Skip to main content

Deniable Fully Homomorphic Encryption from Learning with Errors

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2021 (CRYPTO 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12826))

Included in the following conference series:

Abstract

We define and construct Deniable Fully Homomorphic Encryption based on the Learning With Errors (LWE) polynomial hardness assumption. Deniable FHE enables storing encrypted data in the cloud to be processed securely without decryption, maintaining deniability of the encrypted data, as well the prevention of vote-buying in electronic voting schemes where encrypted votes can be tallied without decryption.

Our constructions achieve compactness independently of the level of deniability- both the size of the public key and the size of the ciphertexts are bounded by a fixed polynomial, independent of the detection probability achieved by the scheme. This is in contrast to all previous constructions of deniable encryption schemes (even without requiring homomorphisms) which are based on polynomial hardness assumptions, originating with the seminal work of Canetti, Dwork, Naor and Ostrovsky (CRYPTO 1997) in which the ciphertext size grows with the inverse of the detection probability. Canetti et al. argued that this dependence “seems inherent”, but our constructions illustrate this is not the case. We note that the Sahai-Waters (STOC 2014) construction of deniable encryption from indistinguishability obfuscation achieves compactness and can be easily modified to achieve deniable FHE as well, but it requires multiple, stronger sub-exponential hardness assumptions, which are furthermore not post-quantum secure. In contrast, our constructions rely only on the LWE polynomial hardness assumption, as currently required for FHE even without deniability.

The running time of our encryption algorithm depends on the inverse of the detection probability, thus the scheme falls short of achieving simultaneously compactness, negligible deniability probability and polynomial encryption time. Yet, we believe that achieving compactness is a fundamental step on the way to achieving all properties simultaneously as has been the historical journey for other primitives such as functional encryption. Our constructions support large message spaces, whereas previous constructions were bit by bit, and can be run in online-offline model of encryption, where the bulk of computation is independent of the message and may be performed in an offline pre-processing phase. This results in an efficient online phase whose running time is independent of the detection probability. At the heart of our constructions is a new way to use bootstrapping to obliviously generate FHE ciphertexts so that it supports faking under coercion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that these properties are also satisfied by several other FHE schemes, for instance [7, 11, 23].

  2. 2.

    Since we assume circular security which \(\mathsf{BGV}\) do not, we can simplify their scheme – in particular, we not need fresh keys for each level of the circuit as they do.

  3. 3.

    We remind the reader that \(\delta =\delta (\lambda )\), but we drop the \(\lambda \) for readability.

  4. 4.

    Polynomial in the security parameter. That is \(|\mathcal{M}|=\mathrm {poly}(\lambda )\).

  5. 5.

    Note that this exists from property 4 of the special \(\mathsf {Fhe}\).

References

  1. Agrawal, S., Goldwasser, S., Mossel, S.: Deniable fully homomorphic encryption from lwe. Cryptology ePrint Archive, Report 2020/1588 (2020). https://eprint.iacr.org/2020/1588

  2. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_15

    Chapter  Google Scholar 

  3. Anonymous. Removing circularity for levelled fhe. Personal Communication (2020)

    Google Scholar 

  4. Apon, D., Fan, X., Liu, F.-H.: Deniable attribute based encryption for branching programs from LWE. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 299–329. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_12

    Chapter  Google Scholar 

  5. Bendlin, R., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: Lower and upper bounds for deniable public-key encryption. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 125–142. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_7

    Chapter  Google Scholar 

  6. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. J. ACM (JACM) 65(6), 1–37 (2018)

    Google Scholar 

  7. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50

    Chapter  Google Scholar 

  8. Brakerski, Z.: Fundamentals of fully homomorphic encryption. On the Work of Shafi Goldwasser and Silvio Micali. In: Providing Sound Foundations for Cryptography (2019)

    Google Scholar 

  9. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 407–437. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_16

    Chapter  Google Scholar 

  10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theor. (TOCT) 6(3), 1–36 (2014)

    Google Scholar 

  11. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

    Google Scholar 

  12. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS (2014)

    Google Scholar 

  13. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052229

    Chapter  Google Scholar 

  14. Canetti, R., Park, S., Poburinnaya, O.: Fully deniable interactive encryption. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 807–835. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_27

    Chapter  Google Scholar 

  15. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: A homomorphic LWE based E-voting scheme. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 245–265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_16

    Chapter  Google Scholar 

  16. Dachman-Soled, D.: On minimal assumptions for sender-deniable public key encryption. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 574–591. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_33

    Chapter  MATH  Google Scholar 

  17. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable, multiparty computation in constant rounds. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_23

    Chapter  Google Scholar 

  18. De Caro, A., Iovino, V., O’Neill, A.: Deniable functional encryption. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 196–222. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_8

    Chapter  Google Scholar 

  19. Garg, S., Gentry, C., Halevi, V., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. SIAM J. Comput. 45(3), 882–929 (2016)

    Google Scholar 

  20. Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential barrier in obfustopia. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 156–181. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_6

    Chapter  MATH  Google Scholar 

  21. Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford University (2009). crypto.stanford.edu/craig

    Google Scholar 

  22. Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 438–464. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_17

    Chapter  Google Scholar 

  23. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  24. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: STOC (2013)

    Google Scholar 

  25. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. In: STOC (2021)

    Google Scholar 

  26. Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with non-trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 447–462. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8_17

    Chapter  Google Scholar 

  27. Meng, B.: A secure internet voting protocol based on non-interactive deniable authentication protocol and proof protocol that two ciphertexts are encryption of the same plaintext. J. Netw. 4(5), 370–377 (2009)

    Google Scholar 

  28. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_30

    Chapter  Google Scholar 

  29. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: STOC (2014)

    Google Scholar 

  30. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_25

    Chapter  MATH  Google Scholar 

Download references

Acknowledgment

We are grateful to Daniele Micciancio for very insightful discussions about bootstrapping, and helpful comments that helped us improve the quality of this writeup. We thank Vinod Vaikuntanathan and Aayush Jain for suggesting the use of a key-chain rather than key-cycle to get rid of circular security for the case of levelled FHE. Research of the first author is supported by the DST “Swarnajayanti” fellowship, an Indo-French CEFIPRA project and the CCD Centre of Excellence. Part of the research corresponding to this work was conducted while visiting the Simons Institute for the Theory of Computing. Research of the second author is supported in part by DARPA under Agreement No. HR00112020023. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Government or DARPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agrawal, S., Goldwasser, S., Mossel, S. (2021). Deniable Fully Homomorphic Encryption from Learning with Errors. In: Malkin, T., Peikert, C. (eds) Advances in Cryptology – CRYPTO 2021. CRYPTO 2021. Lecture Notes in Computer Science(), vol 12826. Springer, Cham. https://doi.org/10.1007/978-3-030-84245-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84245-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84244-4

  • Online ISBN: 978-3-030-84245-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics