Skip to main content

Ethosome: A Potential Tool for Drug Delivery Through the Skin

  • Chapter
  • First Online:
  • 875 Accesses

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Transdermal drug delivery is a frequently exercised approach to allow the active molecules into the body through the skin owing to their advantages over other delivery systems. This approach can avoid the hepatic metabolism, provide the steady-state plasma drug concentration, evade the frequency of dosages by controlled release tendency, and improve patient compliance. The skin is the largest organ of the body, protects the influx of toxins, and controls essential compounds’ efflux. The stratum corneum (SC) is the first layer of the skin, controlling the permeation process across the skin and made up of dried lipid cells (keratinocytes). Elka Touitou designed ethosome-based drug delivery devices for transdermal delivery in 1997 since traditional skin distribution dosage forms have significant limitations in terms of drug penetration and permeation. Ethosomes are ethanol-embedded flexible vesicular systems having superior properties compared to other liposomes and transfersomes for skin delivery. Ethosomes, by their structure, mode of application, and action mechanism, are different from classic liposomes, transfersomes, and other lipid dispersions. This chapter explores the crux of conventional skin drug delivery systems, adoption of ethosomes as skin drug delivery systems, recent advances in their development, and current market status in the pharmaceutical industry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

GIT:

gastrointestinal tract

PG:

propylene glycol

SC:

stratum corneum

TDDS:

transdermal drug delivery system

Tm:

phase transition temperature

References

  • Aggarwal N, Goindi S (2013) Dermato pharmacokinetic and pharmacodynamic evaluation of ethosomes of griseofulvin designed for dermal delivery. J Nanopart Res 15:1983

    Article  CAS  Google Scholar 

  • Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M (2013) Enhanced transdermal delivery of an anti-hypertensive agent via nanoethosomes statistical optimization, characterization and pharmacokinetic assessment. Int J Pharm 443(1–2):26–38

    Article  CAS  PubMed  Google Scholar 

  • Ainbinder D, Touitou E (2011) A new approach for skin tumor treatment: from delivery system characterization to in vivo evaluation. Drug Deliv Transl Res 1:53–65

    Article  CAS  PubMed  Google Scholar 

  • Andrews SN, Jeong E, Prausnitz MR (2013) Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm Res 30:1099–1109

    Article  CAS  PubMed  Google Scholar 

  • Apriani EF, Rosana Y, Iskandarsyah I (2019) Formulation, characterization, and in vitro testing of azelaic acid ethosome-based cream against Propionibacterium acnes for the treatment of acne. J Adv Pharm Technol Res 10:75–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashoniya S, Meenakshi C (2011) Ethosomes as vesicular carrier for enhanced transdermal delivery of ketoconazole formulation and evaluation. J Pharm Cosmetol 1(3):1–14

    Google Scholar 

  • Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    Article  CAS  PubMed  Google Scholar 

  • Barry BW (1983) Dermatological formulations: percutaneous absorption. Marcel Dekker, New York and Basel

    Google Scholar 

  • Barry BW (1988) Action of skin penetration enhancers-the lipid protein partitioning theory. Int J Cosmet Sci 10(6):281–293

    Article  CAS  PubMed  Google Scholar 

  • Barry BW (2001) Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 14:101–114

    Article  CAS  PubMed  Google Scholar 

  • Benson HAE, Watkinson AC (2012) Topical and transdermal drug delivery. Wiley, Hoboken

    Google Scholar 

  • Carter P, Narasimhan B, Wang Q (2019) Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. Int J Pharm 555:49–62

    Article  CAS  PubMed  Google Scholar 

  • Cevc G, Blume G (1992) Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta 1104(1):226–232

    Article  CAS  PubMed  Google Scholar 

  • Dave V, Kumar D, Lewis S, Paliwal S (2010) Ethosome for enhanced transdermal drug delivery of aceclofenac. Int J Drug Deliv 2(1):81–92

    Article  CAS  Google Scholar 

  • Dina F, Youssef EMK, Soliman GM (2020) Liposomal and ethosomal gels for the topical delivery of Anthralin preparation, comparative evaluation and clinical assessment in psoriatic patients. Pharmaceutics 12:446

    Article  CAS  Google Scholar 

  • Elias PM, Menon GK (1991) Structural and lipid biochemical correlates of the epidermal permeability barrier. Adv Lipid Res 24:1–26

    Article  CAS  PubMed  Google Scholar 

  • El Maghraby GM, Williams AC (2009) Vesicular systems for delivering conventional small organic molecules and larger macromolecules to and through human skin. Expert Opin Drug Deliv 6:149–163

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Shi Y, Wang H, Zhao X, Sun Q, Huang Y, Qi T, Lin G (2019) Ethosomal gel for improving transdermal delivery of Thymosin β-4. Int J Nanomedicine 14:9275–9284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godin B, Touitou E (2004) Mechanism of bacitracin permeation enhancement through the skin and cellular membranes from an ethosomal carrier. J Control Release 94:365–379

    Article  CAS  PubMed  Google Scholar 

  • Godin B, Touitou E, Rubinstein E, Athamna A, Athamna M (2005) A new approach for treatment of deep skin infections by an ethosomal antibiotic preparation an in vivo study. J Antimicrob Chemother 55:989–994

    Article  CAS  PubMed  Google Scholar 

  • Goindi S, Dhatt B, Kaur A (2014) Ethosomes based topical delivery system of antihistaminic drug for treatment of skin allergies. J Microencapsul 31(7):716–724

    Article  CAS  PubMed  Google Scholar 

  • Gunjan J, Swarnlata S (2014) Topical delivery of Curcuma longa extract loaded nanosized ethosomes to combat facial wrinkles. J Pharm Drug Deliv Res 3(1):100–118

    Google Scholar 

  • Ita KB (2014) Transdermal drug delivery: progress and challenges. J Drug Del Sci Technol 24(3):245–250

    Article  CAS  Google Scholar 

  • Karadzovska D, Brooks JD, Monteiro Riviere NA, Riviere JE (2013) Predicting skin permeability from complex vehicles. Adv Drug Deliv Rev 65(2):265–277

    Article  CAS  PubMed  Google Scholar 

  • Kaur CD, Saraf S (2011) Topical vesicular formulations of Curcuma longa extract on recuperating the ultraviolet radiation-damaged skin. J Cosmet Dermatol 10(4):260–265

    Article  PubMed  Google Scholar 

  • Krishnan V, Mitragotri S (2020) Nanoparticles for topical drug delivery: potential for skin cancer treatment. Adv Drug Deliv Rev 153:87–108

    Article  CAS  PubMed  Google Scholar 

  • Li G, Fan Y, Fan C (2012) Tacrolimus-loaded ethosomes: physicochemical characterization and in vivo evaluation. Eur J Pharm Biopharm 82(1):49–57

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Liu H, Liu J (2011) Preparation of a ligustrazine ethosome patch and its evaluation in vitro and in vivo. Int J Nanomedicine 6:241–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodzki M, Godin B, Rakou L, Mechoulam R, Touitou E (2003) Cannabidiol transdermal delivery and anti-inflammatory effect in a murine model. J Control Release 93:377–387

    Article  CAS  PubMed  Google Scholar 

  • Madhavi N, Sudhakar B, Reddy KVNS, Ratna JV (2018) Pharmacokinetic and pharmacodynamic studies of etodolac loaded vesicular gels on rats by transdermal delivery. Daru 26(1):43–56

    Article  CAS  PubMed Central  Google Scholar 

  • Madhavi N, Sudhakar B, Reddy KVNS, Ratna JV (2019) Design by optimization and comparative evaluation of vesicular gels of etodolac for transdermal delivery. Drug Dev Ind Pharm 45(4):611–628

    Article  CAS  PubMed  Google Scholar 

  • Mbah CC, Builders PF, Attama AA (2014) Nanovesicular carriers as alternative drug delivery systems: ethosomes in focus. Expert Opin Drug Deliv 11(1):45–59

    Article  CAS  PubMed  Google Scholar 

  • Martins M, Azoia NG, Ribeiro A, Shimanovich U, Silva C, Cavaco Paulo A (2013) In vitro and computational studies of transdermal perfusion of nano formulations containing a large molecular weight protein. Colloid Surface B 108:271–278

    Article  CAS  Google Scholar 

  • Mezei M, Gulasekharam V (1982) Liposomes, a selective drug delivery system for the topical route of administration: gel dosage form. J Pharm Pharmacol 34:473–474

    Article  CAS  PubMed  Google Scholar 

  • Naik A, Kalia YN, Guy RH (2000) Transdermal drug delivery: overcoming the skin's barrier function. Pharm Sci Technol 3:318–326

    Article  CAS  Google Scholar 

  • Paolino D, Lucania G, Mardente D, Alhaique F, Fresta M (2005) Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J Control Release 106:99–110

    Article  CAS  PubMed  Google Scholar 

  • Rakesh R, Anoop KR (2012) Formulation and optimization of nano-sized ethosomes for enhanced transdermal delivery of cromolyn sodium. J Pharm Bioallied Sci 4(4):333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao LS (1984) Preparation of liposomes on the industrial scale problems and perspectives. In: Gregoriadis G (ed) Liposome technology, vol 1. CRC Press, Florida

    Google Scholar 

  • RRC New (1990) Liposomes: a practical approach. Oxford University Press, New York

    Google Scholar 

  • Scheuplein RJ (1976) Permeability of the skin: a review of major concepts and some new developments. J Invest Dermatol 67(5):672–676

    Article  CAS  Google Scholar 

  • Scheuplein RJ, Blank IH (1971) Permeability of the skin. Physiol Rev 51(4):702–747

    Article  CAS  PubMed  Google Scholar 

  • Scheuplein RJ (1967) Mechanism of percutaneous absorption II. Transient diffusion and the relative importance of various routes of skin penetration. J Invest Dermatol 48:79–88

    Article  CAS  PubMed  Google Scholar 

  • Sage BH, Hoke RA, McFarland AC, Kowalcyk K (1993) The importance of skin pH in iontophoresis of peptides, prediction percutaneous penetration. STS Publishing Cardiff, pp 410–418

    Google Scholar 

  • Shen S, Liu SZ, Zhang YS (2015) Compound antimalarial ethosomal cataplasm preparation evaluation, and mechanism of penetration enhancement. Int J Nanomedicine 10:4239–4253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song CK, Balakrishnan P, Shim CK, Chung SJ, Chong S, Kim DD (2012) A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces 92:299–304

    Article  CAS  PubMed  Google Scholar 

  • Sudhakar CK, Nitish U, Sanjay J, Charyulu RN (2012) Ethosomes as non-invasive loom for transdermal drug delivery. Nanomed Drug Deliv Apple Academic Press, pp 1–16

    Google Scholar 

  • Tachibana K (1992) Transdermal delivery of insulin to alloxan diabetic rabbits by ultrasound exposure. Pharm Res 9:952–954

    Article  CAS  PubMed  Google Scholar 

  • Touitou E, Alkabes M, Dayan N, Eliaz M (1997) Ethosomes novel vesicular carriers for enhanced skin delivery. Pharm Res 14(S305)

    Google Scholar 

  • Touitou E (1998) Composition for applying active substances to or through the skin. U.S. Patent 5:638–716

    Google Scholar 

  • Touitou E (1996) Compositions for applying active substances to or through the skin. United States patent US 5540934 a

    Google Scholar 

  • Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M (2000) Ethosomes novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release 65(3):403–441

    Article  CAS  PubMed  Google Scholar 

  • Touitou B, Godin M, Shumilov N, Bishouty D, Ainbinder R, Shouval AI, Leibovici V (2008) Efficacy and tolerability of clindamycin phosphate and salicylic acid gel in the treatment of mild to moderate acne vulgaris. J Eur Acad Dermatol Venerol 22(5):629–631

    Article  CAS  Google Scholar 

  • Verma P, Pathak K (2012) Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomedicine 8(4):489–496

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Guy RH (2009) Applications of nanoparticles in topical drug delivery and in cosmetics. J Drug Deliv Sci Technol 19(6):371–384

    Article  Google Scholar 

  • Xiang Y, Lina D, Yu L, Guiying F, Jin Y (2015) Improved anti-melanoma effect of a transdermal mitoxantrone ethosome gel. Biomed Pharmacother 73:6–11

    Article  CAS  Google Scholar 

  • Yu Z, Lv H, Han G, Ma K (2016) Ethosomes loaded with Cryptotanshinone for acne treatment through topical gel formulation. PLoS One 11(7):e0159967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang JP, Wei YH, Zhou Y, Li YQ, Wu XA (2012) Ethosomes, binary ethosomes and transfersomes of terbinafine hydrochloride a comparative study. Arch Pharm Res 35(1):109–117

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Li X, Zhu S, Zhang T, Maimaiti A, Ding M, Shi (2020) Dermal targeting delivery of terbinafine hydrochloride using novel multi-ethosomes: a new approach to fungal infection treatment. Coatings 10(4):304

    Article  CAS  Google Scholar 

  • Zhao YZ, Lu CT, Zhang Y (2013) Selection of high efficient transdermal lipid vesicle for curcumin skin delivery. Int J Pharm 454(1):302–309

    Google Scholar 

  • Zhou Y, Wei Y, Liu H, Zhang G, Wu X (2010) Preparation and in vitro evaluation of ethosomal total alkaloids of Sophora alopecuroides loaded by a transmembrane pH-gradient method. AAPS Pharm Sci Tech 11(3):1350–1358

    Article  CAS  Google Scholar 

  • Nida, Akhtar Kamla, Pathak (2012) Cavamax W7 Composite Ethosomal Gel of Clotrimazole for Improved Topical Delivery: Development and Comparison with Ethosomal Gel. AAPS PharmSciTech 13(1) 344-355 10.1208/s12249-012-9754-y

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madhavi, N., Sudhakar, B., Reddy, K.V.N.S. (2021). Ethosome: A Potential Tool for Drug Delivery Through the Skin. In: Kim, JC., Alle, M., Husen, A. (eds) Smart Nanomaterials in Biomedical Applications. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-84262-8_17

Download citation

Publish with us

Policies and ethics