Skip to main content

Applying Convolutional Neural Networks to Neuroimaging Classification Tasks: A Practical Guide in Python

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroscience

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 134))

  • 2161 Accesses

Abstract

In this chapter, we describe the process of obtaining medical imaging data and its storage protocol. The authors also explain in a step-by-step approach how to extract and prepare the medical imaging data for machine learning algorithms. And finally, the process of building and assessing a convolutional neural network for medical imaging data is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Langlotz CP, et al. A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology. 2019;291(3):781–91.

    Article  PubMed  Google Scholar 

  2. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics. 2017;37(2):505–15.

    Article  PubMed  Google Scholar 

  3. Willemink MJ, et al. Preparing medical imaging data for machine learning. Radiology. 2020;295(1):4–15.

    Article  PubMed  Google Scholar 

  4. Saboori M, Ahmadi J, Farajzadegan Z. Indications for brain CT scan in patients with minor head injury. Clin Neurol Neurosurg. 2007;109(5):399–405.

    Article  PubMed  Google Scholar 

  5. Smits M, et al. External validation of the Canadian CT Head Rule and the New Orleans Criteria for CT scanning in patients with minor head injury. JAMA. 2005;294(12):1519–25.

    Article  CAS  PubMed  Google Scholar 

  6. Chilamkurthy S, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 2018;392(10162):2388–96.

    Article  PubMed  Google Scholar 

  7. Chilamkurthy S, et al. Development and validation of deep learning algorithms for detection of critical findings in head CT scans. 2018. arXiv preprint arXiv:1803.05854.

    Google Scholar 

  8. Keshavamurthy KN, et al. Machine learning algorithm for automatic detection of CT-identifiable hyperdense lesions associated with traumatic brain injury. Med Imaging 2017 Comput Diagn. 2017;10134(1):101342G. https://doi.org/10.1117/12.2254227.

    Article  Google Scholar 

  9. Gong T, et al. Classification of CT brain images of head trauma. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2007;4774 LNBI:401–8. https://doi.org/10.1007/978-3-540-75286-8_38.

  10. Lee B, Newberg A. Neuroimaging in traumatic brain imaging. NeuroRx. 2005;2(2):372–83.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mustra M, Delac K, Grgic M. Overview of the DICOM standard. In: 2008 50th International Symposium ELMAR, vol. 1; 2008. p. 39–44.

    Google Scholar 

  12. Mildenberger P, Eichelberg M, Martin E. Introduction to the DICOM standard. Eur Radiol. 2002;12(4):920–7.

    Article  PubMed  Google Scholar 

  13. Gibaud B. The DICOM standard: a brief overview. In: Molecular imaging: computer reconstruction and practice. New York: Springer; 2008. p. 229–38.

    Chapter  Google Scholar 

  14. Huang J, Ling A, Summers RM, Yao J. Integration of PACS and CAD systems using DICOMDIR and open-source tools. In: Medical imaging 2013: advanced PACS-based imaging informatics and therapeutic applications, vol. 8674; 2013. p. 86740V.

    Google Scholar 

  15. Villegas R, Montilla G, Villegas H. A software tool for reading DICOM directory files. Int J Healthcare Inf Syst Informatics. 2007;2(1):54–70.

    Article  Google Scholar 

  16. Mason D, et al. pydicom/pydicom: pydicom 2.1.1; 2020. https://doi.org/10.5281/ZENODO.4248192.

  17. Caswell TA, et al. matplotlib/matplotlib: REL: v3.3.1; 2020. https://doi.org/10.5281/ZENODO.3984190.

  18. Beazley DM. Python essential reference. Boston: Addison-Wesley Professional; 2009.

    Google Scholar 

  19. Dalcin LD, Paz RR, Kler PA, Cosimo A. Parallel distributed computing using Python. Adv Water Resour. 2011;34(9):1124–39.

    Article  CAS  Google Scholar 

  20. Wang H, Li S, Song L, Cui L. A novel convolutional neural network based fault recognition method via image fusion of multi-vibration-signals. Comput Ind. 2019;105:182–90.

    Article  CAS  Google Scholar 

  21. Howard AG. Some improvements on deep convolutional neural network based image classification. arXiv Prepr. arXiv1312.5402; 2013.

    Google Scholar 

  22. Jifara W, Jiang F, Rho S, Cheng M, Liu S. Medical image denoising using convolutional neural network: a residual learning approach. J Supercomput. 2019;75(2):704–18.

    Article  Google Scholar 

  23. Bradski G. The OpenCV library. Dr Dobbs J Softw Tools. 2000;120:122–5.

    Google Scholar 

  24. Howse J, Joshi P, Beyeler M. Opencv: computer vision projects with python. Birmingham: Packt Publishing Ltd; 2016.

    Google Scholar 

  25. Pedregosa F, et al. Scikit-learn: machine learning in {P}ython. J Mach Learn Res. 2011;12:2825–30.

    Google Scholar 

  26. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems; 2012. p. 1097–105.

    Google Scholar 

  27. Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: European conference on computer vision; 2014. p. 818–33.

    Google Scholar 

  28. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv Prepr. arXiv1409.1556; 2014.

    Google Scholar 

  29. Szegedy C, et al. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 1–9.

    Google Scholar 

  30. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–8.

    Google Scholar 

  31. Hara K, Saito D, Shouno H. Analysis of function of rectified linear unit used in deep learning. In: 2015 International Joint Conference on Neural Networks (IJCNN); 2015. p. 1–8.

    Google Scholar 

  32. Scherer D, Müller A, Behnke S. Evaluation of pooling operations in convolutional architectures for object recognition. In: International conference on artificial neural networks; 2010. p. 92–101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohamed, M.A.K., Alamri, A., Smith, B., Uff, C. (2022). Applying Convolutional Neural Networks to Neuroimaging Classification Tasks: A Practical Guide in Python. In: Staartjes, V.E., Regli, L., Serra, C. (eds) Machine Learning in Clinical Neuroscience. Acta Neurochirurgica Supplement, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-030-85292-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85292-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85291-7

  • Online ISBN: 978-3-030-85292-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics