Skip to main content

Dysfunctional Circadian Rhythm Is Associated with Food Consumption, Obesity and Related Metabolic Diseases: Role of Ion Channels

  • Chapter
  • First Online:
Cellular and Biochemical Mechanisms of Obesity

Abstract

Circadian oscillators are the body’s biological clocks which exhibited in most of living organisms from bacteria to higher vertebrates. They are responsible for organizing a variety of biochemical and physiological cellular functions with a rhythmic period of a day cycle (24 h, circadian, repeat cycle in a day) even without any timing indicators. Any disruption in synchronization of circadian rhythm (chronodistruption) causes a wide range of complications which can be referred to as metabolic syndrome, obesity or type 2 diabetes mellitus (T2DM). Food intake can be stimulated because of its hedonic properties, although energy need is sufficiently provided. Addiction can be determined as excessive intake of either drug or food. Drug and food addiction shares some similar hedonic neuroadaptative properties in perception reward circuits. That could be as a result of childhood physical or psychological trauma by increasing neurotransmitter hypersensivity or dysregulation. Circadian clocks are key players of hormone synthesis and release, which cause cellular adaptations to the body environment. Ion channels are protein structured gate keepers located in the cell membrane, allowing charged ions to move across the membrane. They contribute and regulate many of cellular functions in the body. Ion channels act as an important player in circadian phases and also subsequent physiological functions by contributing in signaling pathway including homeostasis, gene expression, etc. Hence, this review focuses on the importance of chronobiology and its role on prevention of obesity, T2DM and regulation of the ion channels by circadian rhythm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[Ca2+]i:

Intracellular calcium (Ca2+)

AITC:

Allyl isothiocyanate

AP:

Action potential

AT:

Adipose tissue

BAT:

Brown adipose tissue

BK:

Big conductance K+ channels

BMI:

Body mass index

Ca2+:

Calcium ion

CAPC:

Calcium activated K+ channels

CBT:

Core body temperature

CHD:

Coronary heart disease

CLOCK :

Circadian Kaput cycles

CVDs:

Cardiovascular diseases

DD:

Constant darkness

EE:

Energy expenditure

EPIC:

European Prospective Investigation into Cancer

ER:

Endoplasmic reticulum

FBG:

Fasting blood glucose

GIRK:

G protein gated inwardly rectifying K+ channels

GLP-1:

Glucagon-like peptide 1

GLUT-2:

Glucose transporter

GOF:

Gain of function

GSIS:

Glucose-stimulated insulin secretion

HFD:

High fat diet

HMGCoA:

Hydroxymethylglutaryl-CoA

ICAC:

Intermediate-conductance calcium-activated K+ channels

KK:

Knockout mice

LD:

Light-dark cycle

LDL:

Low-density lipoprotein

LOF:

Loss of function

MetS:

Metabolic syndrome

MODY:

Maturity onset diabetes of the young

MS:

Metabolic syndrome

PIP2:

Phosphatidylinositol 4,5-bisphosphate

POMC:

Proopiomelanocortin

PSG:

Polysomnogrephy

SCCA:

Small-conductance calcium-activated

SCN:

Suprachiasmatic nucleus

SD:

Standard deviation

SNP:

Single nucleotide polymorphism

SSTRs:

Somatostatin receptors

STZ:

Streptozotocin

SUR1:

Sulfonylurea receptor 1

T2D:

Type 2 diabetes

TRP:

Transient receptor potential channels

TT:

Sayfa 12 [1]

UCP-1:

Uncoupling protein 1

VDCC:

Voltage dependent Ca2+ channels

WAT:

White adipose tissue

WHR:

Waist to hip ratio

WT:

Wild type

α2-ADRs:

Adrenereceptors

References

  1. Garaulet M, Corbalán MD, Madrid JA et al (2010) CLOCK gene is implicated in weight reduction in obese patients participating in a dietary programme based on the Mediterranean diet. Int J Obes (Lond) 34:516–523

    CAS  Google Scholar 

  2. Flandrin JL, Montanari M (2003) Storia dell’alimentazione, 6th edn. Laterza, Italy

    Google Scholar 

  3. Carroll A (2013) Three squares: the invention of the American meal, 1st edn. Basic Books (AZ), New York, USA

    Google Scholar 

  4. Affinita A, Catalani L, Cecchetto G et al (2013) Breakfast: a multidisciplinary approach. Ital J Pediatr 39:44

    PubMed  PubMed Central  Google Scholar 

  5. Albala K (2003) Food in early modern Europe. Greenwood Publishing Group, Santa Barbara, USA

    Google Scholar 

  6. Gwinup G, Byron RC, Roush WH et al (1963) Effect of nibbling versus gorging on serum lipids in man. Am J Clin Nutr 13:209–213

    CAS  PubMed  Google Scholar 

  7. Paoli A, Tinsley G, Bianco A et al (2019) The influence of meal frequency and timing on health in humans: the role of fasting. Nutrients 11:719

    CAS  PubMed Central  Google Scholar 

  8. Fabry P, Fodor J, Hejl Z et al (1968) Meal frequency and ischaemic heart-disease. Lancet 2:190–191

    CAS  PubMed  Google Scholar 

  9. Edelstein SL, Barrett-Connor EL, Wingard DL, Cohn BA (1992) Increased meal frequency associated with decreased cholesterol concentrations; Rancho Bernardo, CA, 1984–1987. Am J Clin Nutr 55:664–669

    CAS  PubMed  Google Scholar 

  10. Holmback I, Ericson U, Gullberg B, Wirfalt E (2010) A high eating frequency is associated with an overall healthy lifestyle in middle-aged men and women and reduced likelihood of general and central obesity in men. Br J Nutr 104:1065–1073

    PubMed  Google Scholar 

  11. Afshin A, Forouzanfar MH, Reitsma MB et al (2017) Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 377:13–27

    PubMed  Google Scholar 

  12. Obesity and Overweight, Fact Sheet N 311, Updated Mar 2013. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 15 Jan 2021

  13. Koh-Banerjee P, Wang Y, Hu FB et al (2004) Changes in body weight and body fat distribution as risk factors for clinical diabetes in us men. Am J Epidemiol 159:1150–1159

    PubMed  Google Scholar 

  14. Thompson WG, Cook DA, Clark MM et al (2007) Treatment of obesity. Mayo Clin Proc 82:93–101

    PubMed  Google Scholar 

  15. Paoli A, Moro T, Marcolin G et al (2012) High-intensity interval resistance training (HIRT) influences resting energy expenditure and respiratory ratio in non-dieting individuals. J Transl Med 10:237

    PubMed  PubMed Central  Google Scholar 

  16. Garaulet M, Gómez-Abellán P (2014) Timing of food intake and obesity: a novel association. Physiol Behav 134:44–50

    CAS  PubMed  Google Scholar 

  17. Kahleova H, Lloren JI, Mashchak A et al (2017) Meal frequency and timing are associated with changes in body mass index in adventist health study 2. J Nutr 147:1722–1728

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fabry P, Hejl Z, Fodor J et al (1964) The frequency of meals. Its relation to overweight, hypercholesterolaemia, and decreased glucose-tolerance. Lancet 2:614–615

    Google Scholar 

  19. Keast DR, Nicklas TA, O’Neil CE (2010) Snacking is associated with reduced risk of overweight and reduced abdominal obesity in adolescents: National Health and Nutrition Examination Survey (NHANES) 1999–2004. Am J Clin Nutr 92:428–435

    CAS  PubMed  Google Scholar 

  20. Van der Heijden AA, Hu FB, Rimm EB et al (2007) A prospective study of breakfast consumption and weight gain among U.S. men. Obesity 15:2463–2469

    Google Scholar 

  21. Mekary RA, Giovannucci E, Willett WC et al (2012) Eating patterns and type 2 diabetes risk in men: breakfast omission, eating frequency, and snacking. Am J Clin Nutr 95:1182–1189

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Taylor MA, Garrow JS (2001) Compared with nibbling, neither gorging nor a morning fast affect short-term energy balance in obese patients in a chamber calorimeter. Int J Obes Relat Metab Disord 25:519–528

    CAS  PubMed  Google Scholar 

  23. Romon M, Edme JL, Boulenguez C et al (1993) Circadian variation of diet-induced thermogenesis. Am J Clin Nutr 57:476–480

    CAS  PubMed  Google Scholar 

  24. Weststrate JA, Weys PJ, Poortvliet EJ et al (1989) Diurnal variation in postabsorptive resting metabolic rate and diet-induced thermogenesis. Am J Clin Nutr 50:908–914

    CAS  PubMed  Google Scholar 

  25. Kanaley JA, Heden TD, Liu Y et al (2014) Alteration of postprandial glucose and insulin concentrations with meal frequency and composition. Br J Nutr 112:1484–1493

    CAS  PubMed  Google Scholar 

  26. Ohkawara K, Cornier MA, Kohrt WM et al (2013) Effects of increased meal frequency on fat oxidation and perceived hunger. Obesity 21:336–343

    PubMed  Google Scholar 

  27. Alhussain MH, Macdonald IA, Taylor MA (2016) Irregular meal-pattern effects on energy expenditure, metabolism, and appetite regulation: a randomized controlled trial in healthy normal-weight women. Am J Clin Nutr 104:21–32

    CAS  PubMed  Google Scholar 

  28. Kul S, Savas E, Ozturk ZA, Karadag G (2014) Does Ramadan fasting alter body weight and blood lipids and fasting blood glucose in a healthy population? A meta-analysis. J Relig Health 53:929–942

    PubMed  Google Scholar 

  29. Mammucari C, Schiaffino S, Sandri M (2008) Downstream of Akt: FoxO3 and mtTOR in the regulation of autophagy in skeletal muscle. Autophagy 4:524–526

    CAS  PubMed  Google Scholar 

  30. Cahill LE, Chiuve SE, Mekary RA et al (2013) Prospective study of breakfast eating and incident coronary heart disease in a cohort of male us health professionals. Circulation 128:337–343

    PubMed  PubMed Central  Google Scholar 

  31. Nas A, Mirza N, Hagele F et al (2017) Impact of breakfast skipping compared with dinner skipping on regulation of energy balance and metabolic risk. Am J Clin Nutr 105:1351–1361

    CAS  PubMed  Google Scholar 

  32. Almoosawi S, Vingeliene S, Karagounis LG, Pot GK (2016) Chrono-nutrition: a review of current evidence from observational studies on global trends in time-of-day of energy intake and its association with obesity. Proc Nutr Soc 75:487–500

    CAS  PubMed  Google Scholar 

  33. Leech RM, Timperio A, Livingstone KM et al (2017) Temporal eating patterns: associations with nutrient intakes, diet quality, and measures of adiposity. Am J Clin Nutr 106:1121–1130

    CAS  PubMed  Google Scholar 

  34. Titan SM, Bingham S, Welch A et al (2001) Frequency of eating and concentrations of serum cholesterol in the Norfolk population of the European prospective investigation into cancer (epic-Norfolk): cross sectional study. BMJ 323:1286–1288

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma Y, Bertone ER, Stanek EJ et al (2003) Association between eating patterns and obesity in a free-living us adult population. Am J Epidemiol 158:85–92

    PubMed  Google Scholar 

  36. St-Onge MP, Ard J, Baskin ML et al (2017) Meal timing and frequency: Implications for cardiovascular disease prevention: a scientific statement from the American heart association. Circulation 135:e96–e121

    PubMed  PubMed Central  Google Scholar 

  37. Lecerf JM, de Lorgeril M (2011) Dietary cholesterol: from physiology to cardiovascular risk. Br J Nutr 106:6–14

    CAS  PubMed  Google Scholar 

  38. Nayor M, Vasan RS (2016) Recent update to the US cholesterol treatment guidelines: a comparison with international guidelines. Circulation 133:1795–1806

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dietschy JM, Brown MS (1974) Effect of alterations of the specific activity of the intracellular acetyl CoA pool on apparent rates of hepatic cholesterogenesis. J Lipid Res 15:508–516

    CAS  PubMed  Google Scholar 

  40. Ness GC, Zhao Z, Wiggins L (1994) Insulin and glucagon modulate hepatic 3-hydroxy-3-methylglutarylcoenzyme a reductase activity by affecting immunoreactive protein levels. J Biol Chem 269:29168–29172

    CAS  PubMed  Google Scholar 

  41. Paoli A (2014) Ketogenic diet for obesity: friend or foe? Int J Environ Res Public Health 11:2092–2107

    PubMed  PubMed Central  Google Scholar 

  42. Sutherland WH, de Jong SA, Walker RJ (2007) Effect of dietary cholesterol and fat on cell cholesterol transfer to postprandial plasma in hyperlipidemic men. Lipids 42:901–911

    CAS  PubMed  Google Scholar 

  43. Paoli A, Mor T, Bosco G, Bianco A et al (2015) Effects of n-3 polyunsaturated fatty acids (omega-3) supplementation on some cardiovascular risk factors with a ketogenic Mediterranean diet. Mar Drugs 13:996–1009

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chapelot D (2011) The role of snacking in energy balance: a biobehavioral approach. J Nutr 141:158–162

    PubMed  Google Scholar 

  45. McCrory MA, Campbell WW (2011) Effects of eating frequency, snacking, and breakfast skipping on energy regulation: symposium overview. J Nutr 141:144–147

    CAS  PubMed  Google Scholar 

  46. Garaulet M, Madrid JA (2010) Chronobiological aspects of nutrition, metabolic syndrome and obesity. Adv Drug Deliv Rev 62(9–10):967–978

    Google Scholar 

  47. Garaulet M, Gómez-Abellán P, Madrid JA (2010) Chronobiology and obesity: the orchestra out of tune. Clin Lipidol 5:181–188

    Google Scholar 

  48. Pavlovski I, Evans JA, Mistlberger RE (2018) Feeding time entrains the olfactory bulb circadian clock in anosmic PER2::LUC mice. Neuroscience 393:175–184

    CAS  PubMed  Google Scholar 

  49. Hall J (2016) Guyton y Hall. Tratado de fisiología médica, 13th edn. Elsevier, España

    Google Scholar 

  50. Albrecht U (2017) The circadian clock, metabolism and obesity. Obes Rev 18:25–33

    PubMed  Google Scholar 

  51. Scheer FA, Kalsbeek A, Buijs RM (2003) Cardiovascular control by the suprachiasmatic nucleus: neural and neuroendocrine mechanisms in human and rat. Biol Chem 384:697–709

    CAS  PubMed  Google Scholar 

  52. Kim P, Oster H, Lehnert H et al (2019) Coupling the circadian clock to homeostasis: the role of period in timing physiology. Endocr Rev 40:66–95

    PubMed  Google Scholar 

  53. McHill AW, Phillips AJ, Czeisler CA et al (2017) Later circadian timing of food intake is associated with increased body fat. Am J Clin Nutr 106:1213–1219

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Poggiogalle E, Jamshed H, Peterson CM (2018) Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism 84:11–27

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jakubowicz D, Barnea M, Wainstein J et al (2013) High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity 21:2504–2512

    Google Scholar 

  56. Dhurandhar EJ, Dawson J, Alcorn A et al (2014) The effectiveness of breakfast recommendations on weight loss: a randomized controlled trial. Am J Clin Nutr 100:507–513

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Uzhova I, Fuster V, Fernández-Ortiz A et al (2017) The importance of breakfast in atherosclerosis disease: insights from the PESA study. J Am Coll Cardiol 70:1833–1842

    PubMed  Google Scholar 

  58. Betts JA, Chowdhury EA, Gonzalez JT et al (2016) Is breakfast the most important meal of the day? Proc Nutr Soc 75:464–474

    PubMed  Google Scholar 

  59. Fong M, Caterson ID, Madigan CD (2017) Are large dinners associated with excess weight, and does eating a smaller dinner achieve greater weight loss? A systematic review and meta-analysis. Br J Nutr 118:616–628

    CAS  PubMed  Google Scholar 

  60. Franco L, Bravo R, Galán C et al (2012) Análisis de la mejora de la calidad del sueño y la ansiedad en estudiantes universitarios, bajo estrés, mediante el consumo de cerveza sin alcohol. Rev Esp Nutr Comunitaria 18(4):218–223

    Google Scholar 

  61. Karlsson B, Knutsson A, Lindahl B (2001) Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup Environ Med 58:747–752

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Von Schantz M (2008) Phenotypic effects of genetic variability in human clock genes on circadian and sleep parameters. J Genet 87:513–519

    Google Scholar 

  63. Lamont EW, Legault-Coutu D, Cermakian N, Boivin DB (2009) The role of circadian clock genes in mental disorders. Dialogues Clin Neurosci 9(3):333–342

    Google Scholar 

  64. Kotronoulas G, Stamatakis A, Stylianopoulou F (2009) Hormones, hormonal agents, and neuropeptides involved in the neuroendocrine regulation of sleep in humans. Hormones (Athens) 8:232–248

    Google Scholar 

  65. Vanitallie TB (2006) Sleep and energy balance, interactive homeostatic systems. Metabolism 55:S30-35

    CAS  PubMed  Google Scholar 

  66. Garaulet M, Sánchez-Moreno C, Smith CE et al (2011) Ghrelin, sleep reduction and evening preference: relationships to CLOCK 3111 T/C SNP and wight loss. Plos One 6(2):e17435

    Google Scholar 

  67. Garaulet M, Pérez de Heredia F (2010) Behavioural therapy in the treatment of obesity (II): role of the Mediterranean diet. Nutr Hosp 25:9–17

    Google Scholar 

  68. Garaulet M, Pérez de Heredia F (2009) Behavioural therapy in the treatment of obesity (I): new directions for clinical practice. Nutr Hosp 24:629–639

    Google Scholar 

  69. Monteleone P, Tortorella A, Docimo L et al (2008) Investigation of 3111T/C polymorphism of the CLOCK gene in obese individuals with or without binge eating disorder: association with higher body mass index. Neurosci Lett 435:30–33

    CAS  PubMed  Google Scholar 

  70. Benedetti F, Radaelli D, Bernasconi A et al (2008) Clock genes beyond the clock: CLOCK genotype biases neural correlates of moral valence decision in depressed patients. Genes Brain Behav 7:20–25

    CAS  PubMed  Google Scholar 

  71. Adamantidis A, de Lecea L (2008) Sleep and metabolism: shared circuits, new connections. Trends Endocrinol Metab 19:362–370

    CAS  PubMed  Google Scholar 

  72. Buckland G, Bach A, Serra-Majem L (2008) Obesity and the Mediterranean diet: a systematic review of observational and intervention studies. Obes Rev 9:582–593

    CAS  PubMed  Google Scholar 

  73. Van Cauter E, Knutson KL (2008) Sleep and the epidemic of obesity in children and adults. Eur J Endocrinol 159:S59-66

    PubMed  PubMed Central  Google Scholar 

  74. Knutson KL (2005) The association between pubertal status and sleep duration and quality among a nationally representative sample of U. S. adolescents. Am J Hum Biol 17:418–424. https://doi.org/10.1002/ajhb.20405

    Article  PubMed  Google Scholar 

  75. Gómez-Abellán P, Gómez-Santos C, Madrid JA et al (2010) Circadian expression of adiponectin and its receptors in human adipose tissue. Endocrinology 151(1):115–122

    PubMed  Google Scholar 

  76. Gómez-Santos C, Gómez-Abellán P, Madrid JA et al (2009) Circadian rhythm of clock genes in human adipose explants. Obesity (Silver Spring) 17:1481–1485

    Google Scholar 

  77. Hernandez-Morante JJ, Gomez-Santos C, Milagro F et al (2009) Expression of cortisol metabolism-related genes shows circadian rhythmic patterns in human adipose tissue. Int J Obes (Lond) 33:473–480

    CAS  Google Scholar 

  78. Garaulet M, Madrid JA (2009) Chronobiology, genetics and metabolic syndrome. Curr Opin Lipidol 20:127–134

    CAS  PubMed  Google Scholar 

  79. Rasmussen MS, Lihn AS, Pedersen SB et al (2006) Adiponectin receptors in human adipose tissue: effects of obesity, weight loss, and fat depots. Obesity (Silver Spring) 14:28–35

    CAS  Google Scholar 

  80. Oliver P, Ribot J, Rodríguez AM et al (2006) Resistin as a putative modulator of insulin action in the daily feeding/fasting rhythm. Pflugers Arch 452:260–267

    CAS  PubMed  Google Scholar 

  81. Gavrila A, Peng CK, Chan JL et al (2003) Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J Clin Endocrinol Metab 88:2838–2843

    CAS  PubMed  Google Scholar 

  82. Seaman GV, Engel R, Swank RL, Hissen W (1965) Circadian periodicity in some physicochemical parameters of circulating blood. Nature 207:833–835

    CAS  PubMed  Google Scholar 

  83. Garaulet M, Hernández-Morante JJ, de Heredia FP, Tébar FJ (2007) Adiponectin, the controversial hormone. Public Health Nutr 10:1145–1150

    PubMed  Google Scholar 

  84. Erren TC, Reiter RJ (2009) Defining chronodisruption. J Pineal Res 46:245–247

    CAS  PubMed  Google Scholar 

  85. Froy O (2007) The relationship between nutrition and circadian rhythms in mammals. Front Neuroendocrinol 28:61–71

    CAS  PubMed  Google Scholar 

  86. Yildiz BO, Suchard MA, Wong ML et al (2004) Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proc Natl Acad Sci USA 101:10434–10439

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kennaway DJ, Owens JA, Voultsios A et al (2007) Metabolic homeostasis in mice with disrupted Clock gene expression in peripheral tissues. Am J Physiol Regul Integr Comp Physiol 293:R1528–R1537

    CAS  PubMed  Google Scholar 

  88. Srinivasan V, Ohta Y, Espino J et al (2012) Metabolic syndrome, its pathophysiology and the role of melatonin. Recent Pat Endocr Metab Immune Drug Discov 7:11–25

    Google Scholar 

  89. Kohsaka A, Bass J (2007) A sense of time: how molecular clocks organize metabolism. Trends Endocrinol Metab 18:4–11

    CAS  PubMed  Google Scholar 

  90. Cnop M, Havel PJ, Utzschneider KM et al (2003) Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetología 46:459–469

    CAS  PubMed  Google Scholar 

  91. Kobashi C, Urakaze M, Kishida M et al (2005) Adiponectin inhibits endothelial synthesis of interleukin-8. Circ Res 97:1245–1252

    CAS  PubMed  Google Scholar 

  92. Yamauchi T, Kamon J, Ito Y et al (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–769

    CAS  PubMed  Google Scholar 

  93. Ando H, Yanagihara H, Hayashi Y et al (2005) Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology 146:5631–5636

    CAS  PubMed  Google Scholar 

  94. Gil-Campos M, Cañete RR, Gil A (2004) Adiponectin, the missing link in insulin resistance and obesity. Clin Nutr 23:963–974

    CAS  PubMed  Google Scholar 

  95. Hernandez-Morante JJ, Milagro FI, Larque E et al (2007) Relationship among adiponectin, adiponectin gene expression and fatty acids composition in morbidly obese patients. Obes Surg 17:516–524

    PubMed  Google Scholar 

  96. Després JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444:881–887

    PubMed  Google Scholar 

  97. Blüher M, Williams CJ, Klöting N et al (2007) Gene expression of adiponectin receptors in human visceral and subcutaneous adipose tissue is related to insulin resistance and metabolic parameters and is altered in response to physical training. Diabetes Care 30:3110–3115

    PubMed  Google Scholar 

  98. Cappuccio FP, D’Elia L, Strazzullo P, Miller MA (2010) Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 33:414–420

    PubMed  Google Scholar 

  99. McMullan CJ, Schernhammer ES, Rimm EB et al (2013) Melatonin secretion and the incidence of type 2 diabetes. JAMA 309:1388–1396

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330:1349–1354

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bouatia-Naji N, Bonnefond A, Cavalcanti-Proença C et al (2009) A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet 41:89–94

    CAS  PubMed  Google Scholar 

  102. Karamitri A, Renault N, Clement N et al (2013) Minireview: toward the establishment of a link between melatonin and glucose homeostasis: association of melatonin MT2 receptor variants with type 2 diabetes. Mol Endocrinol 27:1217–1233

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Cagnacci A, Arangino S, Renzi A et al (2001) Influence of melatonin administration on glucose tolerance and insulin sensitivity of postmenopausal women. Clin Endocrinol (Oxf) 54:339–346

    CAS  Google Scholar 

  104. Lyssenko V, Nagorny CL, Erdos MR et al (2009) Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet 41:82–88

    CAS  PubMed  Google Scholar 

  105. Gaulton KJ, Ferreira T, Lee Y et al (2015) DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet 47:1415–1425

    Google Scholar 

  106. Depner CM, Stothard ER, Wright KP Jr (2014) Metabolic consequences of sleep and circadian disorders. Curr Diabetes Rep 14:507

    Google Scholar 

  107. Lane JN, Chang AM, Bjonnes AC et al (2016) Impact of common diabetes risk variant in MTNR1B on sleep, circadian, and melatonin physiology. Diabetes 65:1741–1751

    CAS  PubMed  PubMed Central  Google Scholar 

  108. St. Hilaire MA, Gronfier C, Zeitzer JM, Klerman EB (2007) A physiologically based mathematical model of melatonin including ocular light suppression and interactions with the circadian pacemaker. J Pineal Res 43:294–304

    Google Scholar 

  109. Brown EN, Czeisler CA (1992) The statistical analysis of circadian phase and amplitude in constant-routine core-temperature data. J Biol Rhythms 7:177–202

    CAS  PubMed  Google Scholar 

  110. Espino J, Pariente JA, Rodríguez AB (2011) Role of melatonin on diabetes-related metabolic disorders. World J Diabetes 2(6):82–91

    Google Scholar 

  111. Srinivasan V, Ohta Y, Espino J, Pariente JA, Rodriguez AB, Mohamed M, Zakaria R (2013) Metabolic syndrome, its pathophysiology and the role of melatonin. Recent Pat Endocr Metab Immune Drug Discov 7(1):11–25

    CAS  PubMed  Google Scholar 

  112. Espino J, Rodriguez AB, Pariente JA (2019) Melatonin and oxidative stress in the diabetic state: clinical implications and potential therapeutic applications. Curr Med Chem 26(22):4178–4190

    CAS  PubMed  Google Scholar 

  113. Espino J, Pariente JA, Rodríguez AB (2012) Oxidative stress and immunosenescence: therapeutic effects of melatonin. Oxid Med Cell Longev 2012:article 670294

    Google Scholar 

  114. Liao J, Li X, Wong TY et al (2014) Impact of measurement error on testing genetic association with quantitative traits. PLoS One 9:article e87044

    Google Scholar 

  115. Ma S, Yu H, Zhao Z et al (2012) Activation of the cold-sensing TRPM8 channel triggers UCP1-dependent thermogenesis and prevents obesity. J Mol Cell Biol 4(2):88–96

    CAS  PubMed  Google Scholar 

  116. Blodgett DM, Nowosielska A, Afik S et al (2015) Novel observations from next-generation RNA sequencing of highly purified human adult and fetal islet cell subsets. Diabetes 64(9):3172–3181

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Braun M, Ramracheya R, Bengtsson M et al (2008) Voltage-gated ion channels in human pancreatic beta-cells: electrophysiological characterization and role in insulin secretion. Diabetes 57(6):1618–1628

    CAS  PubMed  Google Scholar 

  118. Li XN, Herrington J, Petrov A et al (2013) The role of voltage-gated potassium channels Kv2.1 and Kv2.2 in the regulation of insulin and somatostatin release from pancreatic islets. J Pharmacol Exp Ther 344(2):407–416

    Google Scholar 

  119. Fu J, Dai X, Plummer G et al (2017) Kv2.1 clustering contributes to ınsulin exocytosis and rescues human β-cell dysfunction. Diabetes 66(7):1890–1900

    Google Scholar 

  120. Kalman K, Nguyen A, Tseng-Crank J et al (1998) Genomic organization, chromosomal localization, tissue distribution, and biophysical characterization of a novel mammalian Shaker-related voltage-gated potassium channel, Kv1.7. J Biol Chem 273(10):5851–5857

    Google Scholar 

  121. Finol-Urdaneta RK, Remedi MS, Raasch W et al (2012) Block of Kv1.7 potassium currents increases glucose-stimulated insulin secretion. EMBO Mol Med 4(5):424–434

    Google Scholar 

  122. Hyltén-Cavallius L, Iepsen EW, Wewer Albrechtsen NJ et al (2017) Patients with long-QT syndrome caused by ımpaired hERG-encoded Kv11.1 potassium channel have exaggerated endocrine pancreatic and ıncretin function associated with reactive hypoglycemia. Circulation 135(18):1705–1719

    Google Scholar 

  123. Yang JK, Lu J, Yuan SS et al (2018) From hyper- to hypoinsulinemia and diabetes: effect of KCNH6 on insulin secretion. Cell Rep 25(13):3800-3810.e6

    CAS  PubMed  Google Scholar 

  124. Zhang J, Juhl CR, Hylten-Cavallius L et al (2020) Gain-of-function mutation in the voltage-gated potassium channel gene KCNQ1 and glucose-stimulated hypoinsulinemia—case report. BMC Endocr Disord 20(1):38–43

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Nitabach MN, Blau J, Holmes TC (2002) Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 109(4):485–495

    CAS  PubMed  Google Scholar 

  126. Ashcroft FM (2005) ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest 115(8):2047–2058

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Koster JC, Marshall BA, Ensor N et al (2000) Targeted overactivity of beta cell K(ATP) channels induces profound neonatal diabetes. Cell 100(6):645–654

    CAS  PubMed  Google Scholar 

  128. Allebrandt KV, Amin N, Müller-Myhsok B et al (2013) A K(ATP) channel gene effect on sleep duration: from genome-wide association studies to function in Drosophila. Mol Psychiatry 18(1):122–132

    CAS  PubMed  Google Scholar 

  129. Yang JJ, Cheng RC, Cheng PC et al (2017) KATP channels mediate differential metabolic responses to glucose shortage of the dorsomedial and ventrolateral oscillators in the central Clock. Sci Rep 7(1):Article 640

    Google Scholar 

  130. Raphemot R, Swale DR, Dadi PK et al (2014) Direct activation of β-cell KATP channels with a novel xanthine derivative. Mol Pharmacol 85(6):858–865

    PubMed  PubMed Central  Google Scholar 

  131. Henquin JC, Dufrane D, Gmyr V et al (2017) Pharmacological approach to understanding the control of insulin secretion in human islets. Diabetes Obes Metab 19(8):1061–1070

    CAS  PubMed  Google Scholar 

  132. Amisten S, Salehi A, Rorsman P et al (2013) An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans. Pharmacol Ther 139(3):359–391

    CAS  PubMed  Google Scholar 

  133. Kailey B, van de Bunt M, Cheley S et al (2012) SSTR2 is the functionally dominant somatostatin receptor in human pancreatic β- and α-cells. Am J Physiol Endocrinol Metab 303(9):E1107-1116

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wolford JK, Hanson RL, Kobes S et al (2001) Analysis of linkage disequilibrium between polymorphisms in the KCNJ9 gene with type 2 diabetes mellitus in Pima Indians. Mol Genet Metab 73(1):97–103

    CAS  PubMed  Google Scholar 

  135. Kuß J, Stallmeyer B, Goldstein M et al (2019) Familial sinus node disease caused by a gain of GIRK (G-Protein Activated Inwardly Rectifying K+ channel) channel function. Circ Genom Precis Med 12(1):article e002238

    Google Scholar 

  136. Bukiya AN, Durdagi S, Noskov S, Rosenhouse-Dantsker A (2017) Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus. J Biol Chem 292(15):6135–6147

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kolic J, Manning Fox JE, Chepurny OG et al (2016) PI3 kinases p110α and PI3K-C2β negatively regulate cAMP via PDE3/8 to control insulin secretion in mouse and human islets. Mol Metab 5(7):459–471

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Ho IH, Murrell-Lagnado RD (1999) Molecular mechanism for sodium-dependent activation of G protein-gated K+ channels. J Physiol 520 Pt 3(Pt 3):645–651

    Google Scholar 

  139. Xu G, Chen J, Jing G, Shalev A (2012) Preventing β-cell loss and diabetes with calcium channel blockers. Diabetes 61(4):848–856

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Rorsman P, Braun M, Zhang Q (2012) Regulation of calcium in pancreatic α- and β-cells in health and disease. Cell Calcium 51(3–4):300–308

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Nessa A, Rahman SA, Hussain K (2016) Hyperinsulinemic hypoglycemia—the molecular mechanisms. Front Endocrinol (Lausanne) 7:Article 29. https://doi.org/10.3389/fendo.2016.00029

  142. Reinbothe TM, Alkayyali S, Ahlqvist E et al (2013) The human L-type calcium channel Cav1.3 regulates insulin release and polymorphisms in CACNA1D associate with type 2 diabetes. Diabetologia 56(2):340–309

    Google Scholar 

  143. Baig SM, Koschak A, Lieb A et al (2011) Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nat Neurosci 14(1):77–84

    Google Scholar 

  144. de la Cruz L, Puente EI, Reyes-Vaca A et al (2016) PIP2 in pancreatic β-cells regulates voltage-gated calcium channels by a voltage-independent pathway. Am J Physiol Cell Physiol 311(4):C630–C640

    PubMed  Google Scholar 

  145. Wang L, Bhattacharjee A, Zuo Z et al (1999) A low voltage-activated Ca2+ current mediates cytokine-induced pancreatic beta-cell death. Endocrinology 140(3):1200–1204

    CAS  PubMed  Google Scholar 

  146. Cosens DJ, Manning A (1969) Abnormal electroretinogram from a Drosophila mutant. Nature 224(5216):285–287

    CAS  PubMed  Google Scholar 

  147. Lee Y, Montell C (2013) Drosophila TRPA1 functions in temperature control of circadian rhythm in pacemaker neurons. J Neurosci 33(16):6716–6725

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Sivachenko A, Li Y, Abruzzi KC, Rosbash M (2013) The transcription factor Mef2 links the Drosophila core clock to Fas2, neuronal morphology, and circadian behavior. Neuron 79(2):281–292

    CAS  PubMed  Google Scholar 

  149. Camacho S, Michlig S, de Senarclens-Bezençon C et al (2015) Anti-obesity and anti-hyperglycemic effects of cinnamaldehyde via altered ghrelin secretion and functional impact on food intake and gastric emptying. Sci Rep 5:Article 7919

    Google Scholar 

  150. Khare P, Jagtap S, Jain Y et al (2016) Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice. BioFactors 42(2):201–211

    CAS  PubMed  Google Scholar 

  151. Iwasaki Y, Tanabe M, Kobata K, Watanabe T (2008) TRPA1 agonists–allyl isothiocyanate and cinnamaldehyde–induce adrenaline secretion. Biosci Biotechnol Biochem 72(10):2608–2614

    CAS  PubMed  Google Scholar 

  152. Ahn J, Lee H, Im SW et al (2014) Allyl isothiocyanate ameliorates insulin resistance through the regulation of mitochondrial function. J Nutr Biochem 25(10):1026–1034

    CAS  PubMed  Google Scholar 

  153. Cao DS, Zhong L, Hsieh TH et al (2012) Expression of transient receptor potential ankyrin 1 (TRPA1) and its role in insulin release from rat pancreatic beta cells. PLoS One. 7(5):article e38005

    Google Scholar 

  154. Kim MJ, Son HJ, Song SH et al (2013) The TRPA1 agonist, methyl syringate suppresses food intake and gastric emptying. PLoS One 8(8):article e71603

    Google Scholar 

  155. Caterina MJ, Schumacher MA, Tominaga M et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824

    CAS  PubMed  Google Scholar 

  156. Nilius B, Szallasi A (2014) Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 66(3):676–814

    PubMed  Google Scholar 

  157. Smeets AJ, Westerterp-Plantenga MS (2009) The acute effects of a lunch containing capsaicin on energy and substrate utilisation, hormones, and satiety. Eur J Nutr 48(4):229–234

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Westerterp-Plantenga MS, Smeets A, Lejeune MP (2005) Sensory and gastrointestinal satiety effects of capsaicin on food intake. Int J Obes (Lond) 29(6):682–688

    CAS  Google Scholar 

  159. Ahuja KD, Robertson IK, Geraghty DP, Ball MJ (2007) The effect of 4-week chilli supplementation on metabolic and arterial function in humans. Eur J Clin Nutr 61(3):326–333

    CAS  PubMed  Google Scholar 

  160. Zhang LL, Yan Liu D, Ma LQ et al (2007) Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ Res 100(7):1063–1070

    CAS  PubMed  Google Scholar 

  161. Baskaran P, Krishnan V, Ren J, Thyagarajan B (2016) Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br J Pharmacol 173(15):2369–2389

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Cheung SY, Huang Y, Kwan HY et al (2015) Activation of transient receptor potential vanilloid 3 channel suppresses adipogenesis. Endocrinology 156(6):2074–2086

    CAS  PubMed  Google Scholar 

  163. Ye L, Kleiner S, Wu J et al (2012) TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell 151(1):96–110

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang F, Chen F, Wang G et al (2018) Rapamycin provides anti-epileptogenic effect in a rat model of post-traumatic epilepsy via deactivation of mTOR signaling pathway. Exp Ther Med 15(6):4763–4770

    PubMed  PubMed Central  Google Scholar 

  165. Baboota RK, Murtaza N, Jagtap S et al (2014) Capsaicin-induced transcriptional changes in hypothalamus and alterations in gut microbial count in high fat diet fed mice. J Nutr Biochem 25(9):893–902

    CAS  PubMed  Google Scholar 

  166. van de Wall EH, Wielinga PY, Strubbe JH, van Dijk G (2006) Neonatal capsaicin causes compensatory adjustments to energy homeostasis in rats. Physiol Behav 89(1):115–121

    PubMed  Google Scholar 

  167. Koopmans SJ, Leighton B, DeFronzo RA (1998) Neonatal de-afferentation of capsaicin-sensitive sensory nerves increases in vivo insulin sensitivity in conscious adult rats. Diabetologia 41(7):813–820

    CAS  PubMed  Google Scholar 

  168. Lee E, Jung DY, Kim JH et al (2015) Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance. FASEB J 29(8):3182–3192

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Pomonis JD, Harrison JE, Mark L et al (2003) N-(4-Tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: II. In vivo characterization in rat models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 306(1):387–393

    Google Scholar 

  170. Moraes MN, Mezzalira N, de Assis LV et al (2017) TRPV1 participates in the activation of clock molecular machinery in the brown adipose tissue in response to light-dark cycle. Biochim Biophys Acta Mol Cell Res 1864(2):324–335

    CAS  PubMed  Google Scholar 

  171. Fredin MF, Kjellstedt A, Smith DM, Oakes N (2015) The novel TRPVI antagonist, AZV1, improves insulin sensitivity in ob/ob mice. Diabetologia 58:S289–S289

    Google Scholar 

  172. Zhang Z, Zhang W, Jung DY et al (2012) TRPM2 Ca2+ channel regulates energy balance and glucose metabolism. Am J Physiol Endocrinol Metab 302(7):E807–E816

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Togashi K, Hara Y, Tominaga T et al (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25(9):1804–1815

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Uchida K, Dezaki K, Damdindorj B et al (2011) Lack of TRPM2 impaired insulin secretion and glucose metabolisms in mice. Diabetes 60(1):119–126

    CAS  PubMed  Google Scholar 

  175. Uchida K, Tominaga M (2011) TRPM2 modulates insulin secretion in pancreatic β-cells. Islets 3(4):209–211

    PubMed  Google Scholar 

  176. Pang B, Kim S, Li D et al (2017) Glucagon-like peptide-1 potentiates glucose-stimulated insulin secretion via the transient receptor potential melastatin 2 channel. Exp Ther Med 14(5):5219–5227

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Kurashina T, Dezaki K, Yoshida M et al (2015) The β-cell GHSR and downstream cAMP/TRPM2 signaling account for insulinostatic and glycemic effects of ghrelin. Sci Rep 5:Article 14041

    Google Scholar 

  178. Du J, Xie J, Yue L (2009) Modulation of TRPM2 by acidic pH and the underlying mechanisms for pH sensitivity. J Gen Physiol 134(6):471–488

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Ota W, Nakane Y, Kashio M et al (2019) Involvement of TRPM2 and TRPM8 in temperature-dependent masking behavior. Sci Rep 9(1):Article 3706

    Google Scholar 

  180. Silva-Alves JM, Mares-Guia TR, Oliveira JS et al (2008) Glucose-induced heat production, insulin secretion and lactate production in isolated Wistar rat pancreatic islets. Thermochim Acta 474(1–2):67–71

    CAS  Google Scholar 

  181. Song K, Wang H, Kamm GB et al (2016) The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 353(6306):1393–1398

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Badheka D, Borbiro I, Rohacs T (2015) Transient receptor potential melastatin 3 is a phosphoinositide-dependent ion channel. J Gen Physiol 146(1):65–77

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Oberwinkler J, Philipp SE (2014) TRPM3. Handb Exp Pharmacol 222:427–459

    CAS  PubMed  Google Scholar 

  184. Klose C, Straub I, Riehle M et al (2011) Fenamates as TRP channel blockers: mefenamic acid selectively blocks TRPM3. Br J Pharmacol 162(8):1757–1769

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Krügel U, Straub I, Beckmann H, Schaefer M (2017) Primidone inhibits TRPM3 and attenuates thermal nociception in vivo. Pain 158(5):856–867

    PubMed  PubMed Central  Google Scholar 

  186. Straub I, Mohr F, Stab J et al (2013) Citrus fruit and fabacea secondary metabolites potently and selectively block TRPM3. Br J Pharmacol 168(8):183518–183550

    Google Scholar 

  187. Suzuki H, Sasaki E, Nakagawa A et al (2016) Diclofenac, a nonsteroidal anti-inflammatory drug, is an antagonist of human TRPM3 isoforms. Pharmacol Res Perspect 4(3):article e00232

    Google Scholar 

  188. Badheka D, Yudin Y, Borbiro I et al (2017) Inhibition of transient receptor potential melastatin 3 ion channels by G-protein βγ subunits. Elife 6:article e26147

    Google Scholar 

  189. Zamudio-Bulcock PA, Everett J, Harteneck C, Valenzuela CF (2011) Activation of steroid-sensitive TRPM3 channels potentiates glutamatergic transmission at cerebellar Purkinje neurons from developing rats. J Neurochem 119(3):474–485

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Wagner TF, Loch S, Lambert S et al (2008) Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat Cell Biol 10(12):1421–1430

    CAS  PubMed  Google Scholar 

  191. Vriens J, Owsianik G, Hofmann T et al (2011) TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70(3):482–494

    CAS  PubMed  Google Scholar 

  192. Nilius B, Prenen J, Tang J et al (2005) Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem 280(8):6423–6433

    CAS  PubMed  Google Scholar 

  193. Leech CA, Habener JF (1998) A role for Ca2+-sensitive nonselective cation channels in regulating the membrane potential of pancreatic beta-cells. Diabetes 47(7):1066–1073

    CAS  PubMed  Google Scholar 

  194. Marigo V, Courville K, Hsu WH et al (2009) TRPM4 impacts on Ca2+ signals during agonist-induced insulin secretion in pancreatic beta-cells. Mol Cell Endocrinol 299(2):194–203

    CAS  PubMed  Google Scholar 

  195. Nelson PL, Zolochevska O, Figueiredo ML et al (2011) Regulation of Ca(2+)-entry in pancreatic α-cell line by transient receptor potential melastatin 4 plays a vital role in glucagon release. Mol Cell Endocrinol 335(2):126–134

    CAS  PubMed  Google Scholar 

  196. Philippaert K, Pironet A, Mesuere M et al (2017) Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nat Commun 8:Article 14733

    Google Scholar 

  197. Peier AM, Moqrich A, Hergarden AC et al (2002) A TRP channel that senses cold stimuli and menthol. Cell 108(5):705–715

    CAS  PubMed  Google Scholar 

  198. Mahieu F, Owsianik G, Verbert L et al (2007) TRPM8-independent menthol-induced Ca2+ release from endoplasmic reticulum and Golgi. J Biol Chem 282(5):3325–3336

    CAS  PubMed  Google Scholar 

  199. Moraes MN, de Assis LVM, Henriques FDS et al (2017) Cold-sensing TRPM8 channel participates in circadian control of the brown adipose tissue. Biochim Biophys Acta Mol Cell Res 1864(12):2415–2427

    CAS  PubMed  Google Scholar 

  200. Yoneshiro T, Aita S, Matsushita M et al (2011) Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity (Silver Spring) 19(1):13–16

    Google Scholar 

Download references

Acknowledgements

This work has supported by Junta de Extremadura grant (GR18040). Authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Antonio Pariente Llanos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uguz, A.C., Hernandez, L.F., Singh, J., Moratinos, A.B.R., Llanos, J.A.P. (2021). Dysfunctional Circadian Rhythm Is Associated with Food Consumption, Obesity and Related Metabolic Diseases: Role of Ion Channels. In: Tappia, P.S., Ramjiawan, B., Dhalla, N.S. (eds) Cellular and Biochemical Mechanisms of Obesity. Advances in Biochemistry in Health and Disease, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-84763-0_6

Download citation

Publish with us

Policies and ethics