sex, geography, ethnicity and socioeconomic status. Bone. 2016;87:19–26. https://doi.org/10.1016/j.bone.2016.03.006. PMID: 26968752; PMCID: PMC4890652.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Iffors I, Allander E, Kanis JA, Gullberg B, Johnell O, Dequeker J, Dilsen G, Gennari C, Lopes Vaz AA, Lyritis G, et al. The variable incidence of hip fracture in southern Europe: the MEDOS Study. Osteoporos Int. 1994;4:253–63.

    Article  Google Scholar 

  24. Wahl DA, Cooper C, Ebeling PR, Eggersdorfer M, Hilger J, Hoffmann K, Josse R, Kanis JA, Mithal A, Pierroz DD, Stenmark J, Stöcklin E, Dawson-Hughes B. A global representation of vitamin D status in healthy populations. Arch Osteoporos. 2012;7:155–72. https://doi.org/10.1007/s11657-012-0093-0. PMID: 23225293.

    Article  CAS  PubMed  Google Scholar 

  25. Lewiecki EM, Ortendahl JD, Vanderpuye-Orgle J, Grauer A, Arellano J, Lemay J, Harmon AL, Broder MS, Singer AJ. Healthcare policy changes in osteoporosis can improve outcomes and reduce costs in the United States. JBMR Plus. 2019;3(9):e10192. https://doi.org/10.1002/jbm4.10192. PMID: 31667450; PMCID: PMC6808223.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hansen D, Bazell C, Pelizzari P, Pyenson B. Medicare cost of osteoporotic fractures: the clinical and cost burden of an important consequence of osteoporosis. In: Milliman research report, commissioned by the National Osteoporosis Foundation. Arlington, VA: National Osteoporosis Foundation; 2019.

    Google Scholar 

  27. Ji MX, Yu Q. Primary osteoporosis in postmenopausal women. Chronic Dis Transl Med. 2015;1(1):9–13. https://doi.org/10.1016/j.cdtm.2015.02.006. PMID: 29062981; PMCID: PMC5643776.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Silva MJ. Skeletal aging and osteoporosis: biomechanics and mechanobiology. New York, NY: Springer; 2012.

    Google Scholar 

  29. Greendale GA, Sowers M, Han W, Huang MH, Finkelstein JS, Crandall CJ, Lee JS, Karlamangla AS. Bone mineral density loss in relation to the final menstrual period in a multiethnic cohort: results from the Study of Women’s Health Across the Nation (SWAN). J Bone Miner Res. 2012;27(1):111–8. https://doi.org/10.1002/jbmr.534. PMID: 21976317; PMCID: PMC3378821.

    Article  PubMed  Google Scholar 

  30. National Osteoporosis Foundation. Healthcare professionals toolkit. Arlington, VA: National Osteoporosis Foundation; 2019. p. 6. https://www.bonesource.org/healthcare-professionals-toolkit. Accessed 14 Nov 2020.

    Google Scholar 

  31. International Osteoporosis Foundation. Osteoporosis diagnosis. Nyon: International Osteoporosis Foundation; 2021. https://www.osteoporosis.foundation/health-professionals/diagnosis. Accessed 12 Mar 2021.

    Google Scholar 

  32. World Health Organization. WHO Scientific Group on the assessment of osteoporosis at primary health care level: assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. Geneva: World Health Organization; 2004. https://www.who.int/chp/topics/Osteoporosis.pdf. WHO Technical Report Series, No. 843.

    Google Scholar 

  33. United States Preventive Services Task Force. Osteoporosis to prevent fractures: screening. Recommendation: osteoporosis to prevent fractures: screening. Rockville, MD: United States Preventive Services Taskforce; 2018. https://www.uspreventiveservicestaskforce.org/. Accessed 16 Dec 2020.

    Google Scholar 

  34. Committee on Practice Bulletins-Gynecology, The American College of Obstetricians and Gynecologists. ACOG Practice Bulletin N. 129. Osteoporosis. Obstet Gynecol. 2012;120(3):718–34. https://doi.org/10.1097/AOG.0b013e31826dc446. PMID: 22914492.

    Article  Google Scholar 

  35. Camacho P, Petak S, Binkley N, Diab DL, Eldeiry LS, Farooki A, Harris ST, Hurley DL, Kelly J, Lewiecki EM, Pessah-Pollack R, McClung M, Wimalawansa J, Watts NB. American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis: 2020 Update. Endocr Pract. 2020;26(Suppl 1):1–46.

    Article  PubMed  Google Scholar 

  36. Anderson PA, Morgan SL, Krueger D, Zapalowski C, Tanner B, Jeray KJ, Krohn KD, Lane J, Sim Yeap S, Shuhart CR, Shepherd J. Use of bone health evaluation in orthopedic surgery: 2019 ISCD Official Position. J Clin Densitom. 2019;22(4):517–43. https://doi.org/10.1016/j.jocd.2019.07.013.

    Article  PubMed  Google Scholar 

  37. Clynes MA, Westbury LD, Dennison EM, Kanis JA, Javaid MK, Harvey NC, Fujita M, Cooper C, Leslie WD, Shuhart CR, International Society for Clinical Densitometry (ISCD) and the International Osteoporosis Foundation (IOF). Bone densitometry worldwide: a global survey by the ISCD and IOF. Osteoporos Int. 2020b;31(9):1779–86. https://doi.org/10.1007/s00198-020-05435-8. PMID: 32377806; PMCID: PMC7115939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kanis JA, Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int. 1994;4:368–81. https://doi.org/10.1007/BF01622200.

    Article  CAS  PubMed  Google Scholar 

  39. World Health Organization. WHO scientific group on the assessment of osteoporosis at the primary health care level. Summary Meeting Report Brussels, Belgium, 5–7 May 2004. Geneva: WHO; 2007.

    Google Scholar 

  40. Fitton L, Astroth K, Wilson D. Changing measures to evaluate changing bone. Orthop Nurs. 2015;34(1):12–8.

    Article  PubMed  Google Scholar 

  41. Sirus E, Chen Y, Abbott T, Barrett-Connor E, Miller PD, Wehren LE, Berger ML. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164:1108–12.

    Article  Google Scholar 

  42. Leslie WD, Lix LM. Comparison between various fracture risk assessment tools. Osteoporos Int. 2014;25:1–21. https://doi.org/10.1007/s00198-013-2409-3.

    Article  CAS  PubMed  Google Scholar 

  43. Centre for Metabolic Bone Diseases, University of Sheffield. FRAX fracture risk assessment tool. Sheffield: University of Sheffield; 2008. https://www.sheffield.ac.uk/FRAX/tool.aspx?country=9.

    Google Scholar 

  44. Kanis J, Harvey N, Cooper C, Johansson H, Oden A, McCloskey EV, The Advisory Board of the National Osteoporosis Guideline Group. A systematic review of intervention thresholds based on FRAX. Arch Osteoporos. 2016;11:25. https://doi.org/10.1007/s11657-016-0278-z.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Qaseem A, Forciea M, McLean R, Denberg T. Treatment of low bone density or osteoporosis to prevent fractures in men and women: a clinical practice guideline update from the American College of Physicians. Ann Intern Med. 2017;166(11):818–38.

    Article  PubMed  Google Scholar 

  46. Chodzko-Zajko W, Proctor D, Fiatarone Singh M, Minson C, Nigg C, Salem G, Skinner J. American College of Sports Medicine position stand: exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41:1510–30.

    Article  PubMed  Google Scholar 

  47. Agostini D, Zeppa S, Lucertini F, Annibalini I, Gervasi M, Ferri Marini C, Piccoli G, Stocchi V, Barbieri E, Sestili P. Muscle and bone health in postmenopausal women: role of protein and vitamin D supplementation combined with exercise training. Nutrients. 2018;10:1103. https://doi.org/10.3390/nu10081103.

    Article  CAS  PubMed Central  Google Scholar 

  48. Kemmler W, Shojaal M, Kohl M, von Stengel S. Effects of different types of exercise on bone mineral density in postmenopausal women: a systematic review and meta-analysis. Calcif Tissue Int. 2020;107:409–39. https://doi.org/10.1007/s00223-020-00744-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. National Osteoporosis Foundation. Healthcare professionals toolkit. Arlington, VA: National Osteoporosis Foundation; 2015. https://www.nof.org/. EXERCISES Reprinted from “Exercise for Strong Bones”.

    Google Scholar 

  50. Zhang X, Shu X, Li H, Yang G, Li Q, Gao Q, Zheng W. Prospective cohort study of soy food consumption and risk of bone fracture among postmenopausal women. Arch Intern Med. 2005;165:1890–5.

    Article  PubMed  Google Scholar 

  51. Bacciottini L, Falchetti A, Pampaloni B, Bartolini E, Carossino A, Brandi M. Phytoestrogens: food or drug? Clin Case Miner Bone Metab. 2007;4(2):123–30.

    Google Scholar 

  52. Akhlaghi M, Ghasemi Nasab M, Riasatian M, Sadeghi F. Soy isoflavones prevent bone resorption and loss, a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2020;60(14):2327–41. https://doi.org/10.1080/10408398.2019.1635078. PMID: 31290343.

    Article  CAS  PubMed  Google Scholar 

  53. Tit DM, Bungau S, Iovan C, Nistor Cseppento DC, Endres L, Sava C, Sabau AM, Furau G, Furau C. Effects of the hormone replacement therapy and of soy isoflavones on bone resorption in postmenopause. J Clin Med. 2018;7(10):297. https://doi.org/10.3390/jcm7100297.

    Article  CAS  PubMed Central  Google Scholar 

  54. Aggarwal L, Masuda C. Osteoporosis: a quick update. J Fam Pract. 2018;67(2):59–65.

    PubMed  Google Scholar 

  55. Lu L, Lu L, Zhang J, Li J. Potential risks of rare serious adverse effects related to long-term use of bisphosphonates: an overview of systematic reviews. J Clin Pharm Ther. 2020b;45:45–51. https://doi.org/10.1111/jcpt.13056.

    Article  PubMed  Google Scholar 

  56. Ruggiero SL, Dodson TB, Fantasia J, Goodday R, Aghaloo T, Mehrotra B, O’Ryan F. American Association of Oral and Maxillofacial Surgeons position paper on medication related osteonecrosis of the jaw. 2014 Update. J Oral Maxillofac Surg. 2014;72:1938–56.

    Article  Google Scholar 

  57. Adler RA, Gukeihan GE, Bauer DC, Camacho PM, Clarke BL, Clines GA, Compston JE, Drake MT, Edwards BJ, Favus MJ, Greenspan SL, McKinney R, Pignolo RJ, Sellmeyer DE. Managing osteoporosis in patients on long-term bisphosphonate treatment: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2016;31(1):16–35. https://doi.org/10.1002/jbmr.2708.

    Article  CAS  PubMed  Google Scholar 

  58. Marchand D, Loshak H. Duration of bisphosphonate treatment for patients with osteoporosis: a review of clinical effectiveness and guidelines. Ottawa, ON: Canadian Agency for Drugs and Technologies in Health; 2019. https://www.ncbi.nlm.nih.gov/books/NBK551872/.

    Google Scholar 

  59. Dennison EM, Cooper C, Kanis JA, Bruyère O, Silverman S, McCloskey E, Abrahamsen B, Prieto-Alhambra D, Ferrari S. Fracture risk following intermission of osteoporosis therapy. Osteoporos Int. 2019;30(9):1733–43.

    Article  CAS  PubMed  Google Scholar 

  60. Miller PD, Roux C, Boonen S, Barton IP, Dunlap LE, Burgio DE. Safety and efficacy of risedronate in patient with age-related reduced renal function as estimated by the Cockcroft and Gault method: a pooled analysis of nine clinical trials. J Bone Miner Res. 2005;20(12):2105–14.

    Article  CAS  PubMed  Google Scholar 

  61. Khosla S, Oursler M, Monroe D. Estrogen and the skeleton. Trends Endocrinol Metab. 2012;23(11):576–81. https://doi.org/10.1016/j.tem.2012.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hsia J, Simon JA, Lin F, Applegate WB, Vogt MT, Hunninghake D, Carr M. Peripheral arterial disease in randomized trial of estrogen with progestin in women with coronary heart disease: the Heart and Estrogen/Progestin Replacement Study. Circulation. 2000;102:2228–32.

    Article  CAS  PubMed  Google Scholar 

  63. Anker S, Morley J, von Haehling S. Welcome to the ICD-10 code for sarcopenia. J Cachexia Sarcopenia Muscle. 2016;7(5):512–4. https://doi.org/10.1002/jcsm.12147.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Khadikar S. Musculoskeletal disorders and menopause. J Obstet Gynecol India. 2019;69(2):99–103.

    Article  Google Scholar 

  65. Maltais ML, Desroches J, Dionne IJ. Changes in muscle mass and strength after menopause. J Musculoskelet Neuronal Interact. 2009;9(4):186–97. PMID: 19949277.

    CAS  PubMed  Google Scholar 

  66. Chen L-K, Woo J, Assantachai P, et al. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc. 2020;21(3):300–307.e302. https://doi.org/10.1016/j.jamda.2019.12.012.

    Article  PubMed  Google Scholar 

  67. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. https://doi.org/10.1093/ageing/afy169.

    Article  PubMed  Google Scholar 

  68. Studenski S, Peters K, Alley D, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, Kiel DP, Kritchevsky SB, Shardell MD, Dam T-TL, Vassileva MT. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol Stud. 2014;69(5):547–58. https://doi.org/10.1093/gerona/glu010.

    Article  Google Scholar 

  69. Shaw SC, Dennison EM, Cooper C. Epidemiology of sarcopenia: determinants throughout the lifecourse. Calcif Tissue Int. 2017;101:229–47. https://doi.org/10.1007/s00223-017-0277-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cruz-Jentoft AJ, Landi F, Schneider SM, Zúñiga C, Arai H, Boirie Y, Chen LK, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Age. 2014;43(6):748–59. https://doi.org/10.1093/ageing/afu115.

    Article  Google Scholar 

  71. Abellan Van Kan G. Epidemiology and consequences of sarcopenia. J Nutr Health Aging. 2009;13:708–12. https://doi.org/10.1007/s12603-009-0201-z.

    Article  CAS  PubMed  Google Scholar 

  72. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc. 2004;52(1):80–5. https://doi.org/10.1111/j.1532-5415.2004.52014.

    Article  PubMed  Google Scholar 

  73. Ferrucci L, Guralnik J, Buchner D, et al. Departures from linearity in the relationship between measures of muscular strength and physical performance of the lower extremities: the Women’s Health and Aging Study. J Gerontol Biol Sci. 1997;52:M275–85.

    Article  CAS  Google Scholar 

  74. Brown WJ, McCarthy MS. Sarcopenia: what every NP needs to know. J Nurse Pract. 2015;11(8):753–60.

    Article  Google Scholar 

  75. Dent E, Morley JE, Cruz-Jentoft AJ, Arai SB, Kritchevsky J, Guralnik J, Bauer M, et al. International clinical practice guidelines for sarcopenia (ICFSR): screening, diagnosis and management. J Nutr Health Aging. 2018;22:1148–61.

    Article  CAS  PubMed  Google Scholar 

  76. Malmstrom T, Miller D, Simonsick E, Ferrucci L, Morley J. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle. 2013;7(1):28–36. https://doi.org/10.1002/jcsm.12048.

    Article  Google Scholar 

  77. Carbone J, Pasiakos S. Dietary protein and muscle mass: translating science to application and health benefit. Nutrients. 2019;11(5):1136. https://doi.org/10.3390/nu11051136.

    Article  CAS  PubMed Central  Google Scholar 

  78. Liu CJ, Latham NK. Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst Rev. 2009;(3):CD002759. https://doi.org/10.1002/14651858.CD002759.pub2.

  79. Watt F. Musculoskeletal pain and menopause. Post Reprod Health. 2018;24(1):34–43. https://doi.org/10.1177/2053369118757537.

    Article  PubMed  Google Scholar 

  80. Aparicio VA, Borges-Cosic M, Ruiz-Cabello P, Coll-Risco I, Acosta-Manzano P, Špacírová Z, Soriano-Maldonado A. Association of objectively measured physical activity and physical fitness with menopause symptoms. The Flamenco Project. Climacteric. 2017;20(5):456–61. https://doi.org/10.1080/13697137.2017.1329289.

    Article  CAS  PubMed  Google Scholar 

  81. Lu C, Liu P, Zhou Y, Meng F, Qiao T-y, Yang X-j, Li X-y, Xue Q, Xu H, Liu Y, Han Y, Zhang Y. Musculoskeletal pain during the menopausal transition: a systematic review and meta-analysis. Neural Plast. 2020a;2020:8842110. https://doi.org/10.1155/2020/8842110, 10 p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Magliano M. Menopausal arthralgia: fact or fiction. Maturitas. 2010;67(1):29–33. https://doi.org/10.1016/j.maturitas.2010.04.009.

    Article  PubMed  Google Scholar 

  83. Szoeke CE, Cicuttini FM, Guthrie JR, Dennerstein L. The relationship of reports of aches and joint pains to the menopausal transition: a longitudinal study. Climacteric. 2008;11:55–62.

    Article  CAS  PubMed  Google Scholar 

  84. Bailey TG, Cable NT, Aziz N, Atkinson G, Cuthbertson DJ, Low DA, Jones H. Exercise training reduces the acute physiological severity of post-menopausal hot flushes. J Physiol. 2016;594:657–67.

    Article  CAS  PubMed  Google Scholar 

  85. Canario AC, Cabral PU, Spyrides MH, Giraldo PC, Eleuterio J Jr, Goncalves AK. The impact of physical activity on menopausal symptoms in middle-aged women. Int J Gynaecol Obstet. 2012;118:34–6.

    Article  PubMed  Google Scholar 

  86. Kim MJ, Cho J, Ahn Y, Yim G, Park HY. Association between physical activity and menopausal symptoms in perimenopausal women. BMC Womens Health. 2014;14:122–5.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Luoto R, Moilanen J, Heinonen R, Heinonen R, Mikkola T, Raitanen J, Tomas E, Ojala K, Mansikkamaki K, Nygard C. Effect of aerobic training on hot flushes and quality of life-a randomized controlled trial. Ann Med. 2012;44(6):616–26. https://doi.org/10.3109/07853890.2011.583674.

    Article  PubMed  Google Scholar 

  88. Daley A, Stokes-Lampard H, Thomas A, MacArthur C. Exercise for vasomotor menopausal symptoms. Cochrane Database Syst Rev. 2014;(11):CD006108. https://doi.org/10.1002/14651858.CD006108.pub4.

  89. Lin I, Wiles L, Waller R, Goucke R, Yusuf Nagree Y, Gibberd M, Straker L, Maher CG, O’Sullivan PB. What does best practice care for musculoskeletal pain look like? Eleven consistent recommendations from high-quality clinical practice guidelines: systematic review. Br J Sports Med. 2020;54:79–86. https://doi.org/10.1136/bjsports-2018-099878.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The primary author was a participant in the 2021 NLN Scholarly Writing Retreat, sponsored by the NLN/Chamberlain University College of Nursing Center for the Advancement of the Science of Nursing Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen A. Geier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geier, K.A., Benham, A.J. (2022). Musculoskeletal Health in Menopause. In: Geraghty, P. (eds) Each Woman’s Menopause: An Evidence Based Resource. Springer, Cham. https://doi.org/10.1007/978-3-030-85484-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85484-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85483-6

  • Online ISBN: 978-3-030-85484-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics