Skip to main content

An Anisotropic Model with Linear Perturbation Technique to Predict HCP Sheet Metal Ductility Limit

  • Conference paper
  • First Online:
Advances in Materials, Mechanics and Manufacturing II (A3M 2021)

Abstract

In this paper, hexagonal closed packed (HCP) sheet metal ductility for a viscoplastic material is analyzed by using a linear perturbation technique. It can be used for the analysis of localized necking. This technique is used to perturbate the material behavior in a rate dependent formulation by superimposing a perturbation to the basic flow. Its stability or instability is characterized by the increasing or decreasing of the perturbation. Hardening and initial anisotropic parameters are fitted by experimental results from the literature. In this investigation, Cazacu yield function is used to predict the forming limit diagrams (FLD) of HCP sheet metals. The coupling between analytic perturbation method and the behavior modelling is provided by an efficient implicit algorithm to solve the constitutive equations. After verifications and validations of the numerical simulations from the literature, the ductility limit of a particular HCP magnesium alloy is numerically predicted. A parametric study is presented to analyze the effect of instability and mechanical parameters, viscosity and distortion on the FLD. Moreover, a comparative study between Marciniak and Kuckzynski ductility approach and linear perturbation technique is done in this contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boudeau, N., Gelin, J.C.: Finite element simulation of the ductile fracture in 3-D sheet metal forming process. J. Mater. Process. Technol. 32(1–2), 521–530 (1992)

    Article  Google Scholar 

  • Boudeau, N., Gelin, J.C., Salhi, S.: Computational prediction of the localized necking in sheet forming based on microstructural material aspects. Comput. Mater. Sci. 11(1), 45–64 (1998)

    Article  Google Scholar 

  • Boudeau, N., Lejeune, A., Gelin, J.C.: Influence of material and process parameters on the development of necking and bursting in flange and tube hydroforming. J. Mater. Process. Technol. 125, 849–855 (2002)

    Article  Google Scholar 

  • Bochniak, W., Korbel, A., Ostachowski, P., Łagoda, M.: Plastic flow of metals under cyclic change of deformation path conditions. Arch. Civil Mech. Eng. 18(3), 679–686 (2018). https://doi.org/10.1016/j.acme.2017.11.004

    Article  Google Scholar 

  • Cazacu, O., Plunkett, B., Barlat, F.: Orthotropic yield criterion for hexagonal closed packed metals. Int. J. Plast. 22(7), 1171–1194 (2006)

    Article  Google Scholar 

  • Dudzinski, D., Molinari, A.: Perturbation analysis of thermoviscoplastic instabilities in biaxial loading. Int. J. Solids Struct. 27(5), 601–628 (1991)

    Article  Google Scholar 

  • Fressengeas, C., Molinari, A.: Instability and localization of plastic flow in shear at high strain rates. J. Mech. Phys. Solids 35(2), 185–211 (1987)

    Article  Google Scholar 

  • Jedidi, M.Y., Bettaieb, M.B., Bouguecha, A., Abed-Meraim, F., Khabou, M.T., Haddar, M.: Prediction of the ductility limit of magnesium AZ31B alloy. In: Chaari, F., et al. (eds.) Advances in Materials, Mechanics and Manufacturing. LNME, pp. 182–193. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-24247-3_21

    Chapter  Google Scholar 

  • Jedidi, M.Y., Bettaieb, M.B., Abed-Meraim, F., Khabou, M.T., Bouguecha, A., Haddar, M.: Prediction of necking in HCP sheet metals using a two-surface plasticity model. Int. J. Plast. 128, 102641 (2020)

    Article  Google Scholar 

  • Kondori, B., Madi, Y., Besson, J., Benzerga, A.A.: Evolution of the 3D plastic anisotropy of HCP metals: experiments and modeling. Int. J. Plast. (2018).https://doi.org/10.1016/j.ijplas.2017.12.002

  • Marciniak, Z., Kuczyński, K.: Limit strains in the processes of stretch-forming sheet metal. Int. J. Mech. Sci. 9(9), 609IN1613–612IN2620 (1967)

    Google Scholar 

  • Molinari, A.: Instabilité thermoviscoplastique en cisaillement simple. J. de mécanique théorique et appliquée 4(5), 659–684 (1985)

    Google Scholar 

  • Plunkett, B., Lebensohn, R.A., Cazacu, O., Barlat, F.: Anisotropic yield function of hexagonal materials taking into account texture development and anisotropic hardening. Acta Mater. 54(16), 4159–4169 (2006)

    Article  Google Scholar 

  • Toth, L.S., Hirsch, J., Van Houtte, P.: On the role of texture development in the forming limits of sheet metals. Int. J. Mech. Sci. 38(10), 1117–1126 (1996)

    Article  Google Scholar 

  • Wu, S.H., Song, N.N., Pires, F.M.A., Santos, A.D.: Prediction of forming limit diagrams for materials with HCP structure. Acta Metall. Sin. 28(12), 1442–1514 (2015). https://doi.org/10.1007/s40195-015-0344-3

    Article  Google Scholar 

  • Zaera, R., Rodríguez-Martínez, J.A., Vadillo, G., Fernández-Sáez, J., Molinari, A.: Collective behaviour and spacing of necks in ductile plates subjected to dynamic biaxial loading. J. Mech. Phys. Solids 85, 245–269 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Yassine Jedidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jedidi, M.Y., Bettaieb, M.B., Abed-Meraim, F., Khabou, M.T., Bouguecha, A., Haddar, M. (2022). An Anisotropic Model with Linear Perturbation Technique to Predict HCP Sheet Metal Ductility Limit. In: Ben Amar, M., Bouguecha, A., Ghorbel, E., El Mahi, A., Chaari, F., Haddar, M. (eds) Advances in Materials, Mechanics and Manufacturing II. A3M 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-84958-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84958-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84957-3

  • Online ISBN: 978-3-030-84958-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics