Skip to main content

Clinical Prediction Modeling in Intramedullary Spinal Tumor Surgery

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroscience

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 134))

Abstract

Artificial intelligence is poised to influence various aspects of patient care, and neurosurgery is one of the most uprising fields where machine learning is being applied to provide surgeons with greater insight about the pathophysiology and prognosis of neurological conditions. This chapter provides a guide for clinicians on relevant aspects of machine learning and reviews selected application of these methods in intramedullary spinal cord tumors. The potential areas of application of machine learning extend far beyond the analyses of clinical data to include several areas of artificial intelligence, such as genomics and computer vision. Integration of various sources of data and application of advanced analytical approaches could improve risk assessment for intramedullary tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shao J, Jones J, Ellsworth P, et al. A comprehensive epidemiological review of spinal astrocytomas in the United States. J Neurosurg Spine. 2020:1–7.

    Google Scholar 

  2. Samartzis D, Gillis CC, Shih P, O’Toole JE, Fessler RG. Intramedullary spinal cord tumors: part I-epidemiology, pathophysiology, and diagnosis. Glob Spine J. 2015;5(5):425–35.

    Google Scholar 

  3. Abd-El-Barr MM, Huang KT, Moses ZB, Iorgulescu JB, Chi JH. Recent advances in intradural spinal tumors. Neuro Oncol. 2018;20(6):729–42.

    PubMed  CAS  Google Scholar 

  4. Garcés-Ambrossi GL, McGirt MJ, Mehta VA, Sciubba DM, Witham TF, Bydon A, Wolinksy J-P, Jallo GI, Gokaslan ZL. Factors associated with progression-free survival and long-term neurological outcome after resection of intramedullary spinal cord tumors: analysis of 101 consecutive cases. J Neurosurg Spine. 2009;11(5):591–9.

    PubMed  Google Scholar 

  5. Massaad E, Fatima N, Hadzipasic M, Alvarez-Breckenridge C, Shankar GM, Shin JH. Predictive analytics in spine oncology research: first steps, limitations, and future directions. Neurospine. 2019;16(4):669–77.

    PubMed  PubMed Central  Google Scholar 

  6. Perez-Breva L, Shin JH. Artificial intelligence in neurosurgery: a comment on the possibilities. Neurospine. 2019;16(4):640–2.

    PubMed  PubMed Central  Google Scholar 

  7. Nam KH, Kim DH, Choi BK, Han IH. Internet of things, digital biomarker, and artificial intelligence in spine: current and future perspectives. Neurospine. 2019;16(4):705–11.

    PubMed  PubMed Central  Google Scholar 

  8. Beam AL, Kohane IS. Big data and machine learning in health care. JAMA. 2018;319(13):1317–8.

    PubMed  Google Scholar 

  9. Beaulieu-Jones B, Finlayson SG, Chivers C, Chen I, McDermott M, Kandola J, Dalca AV, Beam A, Fiterau M, Naumann T. Trends and focus of machine learning applications for Health Research. JAMA Netw Open. 2019;2(10):e1914051.

    PubMed  PubMed Central  Google Scholar 

  10. Hongo H, Takai K, Komori T, Taniguchi M. Intramedullary spinal cord ependymoma and astrocytoma: intraoperative frozen-section diagnosis, extent of resection, and outcomes. J Neurosurg Spine. 2018;30(1):133–9.

    PubMed  Google Scholar 

  11. Li D, Hao S-Y, Wu Z, Jia G-J, Zhang L-W, Zhang J-T. Intramedullary medullocervical ependymoma—surgical treatment, functional recovery, and long-term outcome. Neurol Med Chir (Tokyo). 2013;53(10):663–75.

    PubMed  Google Scholar 

  12. Weber DC, Wang Y, Miller R, et al. Long-term outcome of patients with spinal myxopapillary ependymoma: treatment results from the MD Anderson Cancer Center and institutions from the rare cancer network. Neuro Oncol. 2015;17(4):588–95.

    PubMed  Google Scholar 

  13. Abdullah KG, Lubelski D, Miller J, Steinmetz MP, Shin JH, Krishnaney A, Mroz TE, Benzel EC. Progression free survival and functional outcome after surgical resection of intramedullary ependymomas. J Clin Neurosci. 2015;22(12):1933–7.

    PubMed  Google Scholar 

  14. Tobin MK, Geraghty JR, Engelhard HH, Linninger AA, Mehta AI. Intramedullary spinal cord tumors: a review of current and future treatment strategies. Neurosurg Focus. 2015;39(2):E14.

    PubMed  Google Scholar 

  15. Karikari IO, Nimjee SM, Hodges TR, et al. Impact of tumor histology on resectability and neurological outcome in primary intramedullary spinal cord tumors: a single-center experience with 102 patients. Neurosurgery. 2015;76(Suppl 1):S4–13; discussion S13.

    PubMed  Google Scholar 

  16. Hoshimaru M, Koyama T, Hashimoto N, Kikuchi H. Results of microsurgical treatment for intramedullary spinal cord ependymomas: analysis of 36 cases. Neurosurgery. 1999;44(2):264–9.

    PubMed  CAS  Google Scholar 

  17. Constantini S, Miller DC, Allen JC, Rorke LB, Freed D, Epstein FJ. Radical excision of intramedullary spinal cord tumors: surgical morbidity and long-term follow-up evaluation in 164 children and young adults. J Neurosurg. 2000;93(2 Suppl):183–93.

    PubMed  CAS  Google Scholar 

  18. Aarabi B, Sansur CA, Ibrahimi DM, Simard JM, Hersh DS, Le E, Diaz C, Massetti J, Akhtar-Danesh N. Intramedullary lesion length on postoperative magnetic resonance imaging is a strong predictor of ASIA impairment scale grade conversion following decompressive surgery in cervical spinal cord injury. Neurosurgery. 2017;80(4):610–20.

    PubMed  Google Scholar 

  19. Cheng JS, Ivan ME, Stapleton CJ, Quinones-Hinojosa A, Gupta N, Auguste KI. Intraoperative changes in transcranial motor evoked potentials and somatosensory evoked potentials predicting outcome in children with intramedullary spinal cord tumors. J Neurosurg Pediatr. 2014;13(6):591–9.

    PubMed  PubMed Central  Google Scholar 

  20. Ghadirpour R, Nasi D, Iaccarino C, Romano A, Motti L, Sabadini R, Valzania F, Servadei F. Intraoperative neurophysiological monitoring for intradural extramedullary spinal tumors: predictive value and relevance of D-wave amplitude on surgical outcome during a 10-year experience. J Neurosurg Spine. 2018;30(2):259–67.

    PubMed  Google Scholar 

  21. Lakomkin N, Mistry AM, Zuckerman SL, Ladner T, Kothari P, Lee NJ, Stannard B, Vasquez RA, Cheng JS. Utility of intraoperative monitoring in the resection of spinal cord tumors: an analysis by tumor location and anatomical region. Spine. 2018;43(4):287–94.

    PubMed  Google Scholar 

  22. Verla T, Fridley JS, Khan AB, Mayer RR, Omeis I. Neuromonitoring for intramedullary spinal cord tumor surgery. World Neurosurg. 2016;95:108–16.

    PubMed  Google Scholar 

  23. Mehta AI, Mohrhaus CA, Husain AM, Karikari IO, Hughes B, Hodges T, Gottfried O, Bagley CA. Dorsal column mapping for intramedullary spinal cord tumor resection decreases dorsal column dysfunction. J Spinal Disord Tech. 2012;25(4):205–9.

    PubMed  Google Scholar 

  24. Barzilai O, Lidar Z, Constantini S, Salame K, Bitan-Talmor Y, Korn A. Continuous mapping of the corticospinal tracts in intramedullary spinal cord tumor surgery using an electrified ultrasonic aspirator. J Neurosurg Spine. 2017;27(2):161–8.

    PubMed  Google Scholar 

  25. Costa P, Peretta P, Faccani G. Relevance of intraoperative D wave in spine and spinal cord surgeries. Eur Spine J. 2013;22(4):840–8.

    PubMed  Google Scholar 

  26. Morota N, Deletis V, Constantini S, Kofler M, Cohen H, Epstein FJ. The role of motor evoked potentials during surgery for intramedullary spinal cord tumors. Neurosurgery. 1997;41(6):1327–36.

    PubMed  CAS  Google Scholar 

  27. Nakamura M, Tsuji O, Iwanami A, Tsuji T, Ishii K, Toyama Y, Chiba K, Matsumoto M. Central neuropathic pain after surgical resection in patients with spinal intramedullary tumor. J Orthop Sci. 2012;17(4):352–7.

    PubMed  Google Scholar 

  28. Klekamp J. Spinal ependymomas. Part 1: Intramedullary ependymomas. Neurosurg Focus. 2015;39(2):E6.

    PubMed  Google Scholar 

  29. McGirt MJ, Chaichana KL, Atiba A, Attenello F, Yao KC, Jallo GI. Resection of intramedullary spinal cord tumors in children: assessment of long-term motor and sensory deficits. J Neurosurg Pediatr. 2008;1(1):63–7.

    PubMed  Google Scholar 

  30. Schwartz JT, Gao M, Geng EA, Mody KS, Mikhail CM, Cho SK. Applications of machine learning using electronic medical records in spine surgery. Neurospine. 2019;16(4):643–53.

    PubMed  PubMed Central  Google Scholar 

  31. Arima H, Naito K, Yamagata T, Kawahara S, Ohata K, Takami T. Quantitative analysis of near-infrared Indocyanine green Videoangiography for predicting functional outcomes after spinal intramedullary Ependymoma resection. Oper Neurosurg. 2019;17(5):531–9.

    Google Scholar 

  32. Eroes CA, Zausinger S, Kreth F-W, Goldbrunner R, Tonn J-C. Intramedullary low grade astrocytoma and ependymoma. Surgical results and predicting factors for clinical outcome. Acta Neurochir. 2010;152(4):611–8.

    PubMed  Google Scholar 

  33. Jin MC, Ho AL, Feng AY, Zhang Y, Staartjes VE, Stienen MN, Han SS, Veeravagu A, Ratliff JK, Desai AM. Predictive modeling of long-term opioid and benzodiazepine use after intradural tumor resection. Spine J. 2020.

    Google Scholar 

  34. Karhade AV, Vasudeva VS, Dasenbrock HH, Lu Y, Gormley WB, Groff MW, Chi JH, Smith TR. Thirty-day readmission and reoperation after surgery for spinal tumors: a National Surgical Quality Improvement Program analysis. Neurosurg Focus. 2016;41(2):E5.

    PubMed  Google Scholar 

  35. Ryu SM, Lee S-H, Kim E-S, Eoh W. Predicting survival of patients with spinal Ependymoma using machine learning algorithms with the SEER database. World Neurosurg. 2019;124:e331–9.

    Google Scholar 

  36. Wang C, Yuan X, Zuo J. Individualized prediction of overall survival for primary intramedullary spinal cord grade II/III Ependymoma. World Neurosurg. 2020;143:e149–56.

    PubMed  Google Scholar 

  37. Akyurek S, Chang EL, Yu T-K, Little D, Allen PK, McCutcheon I, Mahajan A, Maor MH, Woo SY. Spinal myxopapillary ependymoma outcomes in patients treated with surgery and radiotherapy at M.D. Anderson cancer center. J Neurooncol. 2006;80(2):177–83.

    PubMed  Google Scholar 

  38. Brown DA, Goyal A, Takami H, Graffeo CS, Mahajan A, Krauss WE, Bydon M. Radiotherapy in addition to surgical resection may not improve overall survival in WHO grade II spinal ependymomas. Clin Neurol Neurosurg. 2020;189:105632.

    PubMed  Google Scholar 

  39. Lee S-H, Chung CK, Kim CH, Yoon SH, Hyun S-J, Kim K-J, Kim E-S, Eoh W, Kim H-J. Long-term outcomes of surgical resection with or without adjuvant radiation therapy for treatment of spinal ependymoma: a retrospective multicenter study by the Korea spinal oncology research group. Neuro Oncol. 2013;15(7):921–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Kim M, Yun J, Cho Y, Shin K, Jang R, Bae H-J, Kim N. Deep learning in medical imaging. Neurospine. 2019;16(4):657–68.

    PubMed  PubMed Central  Google Scholar 

  41. Mack WJ. In: Winn HR, editor. Youmans and Winn neurological surgery. Amsterdam: Elsevier; 2018. p. 4320 pages, $839.99 print+ ebook, ISBN 9780323287821.

    Google Scholar 

  42. Lemay A, Gros C, Zhuo Z, Zhang J, Duan Y, Cohen-Adad J, Liu Y. Multiclass spinal cord tumor segmentation on MRI with deep learning. In: ArXiv Prepr. ArXiv201212820; 2020.

    Google Scholar 

  43. Gatenby RA, Grove O, Gillies RJ. Quantitative imaging in cancer evolution and ecology. Radiology. 2013;269(1):8–15.

    PubMed  PubMed Central  Google Scholar 

  44. Herbrecht A, Messerer M, Parker F. Development of a lateralization index for intramedullary astrocytomas and ependymomas. Neurochirurgie. 2017;63(5):410–2.

    PubMed  CAS  Google Scholar 

  45. Shih RY, Koeller KK. Intramedullary masses of the spinal cord: radiologic-pathologic correlation. Radiographics. 2020;40(4):1125–45.

    PubMed  Google Scholar 

  46. Patronas NJ, Courcoutsakis N, Bromley CM, Katzman GL, MacCollin M, Parry DM. Intramedullary and spinal canal tumors in patients with neurofibromatosis 2: MR imaging findings and correlation with genotype. Radiology. 2001;218(2):434–42.

    PubMed  CAS  Google Scholar 

  47. Xu D, Feng M, Suresh V, Wang G, Wang F, Song L, Guo F. Clinical analysis of syringomyelia resulting from spinal hemangioblastoma in a single series of 38 consecutive patients. Clin Neurol Neurosurg. 2019;181:58–63.

    PubMed  Google Scholar 

  48. Setzer M, Murtagh RD, Murtagh FR, Eleraky M, Jain S, Marquardt G, Seifert V, Vrionis FD. Diffusion tensor imaging tractography in patients with intramedullary tumors: comparison with intraoperative findings and value for prediction of tumor resectability. J Neurosurg Spine. 2010;13(3):371–80.

    PubMed  Google Scholar 

  49. Choudhri AF, Whitehead MT, Klimo P, Montgomery BK, Boop FA. Diffusion tensor imaging to guide surgical planning in intramedullary spinal cord tumors in children. Neuroradiology. 2014;56(2):169–74.

    PubMed  PubMed Central  Google Scholar 

  50. Egger K, Hohenhaus M, Van Velthoven V, Heil S, Urbach H. Spinal diffusion tensor tractography for differentiation of intramedullary tumor-suspected lesions. Eur J Radiol. 2016;85(12):2275–80.

    PubMed  CAS  Google Scholar 

  51. Korshunov A, Neben K, Wrobel G, Tews B, Benner A, Hahn M, Golanov A, Lichter P. Gene expression patterns in ependymomas correlate with tumor location, grade, and patient age. Am J Pathol. 2003;163(5):1721–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Meco D, Servidei T, Lamorte G, Binda E, Arena V, Riccardi R. Ependymoma stem cells are highly sensitive to temozolomide in vitro and in orthotopic models. Neuro Oncol. 2014;16(8):1067–77.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Mendrzyk F, Korshunov A, Benner A, Toedt G, Pfister S, Radlwimmer B, Lichter P. Identification of gains on 1q and epidermal growth factor receptor overexpression as independent prognostic markers in intracranial ependymoma. Clin Cancer Res. 2006;12(7 Pt 1):2070–9.

    PubMed  CAS  Google Scholar 

  54. Fakhrai N, Neophytou P, Dieckmann K, Nemeth A, Prayer D, Hainfellner J, Marosi C. Recurrent spinal ependymoma showing partial remission under Imatimib. Acta Neurochir. 2004;146(11):1255–8.

    PubMed  CAS  Google Scholar 

  55. Grob ST, Nobre L, Campbell KR, et al. Clinical and molecular characterization of a multi-institutional cohort of pediatric spinal cord low-grade gliomas. Neuro Oncol Adv. 2020;2(1):vdaa103.

    Google Scholar 

  56. Chai R-C, Zhang Y-W, Liu Y-Q, Chang Y-Z, Pang B, Jiang T, Jia W-Q, Wang Y-Z. The molecular characteristics of spinal cord gliomas with or without H3 K27M mutation. Acta Neuropathol Commun. 2020;9:119. https://doi.org/10.1186/s40478-020-00913-w.

    Article  CAS  Google Scholar 

  57. Yi S, Choi S, Shin DA, et al. Impact of H3.3 K27M mutation on prognosis and survival of Grade IV spinal cord glioma on the basis of new 2016 World Health Organization classification of the central nervous system. Neurosurgery. 2019;84(5):1072–81.

    PubMed  Google Scholar 

  58. Takai K, Taniguchi M, Takahashi H, Usui M, Saito N. Comparative analysis of spinal hemangioblastomas in sporadic disease and Von Hippel-Lindau syndrome. Neurol Med Chir (Tokyo). 2010;50(7):560–7.

    PubMed  Google Scholar 

  59. Amirian ES, Armstrong GN, Zhou R, et al. The glioma international case-control study: a report from the genetic epidemiology of glioma international consortium. Am J Epidemiol. 2016;183(2):85–91.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Shin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Massaad, E., Ha, Y., Shankar, G.M., Shin, J.H. (2022). Clinical Prediction Modeling in Intramedullary Spinal Tumor Surgery. In: Staartjes, V.E., Regli, L., Serra, C. (eds) Machine Learning in Clinical Neuroscience. Acta Neurochirurgica Supplement, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-030-85292-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85292-4_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85291-7

  • Online ISBN: 978-3-030-85292-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics