Skip to main content

The Concept and Mechanisms of Metastasis

  • Chapter
  • First Online:
Biomarkers in Carcinoma of Unknown Primary
  • 1326 Accesses

Abstract

Metastasis, the spread of neoplastic cells to secondary sites to form a mass, is a multistep process. In most of the cases, invasion of the tumor cells into the vascular wall and the circulation; attachment and invasion of the vascular lumen; extravasation to the new environment, “the metastatic site”; and forming a new colony are required. Each of these steps depends upon the success of molecular mechanisms, and, fortunately, only rare tumor cells are able to form metastasis. Epithelial-mesenchymal transition of the malignant cells, matrix metalloproteinases, and different proteases, stromal cells including the inflammatory cells, immune reaction and physical stress at the vasculature, attachment molecules, and epithelial transition of the tumor cells at the metastatic site are the participants.

Many studies are focused on organ tropism of the cancer cells. Understanding mechanisms of metastasis is important for developing diagnostic algorithms and targeted therapies. Sometimes the metastatic mass is the presenting finding. In these cases finding the primary tumor is important. In some cases, instead of imaging and biochemical and histopathological findings, it is not possible. The histopathological biomarkers solve the primary origin in many cases. This chapter focuses on mechanisms of metastasis and description and frequency of primary unknown carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharyya S, Matrisian L, Welch DR, Massagué J. Invasion and metastasis. Philadelphia, PA: Elsevier - Saunders; 2015. p. 269–84.

    Google Scholar 

  2. Clark AG, Vignjevic DM. Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol. 2015;36:13–22.

    CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    CAS  PubMed  Google Scholar 

  4. Cavallo F, De Giovanni C, Nanni P, Forni G, Lollini PL. 2011: the immune hallmarks of cancer. Cancer Immunol Immunother. 2011;60(3):319–26. https://doi.org/10.1007/s00262-010-0968-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pehlivanoğlu B, Aysal A, Ekmekci S, Şahin Y, Toper MH, Gündoğdu B, et al. Neoplastik Hastalıkların Moleküler Patolojik Mekanizmaları. J Curr Pathol. 2019;2:62–80. https://doi.org/10.5146/jcpath.2019.48.

    Article  Google Scholar 

  6. Sarioglu S. Tumor deposits, mechanism, morphology and prognostic implications. 1st ed. Switzerland: Springer Nature; 2018.

    Google Scholar 

  7. Kumar V, Abbas AAJ. Neoplasia. In: Robbins and Cotran pathologic basis of disease. Canada: Elsevier Saunders; 2015.

    Google Scholar 

  8. Chatterjee A, Rodger EJ, Eccles MR. Epigenetic drivers of tumourigenesis and cancer metastasis. Semin Cancer Biol. 2018;51:149–59. https://doi.org/10.1016/j.semcancer.2017.08.004.

    Article  CAS  PubMed  Google Scholar 

  9. Ayla S, Karahüseyinogluc S. Cancer stem cells, their microenvironment and Anoikis. Crit Rev Oncog. 2019;24(1):27–34. https://doi.org/10.1615/CritRevOncog.2018029433.

    Article  PubMed  Google Scholar 

  10. Celià-Terrassa T, Jolly MK. Cancer stem cells and epithelial-to-mesenchymal transition in cancer metastasis. Cold Spring Harb Perspect Med. 2020;10(7):a036905. https://doi.org/10.1101/cshperspect.a036905.

    Article  CAS  PubMed  Google Scholar 

  11. Steeg PS. Targeting metastasis. Nat Rev Cancer. 2016;16(4):201–18. https://doi.org/10.1038/nrc.2016.25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Massagué J, Batlle E, Gomis RR. Understanding the molecular mechanisms driving metastasis. Mol Oncol. 2017;11(1):3–4. https://doi.org/10.1002/1878-0261.12024.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Riggi N, Aguet M, Stamenkovic I. Cancer metastasis: a reappraisal of its underlying mechanisms and their relevance to treatment. Annu Rev Pathol. 2018;13:117–40. https://doi.org/10.1146/annurev-pathol-020117-044127.

    Article  CAS  PubMed  Google Scholar 

  14. Zeeshan R, Mutahir Z. Cancer metastasis—tricks of the trade. Bosn J Basic Med Sci. 2017;17(3):172–82. https://doi.org/10.17305/bjbms.2017.1908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Paoletti C, Hayes DF. Circulating tumor cells. Adv Exp Med Biol. 2016;882:235–58. https://doi.org/10.1007/978-3-319-22909-6_10.

    Article  CAS  PubMed  Google Scholar 

  16. Fabisiewicz A, Grzybowska E. CTC clusters in cancer progression and metastasis. Med Oncol. 2017;34(1):12. https://doi.org/10.1007/s12032-016-0875-0.

    Article  CAS  PubMed  Google Scholar 

  17. Dawood S. Novel biomarkers of metastatic cancer. Expert Rev Mol Diagn. 2010;10(5):581–90. https://doi.org/10.1586/erm.10.35.

    Article  CAS  PubMed  Google Scholar 

  18. McAllister SS, Weinberg RA. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol. 2014;16(8):717–27. https://doi.org/10.1038/ncb3015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shuman Moss LA, Jensen-Taubman S, Stetler-Stevenson WG. Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am J Pathol. 2012;181(6):1895–9.

    PubMed  PubMed Central  Google Scholar 

  20. Mortezaee K. CXCL12/CXCR4 axis in the microenvironment of solid tumors: a critical mediator of metastasis. Life Sci. 2020;249:117534. https://doi.org/10.1016/j.lfs.2020.117534.

    Article  CAS  PubMed  Google Scholar 

  21. Sandiford OA, Moore CA, Du J, Boulad M, Gergues M, Eltouky H, et al. Human aging and cancer: role of miRNA in tumor microenvironment. Adv Exp Med Biol. 2018;1056:137–52. https://doi.org/10.1007/978-3-319-74470-4_9.

    Article  CAS  PubMed  Google Scholar 

  22. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    CAS  PubMed  Google Scholar 

  23. De Faria PJ, Bonatto D. Influence of transcriptional variants on metastasis. RNA Biol. 2018;15(8):1006–24. https://doi.org/10.1080/15476286.2018.1493328.

    Article  Google Scholar 

  24. Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017;7(5):1016–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Turajlic S, Swanton C. Metastasis as an evolutionary process. Science. 2016;352(6282):169–75.

    CAS  PubMed  Google Scholar 

  26. Yadav AS, Pandey PR, Butti R, Radharani NNV, Roy S, Bhalara SR, et al. The biology and therapeutic implications of tumor dormancy and reactivation. Front Oncol. 2018;8:72. https://doi.org/10.3389/fonc.2018.00072.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mallin MM, Pienta KJ, Amend SR. Cancer cell foraging to explain bone-specific metastatic progression. Bone. 2020;115788 https://doi.org/10.1016/j.bone.2020.115788.

  28. Zhong Z, Yu J, Virshup DM, Madan B. Wnts and the hallmarks of cancer. Cancer Metastasis Rev. 2020;39(3):625–45. https://doi.org/10.1007/s10555-020-09887-6.

    Article  PubMed  Google Scholar 

  29. Liu N, Guo XH, Liu JP, Cong YS. Role of telomerase in the tumour microenvironment. Clin Exp Pharmacol Physiol. 2020;47(3):357–64. https://doi.org/10.1111/1440-1681.13223.

    Article  CAS  PubMed  Google Scholar 

  30. Curran S, Murray GI. Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. Eur J Cancer. 2000;36:1621–30.

    CAS  PubMed  Google Scholar 

  31. Zhou X, Qi Y. Larynx carcinoma regulates tumor-associated macrophages through PLGF signaling. Sci Rep. 2015;5:10071.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Su S, Liu Q, Chen J, Chen J, Chen F, He C, et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell. 2014;25:605–20.

    PubMed  Google Scholar 

  33. Tomuleasa C, Zaharie F, Muresan MS, Pop L, Fekete Z, Dima D, et al. How to diagnose and treat a cancer of unknown primary site. J Gastrointestin Liver Dis. 2017;26(1):69–79. https://doi.org/10.15403/jgld.2014.1121.261.haz.

    Article  PubMed  Google Scholar 

  34. Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun. 2020;11(1):5120. https://doi.org/10.1038/s41467-020-18794-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Akhtar M, Haider A, Rashid S, Al-Nabet ADMH. Paget's "seed and soil" theory of cancer metastasis: an idea whose time has come. Adv Anat Pathol. 2019;26(1):69–74. https://doi.org/10.1097/PAP.0000000000000219.

    Article  CAS  PubMed  Google Scholar 

  36. Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 2011;20(3):300–14. https://doi.org/10.1016/j.ccr.2011.08.012. PubMed PMID: 21907922; PubMed Central PMCID: PMC3172582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Skrypek N, Goossens S, De Smedt E, Vandamme N, Berx G. Epithelial-to-mesenchymal transition: epigenetic reprogramming driving cellular plasticity. Trends Genet. 2017;33(12):943–59. https://doi.org/10.1016/j.tig.2017.08.004.

    Article  CAS  PubMed  Google Scholar 

  38. Diepenbruck M, Christofori G. Epithelial-mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr Opin Cell Biol. 2016;43:7–13.

    CAS  PubMed  Google Scholar 

  39. Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, et al. Guidelines and definitions for research on epithelial-mesenchymal transition. EMT International Association (TEMTIA). Nat Rev Mol Cell Biol. 2020;21(6):341–52. https://doi.org/10.1038/s41580-020-0237-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sever R, Brugge JS. Signal transduction in cancer. Cold Spring Harb Perspect Med. 2015;5 https://doi.org/10.1101/cshperspect.a006098.

  41. Nutter JM, Fitzgerald TL, Bertrand FE, Sigounas G. Notch-1 promotes stemness and epithelial to mesenchymal transition in colorectal cancer. J Cell Biochem. 2015;116:2517–27.

    PubMed  Google Scholar 

  42. Jin K, Li T, van Dam H, Zhou F, Zhang L. Molecular insights into tumour metastasis: tracing the dominant events. J Pathol. 2017;241:567–77.

    CAS  PubMed  Google Scholar 

  43. Liao TT, Yang MH. Revisiting epithelial-mesenchymal transition in cancer metastasis: the connection between epithelial plasticity and stemness. Mol Oncol. 2017;11(7):792–804. https://doi.org/10.1002/1878-0261.12096.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lin X, Wang S, Sun M, Zhang C, Wei C, Yang C, et al. miR-195-5p/NOTCH2-mediated EMT modulates IL-4 secretion in colorectal cancer to affect M2-like TAM polarization. J Hematol Oncol. 2019;12(1):20. Erratum in: J Hematol Oncol 2019;12:122

    PubMed  PubMed Central  Google Scholar 

  45. Lucien F, Leong HS. The role of extracellular vesicles in cancer microenvironment and metastasis: myths and challenges. Biochem Soc Trans. 2019;47(1):273–80. https://doi.org/10.1042/BST20180253.

    Article  CAS  PubMed  Google Scholar 

  46. Prieto-Vila M, Takahashi RU, Usuba W, Kohama I, Ochiya T. Drug resistance driven by cancer stem cells and their niche. Int J Mol Sci. 2017;18(12):2574. https://doi.org/10.3390/ijms18122574.

    Article  CAS  PubMed Central  Google Scholar 

  47. Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 2013;1833(12):3481–98. https://doi.org/10.1016/j.bbamcr.2013.06.026.

    Article  CAS  PubMed  Google Scholar 

  48. Wang JCY, Dick JE. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 2005;15(9):494–501. https://doi.org/10.1016/j.tcb.2005.07.004.

    Article  CAS  PubMed  Google Scholar 

  49. Leon G, MacDonagh L, Finn SP, Cuffe S, Barr MP. Cancer stem cells in drug resistant lung cancer: targeting cell surface markers and signaling pathways. Pharmacol Ther. 2016;158:71–90. https://doi.org/10.1016/j.pharmthera.2015.12.001.

    Article  CAS  PubMed  Google Scholar 

  50. Kinugasa Y, Matsui T, Takakura N. CD44 expressed on cancer-associated fibroblasts is a functional molecule supporting the stemness and drug resistance of malignant cancer cells in the tumor microenvironment. Stem Cells. 2014;32(1):145–56.

    CAS  PubMed  Google Scholar 

  51. Sökmen S, Sarioglu S, Füzün M, Terzi C, Küpelioglu A, Aslan B. Prognostic significance of angiogenesis in rectal cancer: a morphometric investigation. Anticancer Res. 2001;21(6B):4341–8.

    PubMed  Google Scholar 

  52. Lozar T, Gersak K, Cemazar M, Kuhar CG, Jesenko T. The biology and clinical potential of circulating tumor cells. Radiol Oncol. 2019;53(2):131–47. https://doi.org/10.2478/raon-2019-0024.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sis B, Sarioglu S, Sokmen S, Sakar M, Kupelioglu A, Fuzun M. Desmoplasia measured by computer assisted image analysis: an independent prognostic marker in colorectal carcinoma. J Clin Pathol. 2005;58(1):32–8. https://doi.org/10.1136/jcp.2004.018705. PMID: 15623479; PMCID: PMC1770537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Unlu M, Cetinayak HO, Onder D, Ecevit C, Akman F, Ikiz AÖ, et al. The prognostic value of tumor-stroma proportion in laryngeal squamous cell carcinoma. Turk Patoloji Derg. 2013;29(1):27–35. https://doi.org/10.5146/tjpath.2013.01144.

    Article  PubMed  Google Scholar 

  55. Labanca E, Vazquez ES, Corn PG, Roberts JM, Wang F, Logothetis CJ, et al. Fibroblast growth factors signaling in bone metastasis. Endocr Relat Cancer. 2020;27(7):R255–65. https://doi.org/10.1530/ERC-19-0472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557–63. https://doi.org/10.1038/nature06188.

    Article  CAS  PubMed  Google Scholar 

  57. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, et al. NF-kappaB functions as a tumour promoter in inflammation- associated cancer. Nature. 2004;431(7007):461–6.

    CAS  PubMed  Google Scholar 

  58. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med. 2004;10(1):48–54.

    PubMed  Google Scholar 

  59. Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med. 2007;13(10):1211–8. https://doi.org/10.1038/nm1649.

    Article  CAS  PubMed  Google Scholar 

  60. Adekoya TO, Richardson RM. Cytokines and chemokines as mediators of prostate cancer metastasis. Int J Mol Sci. 2020;21(12):4449. https://doi.org/10.3390/ijms21124449.

    Article  CAS  PubMed Central  Google Scholar 

  61. Kiesel L, Kohl A. Role of the RANK/RANKL pathway in breast cancer. Maturitas. 2016;86:10–6. https://doi.org/10.1016/j.maturitas.2016.01.001.

    Article  CAS  PubMed  Google Scholar 

  62. Chu GC, Chung LW. RANK-mediated signaling network and cancer metastasis. Cancer Metastasis Rev. 2014;33(2–3):497–509. https://doi.org/10.1007/s10555-013-9488-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019;79(18):4557–66. https://doi.org/10.1158/0008-5472.CAN-18-3962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Giraldo NA, Peske JD, Sautès-Fridman C, Fridman WH. Integrating histopathology, immune biomarkers, and molecular subgroups in solid cancer: the next step in precision oncology. Virchows Arch. 2019;474(4):463–74. https://doi.org/10.1007/s00428-018-02517-1.

    Article  PubMed  Google Scholar 

  65. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124:263–6.

    CAS  PubMed  Google Scholar 

  66. Yahaya MAF, Lila MAM, Ismail S, Zainol M, Afizan NARNM. Tumour-associated macrophages (TAMs) in colon cancer and how to reeducate them. J Immunol Res. 2019;2368249

    Google Scholar 

  67. Liu Y, Cao X. The origin and function of tumor-associated macrophages. Cell Mol Immunol. 2015;12:1–4.

    PubMed  Google Scholar 

  68. Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest. 2007;117:1155–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Tanaka S, Motomura Y, Suzuki Y, Yagi R, Inoue H, Miyatake S, et al. The enhancer HS2 critically regulates GATA-3-mediated Il4 transcription in T(H)2 cells. Nat Immunol. 2011;12:77–85.

    CAS  PubMed  Google Scholar 

  70. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32:593–604.

    CAS  PubMed  Google Scholar 

  71. Wyckoff JB, Wang Y, Lin EY, Li J, Goswami S, Stanley ER, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 2007;67:2649–56.

    CAS  PubMed  Google Scholar 

  72. Zhang Y, Zhou N, Yu X, Zhang X, Li S, Lei Z, et al. Tumacrophage: macrophages transformed into tumor stem-like cells by virulent genetic material from tumor cells. Oncotarget. 2017;8:82326–43.

    PubMed  PubMed Central  Google Scholar 

  73. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52. https://doi.org/10.1038/nrc2618.

    Article  CAS  PubMed  Google Scholar 

  74. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67. https://doi.org/10.1016/j.cell.2010.03.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 2010;24(3):241–55. https://doi.org/10.1101/gad.1874010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Komohara Y, Niino D, Saito Y, Ohnishi K, Horlad H, Ohshima K, et al. Clinical significance of CD163(+) tumor-associated macrophages in patients with adult T-cell leukemia/lymphoma. Cancer Sci. 2013;104:945–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Augustine NT. The aegis: platelets as biomarkers of tumor progression. Biomark Med. 2020;14(7):573–85. https://doi.org/10.2217/bmm-2019-0514.

    Article  CAS  Google Scholar 

  78. Aceto N, Bardia A, Wittner BS, Donaldson MC, O'Keefe R, Engstrom A, et al. AR expression in breast cancer CTCs associates with bone metastases. Mol Cancer Res. 2018;16(4):720–7. https://doi.org/10.1158/1541-7786.MCR-17-0480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. García SA, Weitz J, Schölch S. Circulating tumor cells. Methods Mol Biol. 1692;2018:213–9. https://doi.org/10.1007/978-1-4939-7401-6_18.

    Article  CAS  Google Scholar 

  80. Wu K, Sharma S, Venkat S, Liu K, Zhou X, Watabe K. Non-coding RNAs in cancer brain metastasis. Front Biosci (Schol Ed). 2016;8:187–202. https://doi.org/10.2741/s457.

    Article  Google Scholar 

  81. Rajan N, Khanal T, Ringel MD. Progression and dormancy in metastatic thyroid cancer: concepts and clinical implications. Endocrine. 2020;70(1):24–35. https://doi.org/10.1007/s12020-020-02453-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hu W, Zhang L, Dong Y, Tian Z, Chen Y, Dong S. Tumour dormancy in inflammatory microenvironment: a promising therapeutic strategy for cancer-related bone metastasis. Cell Mol Life Sci. 2020;77(24):5149–69. https://doi.org/10.1007/s00018-020-03572-1.

    Article  CAS  PubMed  Google Scholar 

  83. Kobayashi A, Okuda H, Xing F, Pandey PR, Watabe M, Hirota S, et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med. 2011;208(13):2641–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M, et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell. 2011;20(6):701–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer. 2017;17:302–17.

    CAS  PubMed  Google Scholar 

  86. Liu Y, Cao X. Organotropic metastasis: role of tumor exosomes. Cell Res. 2016;26(2):149–50. https://doi.org/10.1038/cr.2015.153.

    Article  CAS  PubMed  Google Scholar 

  87. Esteller M, Manel E. Epigenetics in cancer. N Engl J Med. 2008;358:1148–59.

    CAS  PubMed  Google Scholar 

  88. Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet. 2003;33:49–54.

    CAS  PubMed  Google Scholar 

  89. You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22(1):9–20. https://doi.org/10.1016/j.ccr.2012.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Albini A, Mirisola V, Pfeffer U. Metastasis signatures: genes regulating tumor-microenvironment interactions predict metastatic behavior. Cancer Metastasis Rev. 2008;27:75–83.

    CAS  PubMed  Google Scholar 

  91. Wang F, Zhang W, Song Z, Wang M, Wu H, Yang Y, et al. A novel miRNA inhibits metastasis of prostate cancer via decreasing CREBBP-mediated histone acetylation. J Cancer Res Clin Oncol. 2021;147(2):469–80. https://doi.org/10.1007/s00432-020-03455-9.

    Article  CAS  PubMed  Google Scholar 

  92. Ma L. MicroRNA and metastasis. Adv Cancer Res. 2016;132:165–207. https://doi.org/10.1016/bs.acr.2016.07.004.

    Article  CAS  PubMed  Google Scholar 

  93. Baranwal S, Alahari SK. miRNA control of tumor cell invasion and metastasis. Int J Cancer. 2010;126(6):1283–90. https://doi.org/10.1002/ijc.25014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.

    CAS  PubMed  Google Scholar 

  95. Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol. 2008;28:5369–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. D'Oronzo S, Brown J, Coleman R. The value of biomarkers in bone metastasis. Eur J Cancer Care. 2017;26:6. https://doi.org/10.1111/ecc.12725.

    Article  Google Scholar 

  97. Wang Y, Wang S, Ren Y, Zhou X. The role of lncRNA crosstalk in leading cancer metastasis of head and neck squamous cell carcinoma. Front Oncol. 2020;10:561833. https://doi.org/10.3389/fonc.2020.561833.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17(6):816–26. https://doi.org/10.1038/ncb3169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fabisiewicz A, Szostakowska-Rodzos M, Zaczek AJ, Grzybowska EA. Circulating tumor cells in early and advanced breast cancer; biology and prognostic value. Int J Mol Sci. 2020;21(5):1671. https://doi.org/10.3390/ijms21051671.

    Article  CAS  PubMed Central  Google Scholar 

  100. Vignot S, Besse B, André F, Spano JP, Soria JC. Discrepancies between primary tumor and metastasis: a literature review on clinically established biomarkers. Crit Rev Oncol Hematol. 2012;84(3):301–13. https://doi.org/10.1016/j.critrevonc.2012.05.002.

    Article  PubMed  Google Scholar 

  101. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204(10):2349–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Lugassy C, Zadran S, Bentolila LA, Wadehra M, Prakash R, Carmichael ST, et al. Angiotropism, pericytic mimicry and extravascular migratory metastasis in melanoma: an alternative to intravascular cancer dissemination. Cancer Microenviron. 2014;7(3):139–52. https://doi.org/10.1007/s12307-014-0156-4.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Fedda F, Migden MR, Curry JL, Torres-Cabala CA, Tetzlaff MT, Aung PP, et al. Angiotropism in recurrent cutaneous squamous cell carcinoma: implications for regional tumor recurrence and extravascular migratory spread. J Cutan Pathol. 2019;46(2):152–8. https://doi.org/10.1111/cup.13388.

    Article  PubMed  Google Scholar 

  104. Sarioglu S. Tumor deposits; mechanisms, morphology, and differential diagnosis. In: Sarioglu S, editor. Tumor deposits: mechanism, morphology and prognostic implications. 1st ed. Cham, Switzerland: Springer Nature; 2018. p. 37–55.

    Google Scholar 

  105. Sarioglu S, Akbulut N, Iplikci S, Aydin B, Dogan E, Unlu M, et al. Tumor deposits in head and neck carcinomas. Head Neck. 2016;38(Suppl 1):E256–60. https://doi.org/10.1002/hed.23981.

    Article  PubMed  Google Scholar 

  106. Sarioglu S. Peritoneal carcinomatosis-relation to tumor deposits. In: Sarioglu S, editor. Tumor deposits: mechanism, morphology and prognostic implications. 1st ed. Cham, Switzerland: Springer Nature; 2018. p. 117–32.

    Google Scholar 

  107. Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8(2):98–101.

    CAS  PubMed  Google Scholar 

  108. Langley RR, Fidler IJ. The seed and soil hypothesis revisited the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer. 2011;128(11):2527–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Azizidoost S, Asnafi AA, Saki N. Signaling-chemokine axis network in brain as a sanctuary site for metastasis. J Cell Physiol. 2019;234(4):3376–82. https://doi.org/10.1002/jcp.27305.

    Article  CAS  PubMed  Google Scholar 

  110. Oppenheimer SB. Cellular basis of cancer metastasis: a review of fundamentals and new advances. Acta Histochem. 2006;108(5):327–34.

    CAS  PubMed  Google Scholar 

  111. Chen Q, Zhang XH, Massagué J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell. 2011;20(4):538–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M, et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging a4ß1-positive osteoclast progenitors. Cancer Cell. 2011;20(6):701–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Conner JR, Hornick JL. Metastatic carcinoma of unknown primary: diagnostic approach using immunohistochemistry. Adv Anat Pathol. 2015;22(3):149–67.

    CAS  PubMed  Google Scholar 

  114. Qaseem A, Usman N, Jayaraj JS, Janapala RN, Kashif T. Cancer of unknown primary: a review on clinical guidelines in the development and targeted management of patients with the unknown primary site. Cureus. 2019;11(9):e5552. https://doi.org/10.7759/cureus.5552.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bochtler T, Löffler H, Krämer A. Diagnosis and management of metastatic neoplasms with unknown primary. Semin Diagn Pathol. 2018;35(3):199–206. https://doi.org/10.1053/j.semdp.2017.11.013.

    Article  PubMed  Google Scholar 

  116. Greco FA. Molecular diagnosis of the tissue of origin in cancer of unknown primary site:useful in patient management. Curr Treat Options in Oncol. 2013;14(4):634–42. https://doi.org/10.1007/s11864-013-0257-1.

    Article  Google Scholar 

  117. Zaun G, Schuler M, Herrmann K, Tannapfel A. CUP syndrome-metastatic malignancy with unknown primary tumor. Dtsch Arztebl Int. 2018;115(10):157–62. https://doi.org/10.3238/arztebl.2018.0157.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Giordano V, Giordano M, Giordano C, Giordano J, Koch HA, Knackfuss IG. Metastatic tumor of the hand of unknown primary origin. SAGE Open Med Case Rep. 2019;7:2050313X19836894. https://doi.org/10.1177/2050313X19836894.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Pentheroudakis G, Golfinopoulos V, Pavlidis N. Switching benchmarks in cancer of unknown primary: from autopsy to microarray. Eur J Cancer. 2007;43(14):2026–36. https://doi.org/10.1016/j.ejca.2007.06.023.

    Article  PubMed  Google Scholar 

  120. Hainsworth JD, Rubin MS, Spigel DR, Boccia RV, Raby S, Quinn R, et al. Molecular gene expression profiling to predict the tissue of origin and direct site-specific therapy in patients with carcinoma of unknown primary site: a prospective trial of the Sarah Cannon research institute. J Clin Oncol. 2013;31(2):217–23. https://doi.org/10.1200/JCO.2012.43.3755.

    Article  CAS  PubMed  Google Scholar 

  121. Palma NA, Ali SM, O'Connor J, Dutta D, Wang K, Soman S, et al. Durable response to crizotinib in a MET-amplified, KRAS-mutated carcinoma of unknown primary. Case Rep Oncol. 2014;7(2):503–8.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumeyye Ekmekci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ekmekci, S., Aktas, S. (2022). The Concept and Mechanisms of Metastasis. In: Sarioglu, S., Sagol, O., Aysal, A. (eds) Biomarkers in Carcinoma of Unknown Primary. Springer, Cham. https://doi.org/10.1007/978-3-030-84432-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84432-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84431-8

  • Online ISBN: 978-3-030-84432-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics